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Abstract: To reduce the impact on climate change, many countries have developed strategies for
the building sector with a goal to reduce the energy demands and carbon emission of buildings.
As most buildings that exist today will very likely exist in foreseeable future, many buildings will
need to undergo major renovations. One of the most important parameters in determining the
transmission heat losses through the building envelope is the U-value, i.e., thermal transmittance,
and it is simply the rate of heat transfer per unit temperature. Since the U-value is one of the most
important parameters regarding building energy performance, envelope elements that do not perform
well in terms of transmission heat losses must undergo a renovation processes. The in-situ U-value
of building elements is usually determined by the Heat Flux Method (HFM). One of the issues of
current application of the HFM is the measurement duration. This paper explores the possibilities of
reducing the measurement time by predicting the heat flux rate using a multilayer perceptron (MLP),
a class of artificial neural network. The MLP uses two input layers that are the interior and exterior
air temperatures, and the output layer that is the predicted heat flux rate. The predicted value is
trained by comparing the predicted heat flux rates with the measured values, and by rearranging the
neural network parameters (weights and biases) in corresponding neurons by minimizing the mean
squared error defined for trained values (measured versus predicted heat flux rates). The use of MLP
shows promising results for predicting the heat flux rates for the analyzed cases (4 days HFM results)
when the training is performed on 2/3 or 1/2 of the overall measurement time. The application of
the MLP could be in reducing the in-situ measurement time when determining heat losses through
building elements in shorter time periods.

Keywords: Heat Flux Method; Heat Flux Meter; Artificial Neural Networks; Multilayer Perceptron;
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1. Introduction

Assessment of the building energy performance came into focus in the European Union (EU)
Member states because of the EU’s policy decisions to mandate that every new building must be
a Nearly Zero-Energy Building (NZEB); this also applies to every building that undergoes a major
renovation. Buildings that exist today will very likely exist in the near future [1], and this is a
reason why EU Member states must develop plans for renovation of building stock. Problems occur in
assessment of building envelope performance (in view of transmission heat losses) of existing buildings
due to lack of technical drawings, or because of degradation of construction materials. One of the most

Eng. Proc. 2020, 2, 29; doi:10.3390/ecsa-7-08272 www.mdpi.com/journal/engproc

http://www.mdpi.com/journal/engproc
http://www.mdpi.com
https://orcid.org/0000-0003-4534-8441
https://orcid.org/0000-0003-0264-2958
https://orcid.org/0000-0002-9100-4060
https://ecsa-7.sciforum.net/
http://dx.doi.org/10.3390/ecsa-7-08272
http://www.mdpi.com/journal/engproc
http://www.mdpi.com/2673-4591/2/1/29?type=check_update&version=2


Eng. Proc. 2020, 2, 29 2 of 6

important parameters in determining the transmission heat losses through the building envelope is the
thermal transmittance (U-value), which is the rate of heat transfer per unit temperature. To overcome
the problem of assessing the envelope performance, in-situ U-value can be determined by using the
Heat Flux Method (HFM). HFM is standardized [2] nondestructive method based on heat flow rate
measurement using a heat flow sensor, and simultaneous measurement of interior and exterior air
temperatures using thermocouples. In order to shorten the measurement time, this paper analyzes a
possibility of application of an artificial intelligence (AI) Multilayer Perceptron (MLP) method and
its applicability on HFM results. The idea is to construct an artificial neural network (ANN) that has
two inputs (interior and exterior air temperatures) and one output (heat flow rates). The ANN learns
how to assess the heat flow rate based on measured interior/exterior temperatures and heat flow
rates, by minimizing the ANN cost function. After the ANN achieves satisfactory precision depending
on certain measurements, the heat flow sensor can be moved to a new measurement location, and
only thermocouples are needed to ensure the inputs of the ANN in order to finish the measurement.
The application of proposed method shortens the measurement time when there are more than one
envelope elements that are examined by one heat flow sensor.

Experimental Data

Measurement was carried out in the period between the 28th of February up until 3rd of March
2019. The measurement site can be seen in Figure 1. Experimental data contains 510 data points (heat
fluxes and air temperatures) [3]. These data points are a part (HFM results) of research from [4].

Figure 1. Measurement site showing experimental setup.

The analyzed wall is located in Zagreb (on the Faculty of Civil Engineering, UNIZG) and it
is oriented towards the east. The internal environment was heated from 06:00 until 22:00 with
radiators every day during the measurement period. Air conditioning unit was turned off during the
measurement. External wall surface was exposed to the real environmental conditions (rain, sun, etc.).
Heat flux sensor was placed 0.85 m from the adjacent wall and minimally 0.4 m from all the other
obstacles. Interior and exterior air temperatures were measured with thermocouples. More information
about the heat flux sensor and the thermocouples can be seen in Section 2.1.

2. Methods

The paper presents an application of MLP on HFM results for a 47.3 cm wall with the designed
U-value of 0.91 W/(m2 K). The MLP method, as well as its application on the HFM results, are defined
in Section 2.2. All the files used in this research can be found in of one of the author’s GitHub
repository [5]. The MLP method is modeled with the Python machine learning library Keras [6] which
is a generalization of Python Tensorflow source library [7].

2.1. Heat Flux Method

HFM is based on measuring the heat flux density by the heat flow sensor, and on measuring the
interior and exterior air temperatures using thermocouples. Measurement equipment specification is
shown in Table 1.
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Table 1. Heat flux kit specifications—heat flux sensors and 2 thermocouples.

