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Abstract: In this work we summarize the knowledge about FOU(p) processes (fractional iterated
Ornstein–Uhlenbeck processes of order emphp). Fractional Ornstein–Uhlenbeck processes are a
particular case of FOU(p) processes (when p = 1). FOU(p) processes are able to model time series
with both long- and short-range dependence. We give the definition, the main theoretical properties,
and a procedure for estimating the parameters consistently. We also show how to model a continuous
time series with FOU(p) processes, and we give an example of an application.

Keywords: fractional Brownian motion; long-range dependence; fractional Ornstein–Uhlenbeck
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1. Introduction

Usually, in time series, the researcher has a series of measurements evenly spaced in
time (for example, measurements per minute, every thirty seconds, or weekly measure-
ments). In these cases the underlying process is continuous time. The fractional iterated
Ornstein–Uhlenbeck processes of order p (that we call FOU(p) and which are defined
in [1]) are stationary and centred Gaussian continuous-time processes. By construction,
the FOU(p) process depends on the two parameters defining the underlying fractional
Brownian motion, namely, the Hurst exponent (H) and the scale parameter σ. From the
relationship between the variogram and the Hölder index of the process trajectories, using
a result given in [2], it is proved in [1] that H is the Hölder index of a FOU(p), giving infor-
mation about the irregularity of the trajectories. If the process is observed in a discretized
and equispaced interval [0, T], by applying a procedure suggested in [3] it is possible to
estimate H and σ consistently. Apart from H and σ, a FOU(p) process is determined by
a set of additional parameters, the so-called λ parameters, giving information about the
local dependence. The theoretical properties of any FOU(p) process and a methodology for
estimating its parameters consistently (including the asymptotic behaviour) are given in [1].
The estimation method and the asymptotic results for the λ parameters were obtained
under the assumption that the process is observed over the entire interval [0, T], where
T → ∞. In [4], a consistent method can be found for estimating the λ parameters in the dis-
cretized case. An interesting property of the FOU(p) process is that it exhibits short-range
dependence when p ≥ 2, even though H > 1/2 (in this case, the generating fractional
Brownian motion has long-range dependence). In addition, when p = 1 we have the result
that FOU(1) is the classical fractional Ornstein–Uhlenbeck process (fOU) defined in [5],
which has long-range dependence when H > 1/2. Another interesting property is that as
p grows, the autocorrelation function of the process goes more quickly to zero. In addition,
FOU(1) (fOU) processes can be approximated by FOU(2) (simply taking λ1 → 0, where
λ = (λ1, λ2)). Thus, FOU(p) processes can be viewed as a generalization of fOU processes
and are able to model a time series with short-range dependence or long-range dependence.
The main objective of this work is to summarize the results obtained in [1,4,6] for modeling
a time series through FOU(p) processes. In Section 2, we give the definition of a FOU(p)
process. The method for estimating its parameters is given in Section 3. In Section 4, we
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give a method of modeling a time series through the FOU(p) process, including an example.
Some conclusions are given in Section 5.

2. Definition of FOU(p) Processes

FOU(p) processes are built from the fractional Brownian motion.

Definition 1. A fractional Brownian motion with Hurst parameter H ∈ (0, 1] is an almost surely
continuous centred Gaussian process {BH(t)}t∈R such that its auto-covariance function is

E(BH(t)BH(s)) =
1
2

(
|t|2H + |s|2H − |t− s|2H

)
for every t, s ∈ R.

To use a fractional Brownian motion with a scale parameter σ, we use the notation
{σBH(t)}t∈R.

Now, we can define a fractional iterated Ornstein–Uhlenbeck process of order p
(FOU(p)), as found in [1].

Definition 2. Let {σBH(s)}s∈R be a fractional Brownian motion with Hurst parameter H and
scale parameter σ. Suppose further that λ1, λ2, . . ., λq are pairwise different and positive numbers
and p1, p2, . . ., pq ∈ N such that p1 + p2 + . . . + pq = p. Then, the fractional iterated Ornstein–
Uhlenbeck process of order p is defined as

Xt := Tp1
λ1
◦ Tp2

λ2
◦ .... ◦ T

pq
λq
(σBH)(t) =

q

∑
i=1

Ki(λ)
pi−1

∑
j=0

(
pi − 1

j

)
T(j)

λi
(σBH)(t),

where the numbers Ki(λ) are defined by

Ki(λ) = Ki
(
λ1, λ2, . . ., λq

)
:=

1
∏
j 6=i

(
1− λj/λi

) (1)

and the operators T(j)
λi

are defined by

T(h)
λ (y)(t) :=

∫ t

−∞
e−λ(t−s) (−λ(t− s))h

h!
dy(s) for h = 0, 1, 2, . . . (2)

We define Tλ simply for the h = 0 case, that is

Tλ(y)(t) :=
∫ t

−∞
e−λ(t−s)dy(s). (3)

Remark 1. The equality Tp1
λ1
◦ Tp2

λ2
◦ .... ◦ T

pq
λq

= ∑
q
i=1 Ki(λ)∑

pi−1
j=0 (pi−1

j )T(j)
λi

that appears in
Definition 2 is proved in [7].

