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Abstract: Accurate daily photovoltaic (PV) power predictions are challenging as near-ground atmo-
spheric processes include complicated chaotic interactions among local factors (ground temperature,
cloudiness structure, humidity, visibility factor, etc.). Fluctuations in solar irradiance resulting from
the cloud structure dynamics are influenced by many uncertain parameters, which can be described
by differential equations. Recent artificial intelligence (AI) computational tools allow us to transform
and post-validate forecast data from numerical weather prediction (NWP) systems to estimate PV
power generation in relation to on-site local specifics. However, local NWP models are usually
produced each six hours to simulate the progress of main weather quantities in a medium-scale target
area. Their delay usually covers several hours, further increasing the inadequate operational quality
required in PV plants. All-day prediction models perform better, if they are developed with the
last historical weather and PV data. Differential polynomial neural network (D-PNN) is a recently
designed computational method, based on a new learning approach, which allows us to represent
complicated data relations contained in local weather patterns to account for irregular phenomena.
D-PNN combines two-input variables to split the partial differential equation (PDE), defined in the
general order k and n variables, into partition elements of two-input node PDEs of recognized order
and type. The node-determined sub-PDEs can be easily converted using operator calculus (OC), in
several types of predefined convert schemes, to define unknown node functions expressed in the
Laplace images form Application of the inverse L-transformation formula to the L-converts results in
obtaining the prime function originals. D-PNN elicits a progressive modular tree structure to assess
one-by-one the optimal PDE node solutions to be inserted in the sum output of the overall expanded
computing model. Statistical modular models are the result of learning schemes of preadjusted day
data records from various observational localities. They are applied after testing to the rest of unseen
daily series of known data to compute estimations of clear-sky index (CSI) in the 24 h input-delayed
time-sequences.

Keywords: modelling dynamics; differential learning; multinomial tree; operator calculus; conversion
scheme; Laplace image

1. Introduction

Stochastic photovoltaic power (PVP) production can hardly be predicted when relying
solely on NWP data units, which cannot fully account for local anomalies in the near-ground
surface terrain [1]. NWP utilities try to integrate their output with sky- or ground-produced
image data patterns to localize and identify the development of cloud structure formations
on a regional scale [2]. Middle-time horizon NWP forecasting can be fused with clear sky
data modelling and re-analyzed to determine the optimal interval sizes of training samples.
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Distribution data based on forecast errors, obtained for various cloudiness situations, can
be used to define probability intervals in prediction days and to represent inhomogeneous
weather states. An increase in the modular temperature of photovoltaic panels results in
a decrease in efficient power production and irradiance conversion [3]. AI computing is
not focused on the direct recognition of particular physical development on multilayer
atmosphere scales. They usually use the available size of data records in modelling or
analyzing local atmospheric progress. Statistics can be applied in short-time prediction
of, or need to fuse combine their data processing with, NWP forecasting in a larger day
horizon. Irradiance inputs and target PVP output sequences in a day-determined range can
be used in statistical analyses or AI learning. The statistics models were applied to 24–48 h
middle-scale data to post-process the system forecasts and compute PVP at all input–output-
related sequence times. The conversion of NWP data has some drawbacks; the model
functionality shows a great dependency on the applicability and reliability of the forecast
data in processing [4]. The quality of AI-based learning predictions can essentially differ; the
statistical procedure must undergo appropriate initialization and testing. Many AI methods
show some limitations, for example, model unfitting or inadequate generalization related to
local constraints of PVP plant designs. AI solutions can process additional data features or
use extra units (cloudiness motion, spectral analysis) to recognize character of fluctuations
or type structures in cloudiness formation processes. Popular hybrid techniques fuse
different computing or processing approaches, additionally combining the unique key-
model features to innovate the inadequate performance. Multistep forecasting can be direct
or iterative (or a combination). In the first, the values are forecasted all at once at different
times, contrary to the second approach, where iteratively predicted data at the previous
time steps are supplied for the input vectors at the following computing time sequences.
Additional solar features can be used, e.g., clearness factor, cloudiness index, aerosol and
visibility parameter, turbidity, sun angle, or azimuth. The summation ensembles form
a weighted model output to compute the final result according to the predetermined
weather type or probabilistic reliability. If single-model forecasts differ in a large measure,
the overall output is given a significant uncertainty. In contrast, when the results of the
ensemble models show a large similarity, the uncertain character of the output model is
greatly reduced. Probability intervals in the model output define an uncertainty range in
computing reliable data estimations under different initial constraint statistics density.

