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Abstract: In recent years, dynamic process models have grown even more important in the context
of Industry 4.0 and the use of digital twins. However, the accuracy of the corresponding model
parameter estimates is determined by the quantity and quality of data and the parameter identification
solving methodologies used. Standard methods are based on the ordinary least squares framework.
Still, other options are available that might be more sensitive to model parameter variations and
ensure more precise parameter estimates. The paper presents a novel technique for parameter
identification based on incorporating neural ordinary differential equations for surrogate modeling
and differential flatness, i.e., a systems theory concept in control engineering. This approach may
lead to improved parameter sensitivities, as demonstrated with a simulation study of a distributed-
parameter identification problem assuming a diffusion-type parabolic partial differential equation.

Keywords: process systems engineering; system identification; systems theory; differential flatness;
deep learning; partial differential equations; parameter sensitivities

1. Introduction

System identification is the process of creating a mathematical model, or equation, to
represent a real-world problem. This equation can then be used to predict and analyze
possible outcomes of the system under study. In many engineering fields, the time behavior
of complicated technical systems can be described by using a system of ordinary differential
equations (ODEs). However, the parameters in these equations are often unknown and
need to be estimated from experimental data. Over the past few decades, there has been
intense research on parameter estimation methods. A popular method minimizes the sum
of squared errors (SSE) between a model prediction and measurement data, where the
prediction is calculated by solving the ODE numerically [1]. The model parameters are
then adjusted until a given minimization criterion is reached. However, other options are
available that might be more sensitive to model parameter variations and might ensure
more precise parameter estimates, respectively. Control and systems theory can improve
parameter identification procedures, e.g., online parameter identification concepts [2,3].

Another example is differential flatness to recalculate control trajectory profiles for
desired system dynamics [4,5], i.e., following a system inversion concept. In a differential
flat system, state variables and input variables can be expressed as functions of so-called
flat outputs and a finite number of their derivatives, also leading to a reformulation of the
parameter identification problem. Moreover, while optimal experimental design concepts
might be needed to improve data quantity and quality [3], the flatness concepts involved
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in the flat output approach may result in improved parameter sensitivities [6] and more
precise parameter estimates [7,8] without experimental data enrichment.

2. Methods
2.1. Parameter Identification Problem

Frequently, dynamic process models are given as ordinary differential equation systems:

.
x(t) = f(x(t), u(t), p),

x(t0) = x0,
(1)

where t ∈ [t0, t0 + tend] is the time, with t0 as the initial time and tend as the time duration
of the simulation, u ∈ Rnu is the vector of the control variables, p ∈ Rnp is the vector
of the time-invariant parameters, and x ∈ Rnx are the differential system states. The
initial conditions for the differential states are given by x0. Moreover, f : Rnx×nu×np → Rnx

represents the corresponding vector field. For this kind of mathematical representation,
the standard approach of parameter identification, i.e., the ordinary least squares (OLS)
method, can be defined as:

p̂OLS = arg min
p

K

∑
k=1
‖ ydata(tk)− y(tk, p) ‖2

2, (2)

where || · ||2 denotes the Euclidean norm, ydata (tk) represents the data vector at discrete time
points tk over all measurement samples K, and the model output function is defined as:

y(tk, p) = h(x(tk, p)), (3)

with h : Rnx → Rny , and y ∈ Rny as the model output vector. Alternatively, when aiming
to utilize the inverse model response, i.e., applying a model inversion strategy, an input
least squares (ILS)-based parameter identification problem can be used:

p̂ILS =
K

∑
k=1
‖ udata(tk)− u(tk, p) ‖2

2. (4)

Here, the control inputs, u(tk, p), have to be calculated to solve the parameter iden-
tification problem, and udata (tk) represents the recorded physical input actions. For this
purpose, we study the differential flatness concept outlined in Section 2.2. However, it is
essential to note that parameter sensitivities are relevant for well-posed parameter identifi-
cation problems. On having the output function y(tk, p) and the inputs u(tk, p) (inverse
model response), the sensitivity S of the parameter p is defined as:

Syp
(tk) =

∂y(tk, p)
∂p

, (5)

Sup(tk) =
∂u(tk, p)

∂p
. (6)

Here, in general, absolute high parameter sensitivity values ensure precise parameter
estimates according to the Fisher Information matrix and the Cramér Rao inequality [1,3].