Model gSKIN®Heat Flux Sensor

Sensitivity 10.93 µ V/(W/m2)
Correction factor 0.0137 [µ V/(W/m2)]/◦C

Dimensions 30.0 × 30.0 mm
Thickness 2.0 mm

Electrical resistance at 22.5 ◦C ≤100 Ω
Relative error ±3%

Temperature range −50 ◦C / +150 ◦C

A heat flux sensor is a device that produces an electrical signal that is a linear function of the heat
flow passing through it. These sensors are usually flat, thermally resistive plates (schematically shown
in Figure 2) with thermocouples that have several thermophiles integrated inside of the thermocouple
substrate. Sensors for air temperature measurements produce an electrical signal that is a linear
function of its temperature.

Figure 2. Schematic cross section of heat flux sensor.

The goal of this research is to calculate the U-value using the MLP method and compare it to the
U-value calculated using the average method defined in the ISO 9869 standard [2] (1):

U =
∑N

j=1 qj

∑N
j=1 (Ti − Te)j

, (1)

where Ti and Te are the internal and external air temperatures, respectively, and q is the heat flow rate.
Index j is corresponding to the measurement data point.

2.2. Artificial Neural Networks—Multilayer Perceptron

The MLP is a class of feedforward ANN that consists of a minimum of three layers—visible input
layer, hidden layer, and output layer. The input layer brings certain information to the ANN model that,
with a set of weights and biases, carry a certain information from one neuron to another. Each neuron
in the hidden layer has an activation function that transforms information and carries it to the neurons
in the next layer. The last layer is the output layer with its activation function. The ANN model is
trained in a way that the output layer neurons (outputs) are compared to the training data points
forming the cost function based on the chosen loss function (e.g., the mean squared error). The loss
function is minimized by rearranging the ANN model weights, biases, and activation functions. When
the error tolerance is satisfied, the model can be used for predicting the certain phenomena, or in this
case the U-value.

The ANN in this paper consists of two inputs (neurons) in the input layer, one hidden layer with
three perceptrons (neurons), and an output layer with one output. This type of the ANN MLP (with
one hidden layer) is usually called plain vanilla. The inputs are internal and external air temperatures
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used for “feeding” the ANN, and the output is the predicted heat flux used for back-propagation
process. This ANN model is trained on three sets of data points derived from [3]. The first case is done
on 1/4 of the total data points, the second on 1/2 of the total data points and the third on the 2/3 of the
total data points. The cost function is created using the mean squared error (MSE) and it is minimized
using the stochastic gradient descent method with Adam [8] optimizer. The schematic architecture
of the ANN model is shown in Figure 3. The activation functions for all the neurons in the hidden
layer is a ReLU function, and the activation function for the output layer is a linear function. For the
prediction comparison two more parameters, alongside with the MSE, were used – the Root Mean
Squared Error (RMSE) and the Mean Absolute Error (MAE).

Figure 3. Schematic view of artificial neural network model.

3. Results

As stated in Methodology, three cases were analyzed on one measurement dataset (510 data
points). The first case is an ANN prediction of the model trained on 1/4 of the total data points
(128 entries), and the comparison between the predicted results and the measured values is shown in
Figure 4. Figures 5 and 6 show the results for the ANN trained on 1/2 (255 entries) and 2/3 (340 entries)
of the total data points.

Figure 4. Heat flux prediction based on ANN training on 1/4 of measurement data.
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Figure 5. Heat flux prediction based on ANN training on 1/2 of measurement data.

Figure 6. Heat flux prediction based on ANN training on 2/3 of measurement data.

Table 2 shows that the best prediction is achieved for the ANN trained on 1/2 of the total data
points with a relative difference between the measured U-value and the predicted U-value of 0.78%,
with the RMSE, MSE and MAE: 1.195, 1.428 and 0.826, respectively. For the case where the ANN is
trained on 2/3 of the total data points, it can be seen that a worse result is achieved in terms of U-value,
even though the ANN model is trained on the larger amount of data points. For the case where the
ANN is trained on 1/4 of the total data points, the worst prediction is achieved, but even in this case
the prediction is remarkable considering that the ANN is trained only on 128 data points.
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Table 2. ANN prediction parameters and comparison of predicted and measured U-value.

Training Data RMSE MSE MAE Measured U-Value Predicted U-Value Relative Difference

1/4 of data 1.573 2.474 1.218 1.126 8.73%
1/2 of data 1.195 1.428 0.826 1.035 1.027 0.78%
2/3 of data 1.202 1.445 0.828 1.021 1.39%

4. Conclusions

This paper has shown promising results for the application of the MLP method on the heat flux
rates measurement results in order to decrease the time needed to carry out the measurement when
one heat flux sensor must be used. If the method shown in this paper is used on the collected dataset,
then the procedure allows for the movement of the heat flux sensor to another measurement location,
but only after satisfactory heat flux prediction is achieved. Because of that, two measurements can be
carried out simultaneously. This research has focused only on one dataset; the analysis was done on a
different number of training data points to show the feasibility of the MLP method. To analyze the
method’s accuracy, potential risks, and advantages, more field and laboratory tests should be carried
out. Furthermore, the definition of satisfactory level of prediction precision should be carried out in
future research.
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