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Abstract: Dealing with complex engineering problems characterized by Big Data, particularly in 
structural engineering, has recently received considerable attention due to its high societal 
importance. Data-driven structural health monitoring (SHM) methods aim at assessing the 
structural state and detecting any adverse change caused by damage, so as to guarantee structural 
safety and serviceability. These methods rely on statistical pattern recognition, which provides 
opportunities to implement a long-term SHM strategy by processing measured vibration data. 
However, the successful implementation of the data-driven SHM strategies when Big Data are to be 
processed is still a challenging issue, since the procedures of feature extraction and/or feature 
classification may end up being time-consuming and complex. To enhance the current damage 
detection procedures, in this work we propose an unsupervised learning method based on time 
series analysis, deep learning and the Mahalanobis distance metric for feature extraction, 
dimensionality reduction and classification. The main novelty of this strategy is the simultaneous 
dealing with the significant issue of Big Data analytics for damage detection, and distinguishing 
damage states from the undamaged one in an unsupervised learning manner. Large-scale datasets 
relevant to a cable-stayed bridge have been handled to validate the effectiveness of the proposed 
data-driven approach. Results have shown that the approach is highly successful in detecting early 
damage, even when Big Data are to be processed. 
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1. Introduction 

Structural health monitoring (SHM) is a necessity for today’s society, in order to preserve 
valuable and important civil structures and guarantee their health and integrity to avoid human and 
economic losses [1,2]. Due to recent advances in sensing and data acquisition systems, the processing 
of raw measured data by the SHM system is not a major challenge. On this basis, data-driven methods 
have received increasing attention among civil engineers and researchers for monitoring civil 
structures [3]. 

The central core of all these methods relies upon statistical pattern recognition, and comprises 
feature extraction and feature classification. The former step is a signal processing strategy, which 
aims at extracting meaningful information (here called damage-sensitive features) from raw 
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measured data (e.g., acceleration time histories), while the latter is a machine learning algorithm for 
analyzing and classifying the extracted features for early damage detection, localization and 
quantification [4–7]. Time series modeling is one of the powerful feature extraction methods, which 
is intended to fit a parametric representation (model) to raw measured data [8,9]. Coefficient-based 
and residual-based algorithms are two different feature extraction methods via time series modeling. 
Although the outputs (features) of the residual-based algorithm are high dimensional, the relevant 
methodology proves to be more efficient than the coefficient-based one by avoiding order 
determination and parameter estimation of the measured vibrations related to the current (possibly 
damaged) conditions [4]. Furthermore, novelty detection based on unsupervised learning, which is 
to be contrasted with supervised learning [10,11], is an influential method for feature classification. 
Statistical distances [4,12–14], clustering algorithms [15] and artificial neural networks [16] are 
popular tools for developing novelty detectors for SHM. 

Despite various effective data-driven methods, the presence of large volumes of vibration 
measurements (Big Data) may bring time-consuming and cumbersome algorithms for decision 
making into the procedure [2]. To deal with this issue, Vitola et al. [17] presented a statistical pattern 
recognition method based on multivariate analysis, sensor data fusion and machine learning for 
damage detection from a large volume of data acquired from distributed piezoelectric sensors. A 
machine learning algorithm featuring cross correlation and robust regression analyses was presented 
by Catbas and Malekzadeh [18] to detect damage and deal with the problem of Big Data collected 
from the mechanical components of movable bridges. Big Data analytics was performed by Kim and 
Queiroz [19] for the condition evaluation of highway bridges by considering roughly one million data 
samples. Yao et al. [20] presented an iterative spatial compressive sensing scheme for damage 
identification and localization by handling the Big Data problem. 

Departing from the previously mentioned cited works, the main objective of this paper is to 
propose an unsupervised learning method for early damage detection via time series analysis for 
feature extraction through an AutoRegressive Moving Average (ARMA) model, a deep autoencoder 
neural network for dimensionality reduction and the Mahalanobis distance metric for feature 
classification. In this method, large volumes of the high-dimensional ARMA residuals, extracted from 
the vibration responses of a structure featuring either a normal or damaged condition, are fed into an 
autoencoder so as to extract the outputs of the bottleneck layer as representative, low-dimensional 
features. The Mahalanobis distance is then used to measure the dissimilarities between the training 
and test data sets obtained from the low-dimensional features. The effectiveness and performance of 
the proposed method are verified by a large-scale bridge. Obtained results demonstrate that the 
method is successful in detecting early damage, while still very efficiently dealing with the problem 
of Big Data. 