2.2. Differential Flatness

In literature, a process model (Equation (1)) is called differentially flat if there is an
output function:

yflat = hflat
(

x, u,
.
u, . . . , u(s), p

)
, (7)
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with a finite value s ∈ N and the smooth mapping function yflat : Rnx × (Rnu)s+1 ×Rnp → Rny

that is called flat output. With the flat output, the system states and control inputs are
expressed as:

x = Ψx

(
yflat ,

.
yflat , . . . , yflat (r)

, p
)

, (8)

u = Ψu

(
yflat ,

.
yflat , . . . , yflat (r+1)

, p
)

, (9)

with the mapping functions Ψx : (Rny)r+1 × Rnp → Rnx and Ψu : (Rny)r+2 × Rnp → Rnu ,
and assuming a quadratic system dimyflat = dimu. When applying the flatness concept, it
was shown that parameter sensitivities and the reliability of parameter estimates, respec-
tively, could be improved in the case of ILS [6] or when combining the OLS with ILS [7,8].
However, in process systems engineering, for instance, besides lumped-parameter systems
(i.e., ordinary differential equations), distributed-parameter systems, described via partial
differential equations, are frequently applied. In this case, the differential flatness approach
has to be generalized [5,9–11].

2.3. Neural Ordinary Differential Equations

In data science and deep learning, neural networks are frequently used to build
empirical models. A neural network is a group of interconnected neurons with one or
more hidden layers depending on the network’s specific task. Technically, the ith neural
network layer, NNLi(x) : Rdi−1 → Rdi , contains Ni neurons. Here, NNLi(x) is specified
with the weight matrix, Wi ∈ Rdi×di−1 , and the bias vector, bi ∈ Rdi . Thus, for instance, a
feed-forward neural network reads as:

NNL0(x) = x ∈ Rd0 ,
NNLj(x) = σ

(
WjNNLj−1(x) + bj

)
∈ Rdj

∀1 ≤ j ≤ I− 1
NNLI(x) = WINNLI−1(x) + bI ∈ RdI .

, (10)

When it comes to the so-called neural ordinary differential equations, the governing
equations read as:

.
x(t) = NN(x(t), u(t), p), x(t0) = x0. (11)

Neural ODEs offer a promising approach for hybrid modeling and system identifica-
tion [12–15]. Furthermore, the neural network’s architecture can be optimized to represent
experimental data better. This could be performed in conjunction with optimal experimen-
tal design methods [3] to improve the accuracy of system identification further.

3. Case Study

Determining kinetic parameters of (diffusion-type parabolic) PDEs (e.g., Equation (12))
has been extensively studied, including chromatography and adsorption processes [2,16–19],
respectively.

∂φ

∂t
= p

∂2φ

∂x2 + u(x, t) (12)

Following the numerical solution and the finite difference method (Equation (13)) of
the diffusion-type PDE, a set of coupled ODEs is obtained, which can be written in the
state-space form as shown in Equation (14).

∂2φ

∂x2 '
φi+1 − 2φi +φi−1

∆x2 (13)
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∂φ1
∂t =

p
∆x2 φ2 −

2p
∆x2 φ1 +

p
∆x2 φ0 + u1(t),

∂φ2
∂t =

p
∆x2 φ3 −

2p
∆x2 φ2 +

p
∆x2 φ1 + u2(t),

∂φ3
∂t =

p
∆x2 φ4 −

2p
∆x2 φ3 +

p
∆x2 φ2 + u3(t),

· · ·
∂φN−1

∂t =
p

∆x2 φN −
2p

∆x2 φN−1 +
p

∆x2 φN−2 + uN−1(t),
∂φN

∂t =
p

∆x2 φN+1 −
2p

∆x2 φN +
p

∆x2 φN−1 + uN(t),

. (14)

Practically, the parameter identification problem for this academic case study is to
determine the diffusion parameter p in this system to represent the actual physical process
being modeled accurately. This can be challenging as even minor changes in the coefficient
value can result in significant changes in solution behavior or vice versa. However, it
is often possible to obtain reasonable estimates for the diffusion parameter with careful
analysis and experimentation [2,18], including the proposed concept of combining systems
theory with differential flatness and deep learning. In particular, when assuming that all
states in Equation (14) are measurable, i.e., yi = φi, ∀ 1 ≤ i ≤ N, and that the output
derivatives, i.e.,

.
yi, ∀ 1 ≤ i ≤ N, exist, then the related equation system (Equation (15)) can

be transformed to determine the input variables, ui , ∀ 1 ≤ i ≤ N, accordingly.


