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Abstract: Tracers are specific materials widely used in the modern oil and gas industry for reservoir
characterization via single-well or inter-well tracer tests. We engineered new tracers and extended
tracer test applications for on-site real-time well-drilling monitoring. Robust and cost-efficient
fluorophores embedded into carrier matrices were developed to label drill cuttings as they were made
at the drill bit face to improve drill-cutting depth correlation. These novel tracers allow for automated
detection at concentrations up to the ppt level. Thus, the innovated tracers open the horizon to detect
in real-time the drilling depth to enhance well placement and hydrocarbon recovery.
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1. Introduction

In the oil and gas industry, tracers are used as a monitoring and surveillance tool to
obtain the information about the reservoir along with other methods, such as monitoring
of production rate of reservoir fluids, 4D seismic, pressure tests, and others [1]. The tracer
could be defined as an infinitesimal and identifiable part of a mass that is introduced or
naturally present and can be used to keep track of this mass.

Current industrially used tracers are isotopes, dyes, chemical tracers, microelements,
ions, and gases including noble gases. Tracers are commonly applied for three major types
of oilfield tests–these are nonpartitioning and partitioning inter-well tracer tests and the
single-well tracer test [2] (Figure 1).

 
 

 

 
Eng. Proc. 2022, 19, 12. https://doi.org/10.3390/ECP2022-12670 www.mdpi.com/journal/engproc 

Proceeding Paper 

Fluorescent Based Tracers for Oil and Gas Downhole  
Applications: Between Conventional and Innovative  
Approaches † 
Vladimir Khmelnitskiy 1, Nouf AlJabri 2 and Vera Solovyeva 1,* 

1 Aramco Innovations, 119234 Moscow, Russia; vladimir.khmelnitskiy@aramcoinnovations.com 
2 Saudi Aramco Research Center at KAUST, Thuwal 23955, Saudi Arabia; nouf.jabri@aramco.com 
* Correspondence: vera.solovyeva@aramcoinnovations.com 
† Presented at the 1st International Electronic Conference on Processes: Processes System Innovation, 17–31 

May 2022; Available online: https://sciforum.net/event/ECP2022. 

Abstract: Tracers are specific materials widely used in the modern oil and gas industry for reservoir 
characterization via single-well or inter-well tracer tests. We engineered new tracers and extended 
tracer test applications for on-site real-time well-drilling monitoring. Robust and cost-efficient fluor-
ophores embedded into carrier matrices were developed to label drill cuttings as they were made 
at the drill bit face to improve drill-cutting depth correlation. These novel tracers allow for auto-
mated detection at concentrations up to the ppt level. Thus, the innovated tracers open the horizon 
to detect in real-time the drilling depth to enhance well placement and hydrocarbon recovery. 

Keywords: fluorescent tracers; drill cuttings labelling; reservoir management; drilling depth corre-
lation 
 

1. Introduction 
In the oil and gas industry, tracers are used as a monitoring and surveillance tool to 

obtain the information about the reservoir along with other methods, such as monitoring 
of production rate of reservoir fluids, 4D seismic, pressure tests, and others [1]. The tracer 
could be defined as an infinitesimal and identifiable part of a mass that is introduced or 
naturally present and can be used to keep track of this mass. 

Current industrially used tracers are isotopes, dyes, chemical tracers, microelements, 
ions, and gases including noble gases. Tracers are commonly applied for three major types 
of oilfield tests–these are nonpartitioning and partitioning inter-well tracer tests and the 
single-well tracer test [2] (Figure 1). 

 
Figure 1. Types of oilfield tracer tests. 

Citation: Khmelnitskiy, V.; AlJabri, 

N.; Solovyeva, V. Fluorescent Based 

Tracers for Oil and Gas Downhole 

Applications: Between Conventional 

and Innovative Approaches. Eng. 

Proc 2022, 19, 12. https://doi.org/ 

10.3390/ECP2022-12670 

Academic Editor: Blaž Likozar 

Published: 30 May 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 
Figure 1. Types of oilfield tracer tests.

2. Fluorescent Tracers
2.1. Fluorescent Dyes

Ease of sensing of fluorescent compounds is the major advantage of fluorescent dye-
tracers that sometimes can be performed even visually [3]. The additional interest in
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fluorescent tracers is due to the quantitative detection of fluorescent compounds being
up to 104 times lower than for nonfluorescent chemicals. Moreover, fluorescent tracers
are relatively inexpensive, readily available at the commercial scale, relatively nontoxic
at low concentrations, and able to be monitored and quantified via simple, portative, and
cost-efficient analytical techniques that include spectrofluorimetry, UV–Vis spectroscopy,
and digital color analysis. Most well-known fluorescent molecules commonly tested in
oilfield applications include fluorescein/uranine [3–6], rhodamine [1,4,7], eosin [8], and
polyaromatic sulfonic acids (Table 1).