The new differential learning is used to gradually elicit structures based on the form of
a polynomial neural network (PNN), initially using one node, to partition and transform the
general PDE of n variables into summation modules of single PDEs in blocks of two-variable
nodes. The rational components are obtained in the form of Laplace transform images of
unknown node functions, formed according to operator calculus (OC) procedures [5]. The
inverse L-operation is applied to the node-produced rational components, based on the OC
expression. Unknown node originals are obtained to be summed in the overall output of
the n-variable PDE model. D-PNN combines and extracts the most applicable node input
couples in each layer, step by step, to generate modular subcomponents from the originally
defined PDEs and extend with them the iterative solution to reach the output error minima.
The appropriate testing procedure can employ the external complement scheme to allow
adaptation and adjustment of those node components, minimizing all computed errors
in training and testing defined by the modelling constraint of a problem [6]. Historical
observations with 24 h delay between input and output data are processed to pre-assess
the optimal lengths of daily intervals, which enable us to obtain the operable statistics
predictions in a day horizon. Finally, the tested models can compute their output sequences
in the defined time horizon in relation to the processed last-day input data and the learned
patterns included in the determined data sample range.

2. 24 h Sequenced PV-Output Prediction Based on Data Record Statistics

AI regression was used in training the 24 h delay between input–output data patterns
(blue, left), selected in the optimal day-range sequences, by the initial assessment model.
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The statistic models were developed in multisite data processing to apply the last known
observation input series to forecast the complete day light cycle of PV power production
in the applied 24 h trained prediction horizon (red, right). PVP production in the next
24 h is calculated by processing series at the related times in sequence data in the previous
day. Initial assessment models examine data intervals, gradually increasing their days, to
pre-define the optimal training process. Their computed output is compared one by one
with the time-related data of the target CSI in the reserved part, to obtain the best accuracy.
Error minima determine the approximate number of applicable day records that can be
used in training. The recognized day-data patterns show mostly a degree of similarity
compared to the latest observational hours used in the final testing. This procedure can
successfully obtain up-to-date models that can process the unknown last-day input series
(Figure 1) in most day-experiment instances.
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Figure 1. CSI day-sequence forecasting by models (red right) resulting from training for the initially
assessed day-data patterns in an all-day input–output horizon (blue left).

The clear-sky index (CSI) is a relative solar parameter defined by ratio of the real to the
ideal PVP considering total clear sky at any day time cycles. It is necessary to compute the
output of the model in training and prediction [7] regardless of changes in the actual values,
directly related to the PVP cycles in a time. PVP pattern change considerably as a result
of different atmospheric conditions and local anomalies (e.g., cloudiness type, humidity
character, wind gusts, etc. Overnight sudden changes in the previous pattern can cause
difficulties in training. The statistically developed model may be completely out of date,
unable to process unrecognized data series in prediction. NWP processing data can be
applied in these sudden cases [5]. Figure 2 shows the frontal change in PVP patterns on
3 May.
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3. PDE Conversion and L-Transformation Using Operator Calculus

D-PNN evolves binary-tree structures to partition the generally defined PDE of n
variables into determined-order sub-PDEs of two variables (using data samples). The
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simple PDEs are L-transformed using OC definitions into rational components, forming
the Laplace images for the node-searched unavailable summation term series. Inverse
members determined by L-restoration are used to calculate the overall output to model the
separable function of n variables, initially defined only by the PDE [8].

a + bu +
n

∑
i=1

ci
∂u
∂xi

+
n

∑
i=1

n

∑
j=1

dij
∂2u

∂xi∂xj
+ ... = 0 (1)

u =
∞

∑
k=1

uk (2)

where the following are defined: u(x1, x2, . . . , xn)—unknown separable function of n-input
variables; a, b, ci, dij,...—weights of terms; ui—partial sum functions.

