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Abstract: The objective of this work is to analyze the price dynamics and the level of association
between the Brent crude oil prices and heating oil (HO), i.e., US diesel. The data series are obtained
from daily future contract prices of Chicago Mercantile Exchange (CME) group exchanges and
the Intercontinental Exchange (ICE). A continuous evaluation of the Detrended Cross-Correlation
Analysis (DCCA) between Brent crude oil prices vis-a-vis HO is proposed by means of the rolling
window approach, allowing a dynamic analysis of their cross-correlations covering two periods,
namely from January 2018 to December 2019 (before the COVID-19 pandemic) and from January
2020 to December 2021 (during the COVID-19 pandemic). The results indicate that there is a strong
evidence of contagion in cross-correlation due to the initial impact of the pandemic, but the HO–Brent
correlation fully recovered after approximately 200 days. However, lower time scales (n) are also
sensitive to supply shortages in the short term and can be most reliable for agents that might not
take long positions. Measuring this dynamic cross-correlation can provide useful information for
investors and agents in the oil and energy markets.

Keywords: cross-correlation; DCCA method; oil derivatives; energy

1. Introduction

Since the first propositions about the relationship between oil prices and economic
activity proposed by Hamilton [1], a significant number of researchers have dedicated
themselves to exploring the connection between variations in its price and its effects on
global economic activities. According to Zhang, Lai and Wang [2], oil is a resource known
for large price fluctuations, where prices increases usually cause an increase in inflation
and harm the economies of importing countries. On the other hand, price drops usually
cause economic recessions and political instability in exporting countries, as their economic
development can be jeopardized or delayed. In addition to price levels, another relevant
factor is their volatility, since a relatively small increase can cause considerable economic
losses [3]. Oil price variations are influenced by several factors. The dynamics between
supply and demand is one of the main factors that affect price movement, which is also
sensitive to exogenous factors such as the weather and irregular events [4,5] and also to
political aspects and the expectations of market agents [6,7]. Such factors make the price
movement non-linear and non-stationary, which makes its analysis more challenging and
an important strategy for importers, exporters, investors and governments. While crude oil
prices have historically been a fundamental component of economic analysis, the variation
in crude oil prices also affects a country’s economy and politics [8]. For this reason, it is
pertinent to understand how crude oil prices relate to its derivatives. In this context, the
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objective of this work is to analyze the relationship between Brent crude and heating oil (US
diesel) prices, covering two periods. The first period (P1) precedes the COVID-19 crisis and
includes data from January 2018 to December 2019. The second (P2) addresses the period
from January 2020 to December 2021, covering the COVID-19 crisis period. The present
study expands the existing literature, empirically examining the relationship between the
price of oil and its derivatives in light of a continuous evaluation by means of adoption of
the rolling window approach [9–11] applied to the DCCA (Detrended Cross-Correlation
Analysis) method [11–20]. Such a perspective becomes relevant as the price of oil and its
derivatives is the basis for decision-making in many countries. Indeed, in practical terms,
the knowledge of the level of association between the prices of these products can help in
the anticipation and formulation of strategies for companies and consumers. This paper
is organized as follows: in Section 2, the data are introduced and the DCCA method and
statistical test are presented. In Section 3, the results of the DCCA analysis are discussed.
Finally, in Section 4, the main conclusions are outlined.

2. Methods
2.1. Data Characteristics

In this study, we use time series (TS) to represent daily prices of future market set-
tlements related to the first available contract (C1) from CME group exchanges (NYMEX)
and the ICE exchange for the HO and Brent, respectively. Each contract of the selected
pair represents the most negotiated future contracts for diesel and crude oil worldwide. In
general, price imbalances in the crude oil market tend to rapidly transfer to its derivatives.
The reason is that the HO–Brent differential, also known as ’crack-spread’, can be applied
as a representation of the refinery margin to buy crude oil and produce diesel/heating oil.

In order to analyze the price dynamics of such pairs, we considered two distinguished
periods, P1 and P2, where the first denotes the two-year period prior to the COVID-19
outbreak (January 18 to December 2019) and the second denotes the two-year period after
the COVID-19 outbreak (January 20 to December 2021).