Table 1. Fluorescent dyes in oilfield applications and their properties.

Tracer,
(Emission Wavelength in Water, nm) Structure Method & Detection Limit, (µg/L) Sorptivity

Uranine, Fluorescein (520 nm) [9]
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Fluorescein is stable in regular downhole conditions and has low adsorption on
formation rock [8,15]. This tracer has been successfully used in carbonate reservoirs with
82.1% recovery [16]. It should be noted that laboratory tests show that fluorescein could
be applied in geothermal reservoirs with temperatures below 210 ◦C; however, this tracer
quickly degrades above 260 ◦C and is unstable at 200 ◦C in the presence of oxygen [9].

Other xanthene dye tracers possess lower thermal stability. Thus, Rhodamine B is
stable up to 195 ◦C in inert atmosphere and thermally degrades over 496 K [17]. Applica-
tion of Rhodamine WT was reported to be limited only to low-temperature geothermal
fields [15].

Moreover, some xanthene dyes can exhibit nonideal behavior due to adsorption
on reservoir solids and demonstrate essential retention in breakthrough times. Such
performance could be accepted only for qualitative tests, which is why these tracers’
application is currently limited to fractured wells with quick reverse fluid flow (up to five
days) [1]. Most xanthene dyes do not possess sufficient thermal stability for application
in geothermal reservoirs [15]. To overcome thermal degradation of tracers, a new class of
fluorescent organic derivatives was proposed for high-temperature reservoirs that consists
of polycyclic aromatic sulfonic acid salts.

Naphthalene sulfonic acid (NSA), naphthalene disulfonic acids (NdSA), and naph-
thalene tri-sulfonic acids (NtSA)) were suggested as novel conservative water tracers [5]
for geothermal applications. Among them, unsubstituted NSAs were the most promising
tracers based on their thermal stability (up to 300 ◦C) and good detectability. NSA, NdSA,
and NtSA were successfully tested in lab and in field geothermal applications [8,14,18–20].
These compounds possess the highest thermally stability (up to 330 ◦C) and are resistant to
adsorption to negatively charged rock in geothermal reservoirs due to the tracers’ strong
electronegative charge. Of those tested, 2,7-NdSA and 2-NSA were the most stable pol-
yaromatic sulfonic acids [1]. NSAs substituted with hydroxyl and amino groups were also
successfully tested up to 250 ◦C; however, their thermal stability was lower than the one of
nonsubstituted NSA. Biphenyl-, p-terphenyl-, and fluorenesulfonic acids demonstrated no
overlap in fluorescent emission spectra with oil-based naphthalene contaminants and thus
were easily detectable [14]. Among them, 4,4′-biphenyl-disulfonic acid possessed thermal
stability similar to NSA and demonstrated very low adsorption to rock (tested at 195 ◦C
over 60 days); although, other terphenyl and fluorene sulfonates were less thermally stable.

2.2. Fluorescent Quantum Dots

A new nontoxic tracing technology was recently developed possessing a unique
spectral signature of tags, which could be detected at extremely a low detection limit and
were suitable for subsurface high-pressure high-temperature (HP/HT) applications [21].
Carbon quantum dots are nontoxic, water-soluble, and resistant to photobleaching. The
optical and fluorescence spectral properties of quantum dots are unique and visible to
naked eyes under UV light at concentrations of 1 ppm. The detection of more dilute
solutions can be performed with portable lab kits [22]. These tracers remain stable at
downhole conditions at temperatures up to 300 ◦C; it does not absorb to or damage the
reservoir formation and does not have a negative impact on the environment.

Kanj [23,24] described industrial applications of carbon-based nanoparticles (A-Dots)
as oil field inter-well tracers. Designed for harsh HP/HT conditions, these tracers were
examined to withstand temperatures over 100 ◦C, high salinity over 150,000 ppm in total
dissolved solids, and 3200 psi pore pressure. A-Dots’ detection limit is below the single-
digit ppm level with fluorescent emission at 460 nm.

3. Innovative Fluorescent Tracers for Near-Real-Time Drilling Depth Monitoring

Directional horizontal drilling complicates the removal of rock debris from the bore-
hole with circulation of the drilling mud. It increases uncertainties in lithology surveying
and disturbs geosteering works. Unlike tracers and the test methods summarized above
that were applied for surveying existing wells, we proposed to develop novel testing
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technology with the objective of monitoring drilling progress and labelling drill cuttings as
they are made at the drill bit face. It is important to mention that the first tags developed
for drill cutting labelling [25] were designed for laboratory GC–MS detection. In our case,
the injection of fluorescent tracers for drill cutting labelling as they are formed at the drill
bit site combined with near-well-head charge-coupled device (CCD) camera detection and
image recognition system would allow for cuttings‘ identification according to the depth
and real-time on-site drilling depth monitoring.