The general form of PDE (1) can be used to describe a problem-separable u function
of n inputs, which can be formulated as a non-limited convergent series (2) of simplified
functions uk of two variables initially defined by sub-PDEs (3) in an equality of eight
variables.

F

(
x1, x2, u,

∂u
∂x1

,
∂u
∂x2

,
∂2u
∂x2

1
,

∂2u
∂x1∂x2

,
∂2u
∂x2

2

)
= 0 (3)

where uk are node partial sum functions of an unknown separable function u.
The adapted polynomial conversion using OC formulas for the derivatives f (t) de-

scribed by an ordinary differential equation (ODE) is based on the proposition that the
Laplace transformation is applicable in the case of known initial conditions (4).

L
{

f (n)(t)
}

= pnF(p)−
n

∑
k=1

pn−i f (i−1)
0+ L{ f (t)} = F(p) (4)

where the following are defined: f (t), f’(t), . . . , f (n)(t)—originals continuous in <0+, ∞>; p,
t—complex and real variables.

Polynomial conversion applied to ODE derivatives results in a set of Equation (4),
where the Laplace transform F(p) can be formulated through the complex conjugate p. F(p)
is separated in a rational term (5) to define the L-image of the function f (t). The inverse
transform of OC of the ration term restores the original f (t) of a real variable t (5).

F(p) =
P(p)
Q(p)

=
Bp + C

p2 + ap + b
=

n

∑
k=1

Ak
p− αk

(5)

where the following are defined: B, C, Ak—coefficients of elementary fractions; a,b—
polynomial parameters.

F(p) =
P(p)
Q(p)

=
n

∑
k=1

P(αk)

Qk(αk)

1
p− αk

f (t) =
n

∑
k=1

P(αk)

Qk(αk)
eαk ·t (6)

where the following are defined: αk—simple real roots of the multinomial; Q(p), F(p)—L-
transform image.

Rational components (8), formed to express the Laplace image terms of uk functions
(2), which are not available, result from the GMDH polynomials (7) composed of binary
nodes of a PNN tree structure (Figure 3) in the PDE converting procedure. The inverse L
operation is necessary (8) in the PNN nodes according to the definition of OC (6). The sum
of originals determined by binary nodes in the partial uk is used to calculate the overall
model u (2) [8]. Each D-PNN node, using the GMDH output, groups possible simple or
composite member solutions (8) for specific two-input sub-PDEs. The selected components
are included in the D-PNN output sum to better converge to the target output.

y = a0 + a1xi + a2xj + a3xixj + a4xi
2 + a5xj

2 (7)
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where the following are defined: xi, xj—two input variables of neuron nodes.

yi = wi
b0 + b1x1 + b2sig(x2

1) + b3x2 + b4sig(x2
2)

a0 + a1x1 + a2x2 + a3x1x2 + a4sig(x2
1) + a5sig(x2

2)
· eϕ (8)

where the following are defined: ϕ = arctg(x1/x2)—phase representation of two input
variables; x1, x2, ai, bi—polynomial parameters; wi—weights; sig—sigmoidal transform.
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The Euler formulation of conjugates in complex form (9), represents the conversion
f (t) in OC (6). The radius r is defined as a rational element, while the angle (arctg(x2/x1)) of
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p = x1︸︷︷︸
Re

+ i · x2︸︷︷︸
Im

=
√

x2
1 + x2

2 · e
i·arctan( x2

x1
)
= r · ei·ϕ = r · (cos ϕ + i · sin ϕ) (9)

4. PDE Partition in Backward Tree Structures of D-PNN Layers

D-PNN forms progressive binary-tree structures, using composite processing functions
(7) in PNN nodes, by extending/modifying the last added/processed layer with selected
blocks nodes, one by one. Node blocks in secondary subsequent tree layers can form
composite term (CT) products, in addition to one-fraction neurons (8). CTs are products
consisting of adjustable neurons, i.e., sub-PDE converts, selected in the back-attached
production blocks in the backward linked tree structure layers (Figure 4). CTs represent
composite sub-PDE solutions for the node-unavailable uk function series in the form of a
product that includes images of external and internal functions commonly expressed by
the derivation rules (11).