2. Methodology 

2.1. Feature Extraction by ARMA Modeling 

Time series analysis via ARMA modeling has emerged as an effective approach to extract 
damage-sensitive features from structural responses to ambient vibrations [8]. ARMA, as an 
extension of the AR representation, is an output-only time-invariant linear model [21]. Given a 
vibration response y(t) at time t, the model is given by 

( ) ( ) ( ) ( )
= =

= − + − + i j
i 1 j 1

i i ,
p q

y t φ y t ψ e t e t  (1) 

where the first and second terms at the right-hand side respectively refer to the AR (output) and MA 
(error) terms of the whole model. In Equation (1): p and q are the model orders; φ1, …, φp and ψ1, …, 
ψq are the coefficients of the AR and MA terms; and e(t) is the residual at time t, which represents the 
difference between the measured and predicted responses. For SHM purposes, the AR coefficients 
and the model residuals are used as damage-sensitive features; more details of the process of feature 
extraction by ARMA modeling can be found in [8]. 
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2.2. Dimensionality Reduction by a Deep Autoencoder 

Deep learning is a relatively new method in the field of machine learning, which exploits the 
enhanced approximation/mimicking capabilities of deep neural networks [16]. If this technique is 
allowed for within an autoencoder, it shows the major feature of working in an unsupervised fashion: 
the neural network thus aims at learning a new representation of data by trying to reconstruct the 
inputs [22]. An autoencoder is comprised of two phases: encoding the input data into a lower-
dimensional space; and decoding of the compressed representation back to the original space. The 
deep autoencoder minimizes the difference between its input and output, via a cost function L that is 
defined in the following form 

= −
2

arg min ,X XL  (2) 

where X∈ℝm×n denotes the input, i.e., the initial feature samples relevant to the normal structural 
condition as obtained from time series modeling; and 𝐗ഥ∈ℝm×n is the reconstruction of X, which is 
defined as the network output. As well as the input and output layers, a deep autoencoder includes 
several hidden layers. The central hidden layer is called the bottleneck, as it has the minimum number 
of neurons among all the hidden layers; this layer plays a crucial role in the problem of dimensionality 
reduction [23]. In this study, a deep autoencoder with seven hidden layers has been designed, to 
extract the outputs of the bottleneck layer as the low-dimensional system features. 

In deep learning, the selection of the numbers of hidden layers and neurons is a crux. Having 
set for the deep autoencoder the number of hidden layers, the optimization of the number of neurons 
of each layer can be carried out by means of the final prediction error (FPE) function [24]. Given the 
neuron numbers of the hidden layers h1–h7, this function is written as follows: 

( )
( )

+
=

−

1
1
β

FPE α
β

 (3) 

In this equation: β = Nw/N, where N = n × m; Nw = ((m + h4 + 1)∑ ℎ௜଻௜ୀଵ ) + (m + h4); h4 denotes the 
number of neurons of the bottleneck layer; and α = E/2N is an average sum of squared errors, where 
the sum-squared-error E is given by: 

( )= −
2

=1 =1

m n

ij ij
i j

E X X  (4) 

By continuously varying the values of h1–h7, those featuring the smallest FPE results were the 
most appropriate, problem-dependent choice. The input matrix X is thus fed into the deep neural 
network to extract the low-dimensional outputs Bx∈ℝm×f of the bottleneck layer, where f≪n. The same 
process is repeated for the feature matrix Z∈ℝm×n for the current state, in order to extract the 
corresponding low-dimensional outputs Bz∈ℝm×f of the bottleneck layer. 

2.3. Feature Classification by Mahalanobis Distance Metric 

To finally compare the damage-sensitive features relevant to the undamaged state, namely the 
baseline, and to the current state, a distance metric must be introduced. The Mahalanobis distance is 
a statistical tool for computing the dissimilarity between two multivariate datasets, or matrices [12]. If 
the feature matrices X and Z are handled in the distance calculation, the procedure may result in being 
time-consuming and cumbersome, as they are high-dimensional features. If the low-dimensional 
matrices Bx and Bz are handled instead, the Mahalanobis distance can turn out to be far more efficient. 

For this purpose, it is necessary to generate the training and test sets Tx and Tz from Bx and Bz in 
the training and inspection phases [12]. Subsequently, the mean vector (vx) and the covariance matrix 
(Cx) are computed for the training set Tx, so as to measure the dissimilarity of each vector (tz) of the 
matrix Tz from these components in the following form: 

( ) ( )−= − −
T 1

z x x z xt v C t vMd  (5) 
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3. Performance Validation 

The vibration datasets of the Tianjin-Yonghe Bridge [25] have been used to assess the 
performance of the proposed method. This is one of the earliest cable-stayed bridges constructed in 
Mainland China. The bridge consists of a main span of 260 m, and two side spans of 25.15 m and 
99.85 m, see Figure 1. After 19 years of operation from 1987, some cracks and corrosion in some stayed 
cables were discovered. An SHM system was then designed to measure and monitor the bridge 
vibrations after a major rehabilitation program; however, new damage patterns were found in the 
girders during a routine inspection in August 2008. In the meantime, acceleration time histories were 
measured by 14 single-axis accelerometers deployed, as shown in Figure 1, for 12 days (1 January, 17 
January, 3 February, 19 March, 30 March, 9 April, 5 May, 18 May, 31 May, 7 June, 16 June and 31 July, 
2008). 