2.2. Detrended Cross-Correlation Analysis

In recent years, the concept of fractals in TS has been investigated by means of the
Hurst exponent (H) and Auto-Regressive Fractional Integrated Moving Average (ARFIMA)
processes [7,21–30]. Several computational algorithms have been proposed to explore this
field [31–36]. For example, when it comes to non-stationary TS, the Detrended Fluctuation
Analysis (DFA) and its respective scaling coefficients yield satisfactory results to avoid the
spurious detection of correlations or self-similarity [31,32]. This process is related to the
Brownian and fractional Brownian motions, which allow us to quantify the long-range
dependence in the analyzed TS.

A generalization of the DFA method was proposed by Podobnik and Stanley in
2008 [37], the so-called Detrended Cross-Correlation Analysis (DCCA), which is based
on the detrended covariance between two TS. This method provides the quantification of
long-range cross-correlations in the presence of non-stationarity. Considering two long-
range cross-correlated TS yi and y′ i of equal length N, the values can be approached in the
integrated form:

Yk =
k

∑
i=1

yi (1)

Y′k =
k

∑
i=1

y′ i (2)

where k = 1, . . . , N. The entire TS are fractioned into N − n overlapping boxes with n + 1
values. The box starting at the position i and landing at the position i + n is defined as
the “local trend”. Moreover, we can define the Ŷk,i and ˆY′k,i(i ≤ k ≤ i + n) as the ordinate
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points of the linear least-squares fit. For each box, it is possible to calculate the covariance
of the residual as follows:

f 2
DCCA(n, i) =

1
(n− 1)

i+n

∑
k=i

(Yk − Ŷk,i)(Y′k − ˆY′k,i) (3)

Hence, the detrended covariance is calculated by summing over all overlapping N− n
boxes of size n as:

F2
DCCA(n) =

1
(N − n)

i=1

∑
N−n

f 2
DCCA(n, i) (4)

When a long-range cross-correlation appears between the two TS, then FDCCA ∼ nλ,
where λ ≈ (HDFA + H′DFA)/2. The λ exponent quantifies the long-range power-law
correlations, but does not quantify the level of cross-correlation [37–39]. For this matter,
Zebende [39] proposed the DCCA cross-correlation coefficient, defined by:

ρDCCA ≡
F2

DCCA
FDFA{yi}

FDFA{y′ i} (5)

These coefficient values are interpreted similarly to Pearson’s correlation and can be
summarized as follows: (a) −1 ≤ ρDCCA ≤ 1, (b) ρDCCA = 1 for a perfect cross-correlation,
(c) ρDCCA = 0 for no cross-correlation presented between the TS, and (d) ρDCCA = −1 for a
perfect anti-cross-correlation.

2.3. Rolling Window Approach and the Statistical Test for ∆ρDCCA

Different statistical tests have been adopted to evaluate the detrended cross-correlation
coefficients [30,38,40,41]. In this work, we applied the statistical test proposed by Guedes
et al. [9] to evaluate ∆ρDCCA. This test allows us to analyze two distinct moments separated
by a phenomenon, such as the economic crisis caused by the COVID-19 pandemic. The
coefficient is represented by:

∆ρDCCA(n) = ρP2
DCCA(n)− ρP1

DCCA(n) (6)

where ρP2
DCCA(n) and ρP1

DCCA(n) are the DCCA coefficients for the periods P1 and P2, re-
spectively. The subsequent test consists in calculating the probability distribution function
(PDF) of the ∆ρDCCA(n), supposing that they obey a normal distribution and follow the
below steps [9]:

• Generate two TS with long-range cross-correlation by ARFIMA process [37];
• Divide the TS for periods P1 and P2 and shuffle these pairs;
• Estimate ρDCCA(n) and the periods’ difference ∆ρDCCA(n);
• Repeat step 2 several times;
• Obtain the distribution of ∆ρDCCA(n), and
• (Additional step) Evaluate the normality of the distribution.

In general, the PDF of ∆ρDCCA(n) converges to a normal distribution, as shown by [9].
However, we decided to conduct D’Agostino and Pearson’s normality test [42,43] to verify
the normality of the distribution. Hereafter, the following contagion hypothesis is tested
with a T-test for the mean of the ∆ρDCCA(n) parametric group and the Wilcoxon signed-rank
test for the non-parametric group:

H0: ∆ρDCCA(n) = 〈∆ρDCCA〉 (contagion does not exist);

H1: ∆ρDCCA(n) 6= 〈∆ρDCCA〉 (contagion exists);

where 〈∆ρDCCA〉 is the sample mean, which is approximately equal to zero. Thus, for each
PDF defined by window size N (in this study, W1 = 50 days, W2 = 100 days, W3 = 150 days,
W4 = 200 days, W5 = 250 days) and n time scales, we can obtain the positive critical point
defined as ∆ρc(n) for 90%, 95%, and 99% confidence levels as follows:
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〈∆ρDCCA〉 ± Zα1/2
SD√

N
(7)

where Zα1/2 is the value for the chosen confidence level α, SD is the standard deviation,
and N is the sample size.