F(x1, x2, . . . , xn) = f (z1,z2, . . . , zm) = f (φ1(X), φ2(X), . . . , φm(X)) (10)

∂F
∂xk

=
m

∑
i=1

∂ f (z1, z2, ..., zm)

∂zi
· ∂φi(X)

∂xk
k = 1, . . . , n (11)

For example, a block in the third layer can form additional CTs using products of
sub-PDE ratio converts (12), that is, the simple neuron images of two and four back-linked
tree blocks in the previous two layers (Figure 4).

y31 = w31 ·
b0 + b1x21 + b2x2

21 + b3x22 + b4x2
22

a0 + a1x21 + a2x22 + a3x21x22 + a4x2
21 + a5x2

22
·

b0 + b1x12 + b2x2
12

a0 + a1x11 + a2x12 + a3x11x12 + a4x2
11 + a5x2

12
· P12(x1, x2)

Q12(x1, x2)
· eϕ31 (12)

where the following are defined: Qij, Pij = output and reduced multi-nomial of n and
n − 1th degree; ykp—pth Composite Term (CT); ϕ21 = arctg(x11/x13); ϕ31 = arctg(x21/x22)ϕ.

The number of possible CT combinations in blocks doubles along with each back-
joined preceding layer (Figure 4). Neurons in each next layer can produce more composite
partial model components, using the block node outputs and PDE converts.
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Figure 4. D-PNN searches for the most valuable input couple node blocks to generate sum PDE
components, neurons and CTs, possible to insert in the overall model.

The summation model output Y is the arithmetic mean of active neurons + CT, pro-
duced in node blocks, which optimizes the adjustment and selection of PDE terms (13).

Y =
1
k

k

∑
i=1

yi (13)

where k = the number of active neurons or CTs (node PDE solutions).
Multi-objective models based on procedures can be used to optimize performance of

the back-production of selected neurons and CTs in the tree-like block structure (Figure 4).
D-PNN searches for the most relevant combination couples in each input layer, analo-

gously to the principles of GMDH [6], to form and rearrange adequate PDE components
acceptable by the model. Polynomial coefficients and weights of terms are partially opti-
mized using the gradient method [9] in each iteration tree cycle. The algorithm randomly
skips the block nodes, one by one, to select and update the applied neurons or CTs in-
volved in the complete model. The training error is calculated in relation to a continuously
performed test based on the external complement restraint evaluation. This approach
allows only inserting or adapting PDE components that comply with the testing restrictions.
The root mean squared error (RMSE) is a gradually minimized measure of the model
approximation ability at each step of training (Figure 1).

5. PVP Prediction Using the AI Pre-Determined Training Sequences in 24 h Horizon

PVP was forecasted at the Starojcka Lhota plant located in the North-East Moravian
region of the Czech Republic, using historical measurements of ground environment
temperature, PVP, and irradiance along with multisite spatial meteorological data of wind
parameters from three nearby regional wind farms located in Maletin, Drahany, and
Veseli nad Moravou. These data sets were supplied with free access airport weather
observations (avg. ground temperature, avg. humidity, avg. atm. pressure, avg. wind
parameters and visibility conditions) of two ground-based stations located in Brno-Turany
and Ostrava-Monov (Figure 5). These standard variables were used in the development of
models to predict the complete day-ahead PVP cycle data in the 24 h input–output delay.
Detailed minute power measurements of the PV plant and wind farms were averaged and
extrapolated to correspond to a half-hour meteorological data series from airport weather
observation stations [10].
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Figure 5. PVP plant and wind farm allocation in measurements and meteo-observations.