 
Figure 1. Sketch of the Tianjin-Yonghe Bridge, with sensor labels and deployment. 

The measured vibration data for each day consisted of 24 sets of one-hour measurements with a 
sampling frequency of 100 Hz, yielding 360,000 acceleration samples at each sensor location. 
Measurements collected by sensor #10 have been considered to provide meaningless information, 
while the datasets of 31 May, 7 June and 16 June have been disregarded due to the resulting weak 
excitations; accordingly, in this study the measurements gathered by 13 accelerometers during the 
first eight days and 31 July have been allowed for. In such cases, it has only been assumed that the 
bridge was undamaged on the first eight days, and damaged on the last [25]. Considering all the 
acceleration responses along the 24 test measurements, the data samples for feature extraction 
amount to 1,010,880,000, producing a huge volume of high-dimensional sets (Big Data). In this regard, 
the variable m and n are set to 312 and 360,000, where 312 = 24 × 13. 

For the process of feature extraction by ARMA modeling, the model orders p and q must be 
defined. The orders have been obtained by using the Bayesian information criterion (BIC) [21]. Next, 
the coefficients of the AR and MA terms have been estimated by minimizing the model residuals. 
Referring to Section 2, the matrices X∈ℝ312×360,000 and Z∈ℝ312×360,000 represent the residual sets of the 
bridge in the normal and damaged conditions, respectively. To obtain the low-dimensional feature 
sets, Bx and Bz, Figure 2 provides the optimal sample neurons of the hidden layers 1–7; via the FPE 
function, the most appropriate neurons for each layer have been determined. Figure 3 depicts the 
best sample neuron for the residual matrices, which obviously varies in time even for normal 
conditions only. In the figure, the red circles depict the best number of neurons of the hidden layers; 
for example, the smallest FPE value in Figure 3a has been obtained for sample 16, which means that 
the proper numbers for h1–h7 turn out to be 80, 60, 40, 20, 40, 60 and 80, respectively. 
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Figure 2. Sample neurons of the hidden layers of the proposed deep autoencoder. 

 
Figure 3. Variation of the final prediction error (FPE) with the sample, to optimize the selection of the 
neuron size of hidden layers of the deep autoencoder on: (a) 1 January; (b) 3 February; (c) 30 March; 
and (d) 5 May. 

Extracting the outputs at the bottleneck layers for all the nine days of the monitoring has 
provided the matrices Bx∈ℝ312×123 and Bz∈ℝ312×123, which are used to generate the training and test data 
sets. As customarily assumed, 75% of the samples in Bx have been considered to obtain the training 
matrix Tx∈ℝ312×92; the remaining 25% of the samples in Bx and all the samples in Bz have instead 
provided the test matrix Tx∈ℝ312×154. Figure 4 illustrates the result of early damage detection via the 
Mahalanobis distance, where the first 123 samples are related to the normal condition of the bridge 
and the second 123 samples belong to the damaged state; the distance values regarding samples 1–
92 pertain to normal conditions in the training phase. These results have been obtained by handling 
each of the vectors (tx) of the training matrix in Equation (5), to estimate the threshold value as the 
horizontal dashed line in Figure 4, which is based on the generalized extreme value distribution and 
block maxima technique [10,12]. The distance quantities relevant to samples 93–123 refer to the same 
normal conditions, but used as validation data. 
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Figure 4. Early damage detection by exploiting the low-dimensional features: variation in time of the 
Mahalanobis distance. 

From Figure 4, it is clear that all distance values related to normal conditions, in both the training 
and inspection phases, fall below the threshold limit. For the other way around, all the distance values 
related to samples 124–246 exceed the threshold, implying an accurate detection of damage. The great 
advantage of the proposed method is to make a decision using only the 246 distance values, rather 
than the total 360,000 data points. Therefore, one can conclude that this method not only yields 
accurate damage detection outcomes, but also provides low-dimensional features and outputs for 
decision-making. 

4. Conclusions 

This work has proposed an unsupervised learning method based on three main steps: feature 
extraction by ARMA modeling; dimensionality reduction by a deep autoencoder; and feature 
classification via the Mahalanobis distance metric. The large volumes of vibration measurements 
regarding a large-scale cable-stayed bridge have been used to assess the performance of the proposed 
method. The results have shown that this method is able to accurately detect damage by means of 
the low-dimensional features obtained from the bottleneck layer of a deep autoencoder with seven 
hidden layers. It has been also shown that the neuron size selection via the FPE function is an 
appropriate tool for hyperparameter estimation in deep learning, due to the good results obtained in 
terms of damage detection. 
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