3. Results and Discussion

Figure 1 shows the ρDCCA(n) behavior for HO–Brent during periods P1 and P2 for ev-
ery presented time scale (n) and different sliding window sizes (W1–W5). From Figure 1a,c,
one can note that considering a window size of 50 and 100 days, the prices showed a weaker
relation during the beginning of 2019, which is not applied to larger sizes of W, and it is an
indication of short-term effects. Moreover, we can notice that all the window sizes (W1–W5)
exhibited a fall in cross-correlation in the period that preceded the COVID-19 outbreak.

Regarding the COVID-19 period (P2), Figure 1b,d,f,h,j allow us to observe a loss of
cross-correlation from March to April of 2020, when both markets presented an intense fall
in prices due to lockdowns worldwide, especially the US market. Moreover, a considerable
amount of market agents took a bearish (selling) position in these contracts due to the
lack of global demand predictability during this period. However, one of the reasons for
the price dissolution likely may have come from the specific characteristics of the diesel
market. For example, heating oil—as the name suggests—can be used for heating purposes
during severe US cold winters. Differently, the same product in Europe—namely gasoil—is
applied for driving, such as gasoline for the US market. Therefore, during the lockdowns
and with a lack of driving demand for fuel, the HO’s price movement may have diverged
from that of crude oil, gasoline, and gasoil.

Moreover, the 50-day and 100-day rolling windows are shown in Figure 1b,d, which
showed another strong price dissolution between May and June of 2020. In addition,
one can also observe that shorter window sizes are sensitive to short-term effects, which
one can note during the year 2021. These effects are related to the US Gulf diesel supply
shortage presented during the cold weather at the beginning of 2021 and also during the Ida
hurricane effects in the second half of 2021 [44]. This might suggest that short-term supply
shortages of diesel in the US Gulf can affect the HO–Brent cross-correlation, similarly to the
restricted demand period caused by COVID-19. However, the supply short-term effects
are not observed when using larger rolling window sizes, which is not the case for the
initial pandemic effects that are displayed for every tested window. In general, the larger
windows presented a cross-correlation recovery for the pair after the first half of 2020 until
the end of 2021. One can also note that the greater time scales (n) diverge from the lower
time scales and cannot encapsulate the complete price dynamics of both periods, since both
markets are mostly interdependent in the long term compared to the short term [10].

Table 1 summarizes the descriptive statistics for the ∆ρDCCA distributions as a function
of n with different sizes of W. As suggested by Guedes et al. [9], the observed mean values
are approximately close to zero and the standard deviation (SD) decreases for greater W
sizes. However, mostly skewness and kurtosis diverged from values observed from normal
distributions, i.e., Kurtosis ≈ 3 and Skewness ≈ 0 for different combinations of n and W,
which tends to affect the normality of the distributions. For this reason, we conducted
D’Agostino and Pearson’s normality test and the results are shown in Table 2. It can be
seen that all the applied window sizes (W) presented non-normality for most tested time
scales (n).
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Figure 1. The Brent–HO ρDCCA TS comparison of P1 vs. P2 for W1 to W5.
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Table 1. The Brent-HO descriptive summary of ∆ρDCCA for W1 to W5.

Descriptive Statistics

Statistics n = 4 n = 8 n = 16 n = 32 n = 64

W1 = 50

Mean 0.0469 0.0478 0.0606 - -
SD 0.0519 0.0585 0.0949 - -

Skewness 0.7747 1.3477 2.7715 - -
Kurtosis 0.4957 1.3932 9.5141 - -

W2 = 100

Mean 0.0336 0.0314 0.0233 0.0012 -
SD 0.0513 0.0519 0.0492 0.0546 -

Skewness 0.3688 0.4340 −0.6524 −0.0903 -
Kurtosis −0.3147 0.0274 0.0166 −0.3943 -