3.1. Preparation and Stability Examination of Tracers for Drill Cutting Labelling

Aiming to obtain visibly detectable fluorescent tags, we performed impregnation of a
few types of matrices with a number of advanced fluorophores to yield up to mm-sized
fluorescent assemblies. These assemblies were made to be injected into the well with
drilling mud to tag formation cuttings upon breakage of the matrix-carrier (or capsule) by
a drill bit.

Various matrices were studied for the trial loading of/modification with fluorophores,
including silica, ceramics, poly(vinyl alcohol), chitosan, and superabsorbent polymer (SAP)
based on sodium salt of poly(methyl acrylate). Selected matrices (silica, ceramics, and
polyacrylate SAP) were soaked with an aqueous solution of dyes (fluorescein, rhodamine
B, and commercial pigments) followed by drying in a vacuum oven. Poly(vinyl alcohol)
was modified with fluorescein isothiocyanate (FITC) according to published procedure [26].
Chitosan was cross-linked with glutaraldehyde in the presence of commercial fluorescent
pigments and subsequently lyophilized to yield a dry fluorescent network.

Obtained materials were tested for stability to conditions mimicking downhole media.
Thus, samples of fluorescent-loaded tags were incubated at 90 ◦C with aqueous brines con-
taining formation salts NaCl, CaCl2, MgCl2, Na2SO4, and NaHCO3 for a period between
one day and one week. Degradation via hydrolysis was noted for fluorescent-modified
poly(vinyl alcohol) upon exposure to electrolyte solutions over a few hours. Cross-linked
chitosan, bearing incorporated pigment, showed a slight decrease in fluorescent intensity
upon treatment with electrolytes over one day. Moreover, the chitosan cross-linked ma-
trices were destroyed at acidic media, limiting their possible use in downhole conditions.
Fluorescein and fluorescent-pigment-loaded silica (Flu-SiO2) as well as xantene-dye-loaded
superabsorbent polymer (Flu-SAP) exhibited no visible decomposition and demonstrated
almost no leakage of dye at the described conditions. Consequently, these stable matri-
ces (Flu-SiO2 and Flu-SAP) were further tested for resistance to organic solvents (THF,
ether, and diesel). Among the materials tested for exposure to organic media, fluorescein-
and rhodamine-loaded SAPs, fluorescein and pigment-loaded SiO2 exhibited no visible
deterioration of the fluorescent properties.

3.2. FT-IR Spectroscopy Characterization of Tracers

SAP-based matrices loaded with xanthene dye were further characterized by ATR-
FTIR spectroscopy. The appearance of the additional absorbance signal around 1750 cm−1

related to the stretching vibration of the carbonyl group of xanthene-dye-loaded SAP
compared to blank SAP matrix confirms the entrapment of fluorophores inside the net of
superabsorbent polymer. The quite low intensity of this absorbance signal is due to the
loading of a small quantity of fluorophore into the SAP matrix that resulted in good enough
to reach high-fluorescence intensity detectable by the naked eye and camera. An increase
in the loading of dye into the polymer resulted in fluorescence quenching and a perceptible
decay of emission up to its total loss. Thus, the engineering of fluorescent-loaded tags
based on the polymer entrapment of emitting dyes resulted in an efficient fluorescence
assembly with minimal loading of emitter.

3.3. Fluorescence Characterization of Tracers for Automated Detection

The most stable of the obtained fluorescence-loaded tags were characterized by spec-
trofluorimetry. Pre-concentration of the emitting molecules within the tags’ matrices
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allowed for enhanced fluorescent intensity of the prepared tracers and resulted in the possi-
bility of their visual detection. The tags’ fluorescent emission was noticeably more intense
compared to the background fluorescence. In some cases, the interaction of polymer-matrix
carriers with a molecule of fluorophore resulted in a bathochromic shift of fluorescence
emission wavelengths, as was noted for fluorescein-loaded SAPs. Prepared fluorescent
loaded tags were aimed for further downhole drill-cutting labeling tests followed by
near-well-head camera detection.

4. Conclusions

In this work, we innovated a new concept of downhole fluorescent drill-cutting tracing
engineered for on-site near-real-time detection with a camera and image-recognition system.
Fluorescence-loaded tags were made to be injected into the well with drilling mud to tag
formation cuttings according to the depth upon breakage over formation by a drill bit. Fast
and simple drill-cutting depth determination would improve accuracy in drilling depth
correlation and advance the petrophysical characterization of a formation to allow for
optimal well placement.
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