.
y1(t).
y2(t)
· · ·

.
yN−1(t).

yN(t)

 =



− 2p
∆x2

p
∆x2 0 0 · · · 0 0 0 0

p
∆x2 − 2p

∆x2
p

∆x2 0 · · · 0 0 0 0
0 p

∆x2 − 2p
∆x2

p
∆x2 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 p

∆x2 − 2p
∆x2

p
∆x2

0 0 0 0 · · · 0 0 p
∆x2 − 2p

∆x2




y1(t)
y2(t)
· · ·

yN−1(t)
yN(t)

+

+



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1





u1(t)
u2(t)
u3(t)
· · ·

uN−1(t)
uN(t)



. (15)

Moreover, when dealing with measurement data instead of the full model system
(Equation (15)), the neural ODE framework (Equation (11)) is used as a surrogate model
to approximate the output functions and their derivatives. In particular, the following
multilayer perceptron (MLP) setting is used: two hidden layers with 400 nodes each;
input and output layer with 198 nodes each; tanh as activation function. To train the
resulting neural ODE system, simulated data with ti+1 − ti = 0.1, ∆x = 0.01, t ∈ [0, 2],
x ∈ [0, 1], Φ(t0, x) = sin(2πx), Φ(t, x = 0) = 0, Φ(t, x = 1) = 0, and p = 0.1 are used
in dimensionless form. Figure 1a shows the model response without any distributed
control action, i.e., u(t) = 0. The diffusion effect can be seen very clearly, as the initial
differences along the spatial axis at the start time y(t0, x) decrease over the simulation time.
Accordingly, a different diffusion parameter p would lead to a different degradation profile,
reflecting the corresponding sensitivity of the model. Note that this parameter sensitivity
allows, in principle, a practical identification of the model parameter when applying OLS
with experimental data and Equation (2). Alternatively, the differential flatness approach
can be used to impose desired process behavior. To this end, the necessary but parameter-
dependent calculated input variables can be used for parameter estimation following the
mentioned ILS concept and Equation (4). In Figure 1b, for example, an output profile can
be seen in which there are no changes over time in the course of the simulation. Please note
that the corresponding input profile to achieve the desired control was determined using the
flatness concept combined with the neural ODE system and the specified training setting.
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Figure 1. Model response when: (a) zero input profile is applied (i.e., zero control action); (b) dedi-
cated input profile is applied to compensate for the diffusion effect.

The reconstructed input and the generated output data from Figure 1b were used for
the sensitivity analyses. Similar to the output profile, the calculated input profile depends
on the diffusion parameter, and thus, is sensitive to its parameter variation. The sensitivities
of the output data and the generated control input, corresponding to a variation of the
diffusion parameter p, are analyzed using Equations (5) and (6). The resulting sensitivity
plots are shown in Figure 2. Here, the output parameter sensitivity (Figure 2a) is zero at the
starting time, and its absolute values increase at x = 0.25 and x = 0.75, respectively. In the
case of the input parameter sensitivity (see Figure 2b), these sensitivities are at their peak
from the very starting time, and their absolute values are 3–4 times higher than the output
parameter sensitivities. Moreover, as mentioned in Section 2, higher parameter sensitivities,
in turn, imply better parameter estimates. Consequently, it could be comfortably said that
the parameter estimation could be better performed using the control input (based on ILS)
generated by combining the flatness property with the neural ODE concept.
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Figure 2. Sensitivity of the diffusion parameter p: (a) using OLS to define the parameter identification
problem; (b) using ILS to define the parameter identification problem.

4. Conclusions

Parameter identification is a fundamental problem in systems and control theory. This
work successfully demonstrated that a parameter identification problem, which evaluates
input least squares (ILS) instead of ordinary least squares (OLS), results in different param-
eter sensitivities and, in this particular case, an improved parameter sensitivity range. Here,
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our original contribution is the proper combination of advanced systems theory concepts
(i.e., differential flatness) and recent developments in data science with neural ordinary
differential equations. We applied our method to synthetic data generated. Here, we
showed that ILS and related parameter sensitivities lead to a significantly higher parameter
sensitivity range of the diffusion parameter than OLS-related parameter sensitivity. The
improved parameter sensitivity range suggests that ILS may result in better parameter
estimates than OLS but might critically depend on the neural ODE system setting and data
quality—aspects addressed in ongoing research. Future work will also focus on advanced
model inversion schemes which are not limited to differential flat systems.
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