W3 = 150

Mean 0.0276 0.0289 0.0216 0.0033 -
SD 0.0475 0.0422 0.0330 0.0232 -

Skewness 0.8434 1.1727 1.3479 1.2184 -
Kurtosis −0.0618 0.8768 2.4628 1.5078 -

W4 = 200

Mean 0.0213 0.0245 0.0197 0.0071 0.0062
SD 0.0393 0.0351 0.0261 0.0215 0.0199

Skewness 0.9908 1.3799 1.6650 1.4585 1.6720
Kurtosis −0.3018 0.9029 2.9319 2.2209 1.8339

W5 = 250

Mean 0.0165 0.0211 0.0170 0.0030 −0.0043
SD 0.0335 0.0308 0.0242 0.0232 0.0310

Skewness 1.1137 1.3311 1.2920 −0.1065 −0.4814
Kurtosis −0.2545 0.6427 1.8523 0.4632 0.8582

Table 2. The Brent-HO normality test of ∆ρDCCA for W1 to W5. Significance level of 95% (p-value < 0.05)
rejects the null hypothesis of normality.

D’Agostino and Pearson’s Normality Test

Statistics n = 4 n = 8 n = 16 n = 32 n = 64

W1 = 50

χ2 24.1151 59.8950 171.8440 - -
p-value 5.80 × 10−6 9.86 × 10−14 4.84 × 10−38 - -

W2 = 100

χ2 6.7952 7.873 0.9515 9.0797 -
p-value 0.0335 0.0195 0.6214 0.0107 -

W3 = 150

χ2 24.8080 46.5804 68.8323 54.3651 -
p-value 4.10 × 10−6 7.68 × 10−11 1.13 × 10−15 1.57 × 10−12 -

W4 = 200

χ2 32.8813 57.2596 88.2648 72.4758 79.9174
p-value 7.24 × 10−8 3.68 × 10−13 6.82 × 10−20 4.43 × 10−18 3.89 × 10−20

W5 = 250

χ2 38.6335 52.6530 61.0372 2.7892 14.8160
p-value 4.08 × 10−9 3.69 × 10−12 5.57 × 10−14 0.2479 0.0010
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Thus, the contagion hypothesis can be tested for each ∆ρDCCA distribution. Table 3
depicts the significance test, where the T-test is applied to parametric (normal) distributions
and the Wilcoxon signed-rank test for non-parametric (non-normal) distributions. One can
note that there is evidence of a contagion predominance for time scales n < 32, which suggests
short-term effect spillover when comparing P1 and P2. However, there is no strong evidence
of the contagion effect for values of n ≥ 32 days, which suggests that the market imbalances
caused by COVID-19 did not affect the HO–Brent cross-correlation in the long term as much
as the short term. Figure 2a–c confirms the alternative hypothesis (∆ρDCCA(n) 6= 0), where it
is possible to notice a prevalence of ∆ρDCCA(n) > 0 for the first 150 days of comparison. The
∆ρDCCA(n) overpasses the critical limits for most parts of the periods (see Table 4). On the
other hand, from Figure 2d,e, one can observe that greater values of n and W tend to smooth
the curves and have no clear pattern. However, for every time scale (n), the correlations
are shown to be lower during the beginning of P2 if compared to the same period in P1, in
addition to the lower ∆ρDCCA(n) in the last 50 days of the curves, which indicates that the
HO–Brent fully recovered in terms of correlation after 200 days of the COVID-19 outbreak.

Table 3. The Brent-HO significance test of ∆ρDCCA for W1 to W5. Significance level of 95% (p-value < 0.05)
rejects the null hypothesis of ∆ρDCCA = 0.

t-Test or Wilcoxon Signed-Rank Test for Significance at Differences

Statistics n = 4 n = 8 n = 16 n = 32 n = 64

W1 = 50

Statistic W = 2924 W = 1744 W = 2325 - -
p-value 1.03 × 10−29 6.42 × 10−35 2.67 × 10−32 - -

W2 = 100

Statistic W = 5951 W = 6600 t = 7.5491 W = 16,146 -
p-value 2.37 × 10−18 2.73 × 10−16 7.94 × 10−13 0.9683 -

W3 = 150

Statistic W = 7050 W = 4865 W = 4547 W = 15,694 -
p-value 6.16 × 10−15 4.25 × 10−22 2.90 × 10−23 0.6706 -

W4 = 200

Statistic W = 9763 W = 3956 W = 2472 W = 11,748 W = 15,046
p-value 4.12 × 10−8 1.62 × 10−25 1.18e-31 0.0001 0.3280

W5 = 250

Statistic W = 11094 W = 3623 W = 3942 t = 2.0720 W = 12,846
p-value 1.36 × 10−5 7.81 × 10−27 1.43 × 10−25 0.0393 0.0043

Table 4. The Brent-HO critical values of ∆ρDCCA with 90%, 95% and 99% confidence level (CL) for
W1 to W5.