Figure 6 shows PVP forecast results of the D-PNN, Statistics and Machine Learning
Tool-Box (SMLT) for Matlab regression [11], and persistent models in the 24 h horizon
in specific demonstration days of the examined 2-week interval from 12–25 May 2011.
The SMLT day-ahead final forecasting models were chosen considering their test error
minima, obtained from the reserved part of available set data. The optimal training
days, including applicable data patterns, were predetermined initially by examination
of data in the previous gradually increasing training-day intervals, using a simplified
model form, the same as using D-PNN (Figure 1). The SMLT forecast models resulting
from Gaussian Process Regression (GPR), Support Vector Machine (SVM), and Ensemble
Boosted/Bagged Tree (EBT), using the same input–output data sample variables in the
next day 24 h CSI sequence prediction, obtained with the testing RMSE minima which
differ only in a slight measure. Persistent comparative models, average CSI in processing
series over the determined number of the last-day intervals, were used to estimate the
approximation series at the responding PVP cycle day time. These oversimplified forecast
benchmark solutions could be considered as daily error-reference minima.
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Figure 6. St. Lhota, 16 May 2011: variable cloudiness (catching and sunny periods follow); RMSE:
D-PNN = 60.09; Persistent = 89.51; SMLT = 78.1 kWp 30 min.
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The ratios of the averaged PVP series and the difference values show the relative
involvement in the day PV patterns (Figure 7). Slight variations in the data indicate a
smooth plain in PVP cycles in settled sunny weather. These phenomena are contrary to
the ramping fluctuations in PVP day series, mostly in cloudy weather (Figure 6). The
prediction errors in day ahead PVP estimations may be related to relative ratios and
absolute differences obtained on PVP data series (Figure 7; they can denote a pattern
complexity in daily PVP cycle series in consideration of the PV power average/maxima.
Figure 8 presents the mean R2 determination parameter in the prediction of PV power 24 h
in advance. The models of D-PNN and SMLT better perform in case of different estimations
in the optimal training data sample sequences in comparison to the benchmark reference
solutions (Figure 9), i.e., the varying number of the training data records can result in
analogous prediction series (Figure 8).
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Figure 7. The daily average PV series ratios are dimensionless and characterize daily data patterns
regard-less of the absolute power values, 12–25 May 2011.
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Figure 8. The 2-week daily average PVP prediction coefficient of determination R2: D-PNN = 084,
Persistent = 0.787, SMLT = 0.79.

The reference models mostly perform worse in changeable cloudy weather; however,
lower errors in the 24 h persistent prediction can be obtained in days with a higher degree
of similarity in patterns indicated by smooth plain PVP cycles (no ramping events). The
applied AI models show slight inaccuracies in this specific condition if the last-day unsettled
changeable weather intervals are suddenly broken by an overnight front, resulting in a
sunny-day character (the second week in the examined data period). SMLT models obtain
more accurate prediction data, as compared to D-PNN, in days of settled stable weather
conditions, including a few previous days. The AI predictions can sometimes obtain an
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increase in the final model accuracy in the early afternoon (Figure 6). These phenomena are
directly related to particular weather patterns and characteristics of training data samples
in days of forecasts. An increase in forecast errors in the first week data is related to
unsettled weather conditions resulting in more complex data patterns not fully applicable
to AI learning. Output errors denote the operability of finally tested prediction models in
processing the reserved last observed data sequences applied on the 24 h horizon.
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6. Conclusions

Estimated day sequence optima in the training data eliminate sudden variations and
rapid changes in local weather situations. New approaches applicable in a more adequate
selection of data sample records can try to recognize the frontal overnight change breaks
in weather progress. The following data intervals can be applied in training, in place of
the initial model identification scheme. Data patterns can be re-analyzed in a longer time
interval (if available the observations) to extract adequate training data records according
to the pattern similarity, one by one, in order to obtain the test error minima, not necessarily
considering the sequence in the day time.
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