Critical Values n = 4 n = 8 n = 16 n = 32 n = 64

CL = 95%
W1 0.1321 0.1464 0.2342 -
W2 0.1229 0.1189 0.1111 0.0885 -
W3 0.1059 0.0971 0.0747 0.0363 -
W4 0.0863 0.0834 0.0651 0.0429 0.0500
W5 0.0751 0.0736 0.0584 0.0436 0.0511



Eng. Proc. 2022, 18, 8 8 of 10

� �� ��� ��� ��� ���
����

�����

����

����

����

����

����
Δρ

D
CC

A
��
��
��
��
��

(a) n = 4

� �� ��� ��� ��� ���
����

�����

�����

����

����

����

����

����

����

Δρ
D
CC

A

��
��
��
��
��

(b) n = 8

� �� ��� ��� ��� ���
����

	���

���

���

���

���

���

���

���

Δρ
D
CC

A

��
��
��
��
��

(c) n = 16

� �� ��� ��� ��� ���
����

�����

�����

����

����

����

Δρ
D
CC

A

��
��
��
��

(d) n = 32

� �� ��� ��� ��� ���
����

	����

	����

	����

	����

	����

����

����

����

����

Δρ
D
CC

A

��
��

(e) n = 64

Figure 2. The Brent-HO ∆ρDCCA TS for different time scales (n).

4. Conclusions

This work employed Detrended Cross-Correlation Analysis in the study of the future
contract price dynamics between the US diesel (HO) and Brent crude oil during the periods
pre- and post-COVID-19. The results indicate that there is strong evidence of contagion in
cross-correlation due to the initial impact of the pandemic, but the HO–Brent correlation
fully recovered after approximately 200 days. However, lower time scales (n) are also
sensitive to supply shortages in the short term and can be most reliable for agents that
might not take long positions. Therefore, this indicates that, despite the pair being highly
correlated, the initial global lack of crude oil demand generated by the lockdowns caused a
fall in crude oil prices, but the same dynamics appeared in the US diesel market only after
a delay.

Author Contributions: Conceptualization, S.A.D.; methodology, C.M.C.I.J. and S.A.D.; software,
C.M.C.I.J.; formal analysis, C.M.C.I.J. and S.A.D.; writing—original draft preparation, C.M.C.I.J. and
S.A.D.; writing—review and editing, C.M.C.I.J. and S.A.D.; visualization, C.M.C.I.J.; supervision,
S.A.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Eng. Proc. 2022, 18, 8 9 of 10

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to acknowledge the Institute of Mathematics and Computer
Science of the University of São Paulo (ICMC-USP), CeMEAI-USP and MECAI-USP for the general
and financial support.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HO Heating Oil (US Diesel)
TS Time Series
SD Standard Deviation
DCCA Detrended Cross-Correlation Analysis
DFA Detrended Fluctuation Analysis
P1 First Period
P2 Second Period
ARFIMA Auto-Regressive Fractional Integrated Moving Average
H Hurst Exponent

References
1. Hamilton, J. Oil and the Macroeconomy since World War II. J. Political Econ. 1983, 91, 228–248. [CrossRef]
2. Zhang, X.; Lai, K.; Wang, S. A new approach for crude oil price analysis based on Empirical Mode Decomposition. Energy Econ.

2008, 30, 905–918. [CrossRef]
3. Sauter, R.; Awerbuch, S. Oil price volatility and economic activity: A survey and literature review. Iea Res. Pap. 2003, 28, 550–577.
4. Lu, Q.; Li, Y.; Chai, J.; Wang, S. Crude oil price analysis and forecasting: A perspective of “new triangle”. Energy Econ. 2020,

87, 104721. [CrossRef]
5. Ji, Q.; Guo, J. Oil price volatility and oil-related events: An Internet concern study perspective. Appl. Energy 2015, 137, 256–264.

[CrossRef]
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