Remark 2. The equality Tp1
λ1
◦ Tp2

λ2
◦ .... ◦ T

pq
λq

= ∑
q
i=1 Ki(λ)∑

pi−1
j=0 (pi−1

j )T(j)
λi

implies that the

composition Tp1
λ1
◦ Tp2

λ2
◦ .... ◦ T

pq
λq

is commutative. Then, we assume that λ1 < λ2 < . . . < λq.
This will be helpful for estimating λ = (λ1, λ2, . . ., λq), to avoid ambiguity.

Notation 1. {Xt}t∈R ∼ FOU
(

λ
(p1)
1 , λ

(p2)
2 , . . ., λ

(pq)
q , σ, H

)
, where 0 < λ1 < λ2 < . . . < λq,

or more simply, {Xt}t∈R ∼FOU(p).
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Remark 3. The notation FOU
(

λ
(p1)
1 , λ

(p2)
2 , . . ., λ

(pq)
q , σ, H

)
implies that 0 < λ1 < λ2 < . . . <

λq. On the other hand, the notation FOU(p) means that we have taken p times the composition of
operators Tλ for different or equal values of λ.

Remark 4. Every FOU
(

λ
(p1)
1 , λ

(p2)
2 , . . ., λ

(pq)
q , σ, H

)
is a Gaussian, centred, almost surely con-

tinuous process and is almost surely non-differentiable at any point (the proof of these results can be
found in [1]).

Remark 5. When p = 1, FOU(λ, σ, H) is the classical fractional Ornstein–Uhlenbeck process.

Remark 6. In the case in which p1 = p2 = . . . = pq = 1, we have

Xt = Tλ1 ◦ Tλ2 ◦ . . . ◦ Tλq(σBH)(t) =
q

∑
i=1

Ki(λ)Tλi (σBH)(t) (4)

and we simply write {Xt}t∈R ∼FOU
(
λ1, λ2, . . ., λq, σ, H

)
.

Remark 7. From Equation (4) we have that any FOU(λ1, λ2, σ, H) where 0 < λ1 < λ2 can be
writing as

Xt =
λ1

λ1 − λ2
X(1)

t +
λ2

λ2 − λ1
X(2)

t (5)

being X(i)
t = σ

∫ t
−∞ e−λi(t−s)dBH(s) for i = 1, 2. That is, X(i)

t is a classical fractional Ornstein–
Uhlenbeck process with λ = λi. Then a FOU(2) process is a linear combination of two fOU
processes with different values of λ.

Remark 8. From Equation (5), if λ1 → 0, we have that Xt → X(2)
t , that is, every fractional

Ornstein–Uhlenbeck processes can be approximated by a FOU(2) process (by taking λ1 small).

Remark 9. In [1] it is shown that every FOU(p) process has a short-range dependence for p ≥ 2
and every H ∈ (0, 1). On the other hand, it is well-known that if H > 1/2, every classical
Ornstein–Uhlenbeck process has long-range dependence. Therefore, if H > 1/2, according with
previous remark, we have that the short-range dependence FOU(2) processes can able to approximate
a long-range dependence fOU process.

Remark 10. From remarks 5 and 9, we can say that the FOU(p) processes are a generalization
of fOU processes and are able to model a time series with short-range dependence or long-range
dependence.

3. Parameter Estimation

In this section, we summarize a procedure that allows the estimation of the parameters
of any FOU(p) in a consistent way. Similarly to the estimators for (λ, σ, H) proposed in [8]
for the fractional Ornstein–Uhlenbeck process, the procedure for estimating the parameters
in any FOU(p) process has two steps. As a first step, we estimate σ and H independently
of the values of the λ parameters. As a second step, using the explicit formula for the
spectral density (see Equation (8)) and substituting (Ĥ, σ̂) instead of (H, σ), we can estimate
λ =

(
λ1, λ2, . . ., λq

)
using Whittle estimators.

Throughout this section, we assume that we have an equispaced sample in [0, T] of a
FOU(p) process, that is, XT/n, X2T/n, ...., XT , which we simply call X1, X2, . . ., Xn.

3.1. Estimation of H and σ

We start by recalling the definition of a filter of length k + 1 and order L.
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Definition 3. a = (a0, a1, . . ., ak) is a filter of length k + 1 and order L ≥ 1 when the following
conditions are fulfilled:

• ∑k
i=0 aiil = 0 for all 0 ≤ l ≤ L− 1.

• ∑k
i=0 aiiL 6= 0.

Remark 11. Given a, a filter of order L and length k + 1, the new filter a2 defined by a2 =
(a0, 0, a1, 0, a2, 0, . . ., 0, ak) has order L and length 2k + 1.

Given a filter a, we can define the quadratic variation of a sample associated with a.

Definition 4. Given a filter a of length k + 1 and a sample X1, X2, . . ., Xn, we define

Vn,a :=
1
n

n−k

∑
i=0

(
k

∑
j=0

ajXi+j

)2

.

If we use a filter a of order L ≥ 2 and length k + 1, and we take ∆n = n−α for some
α > 0 such that T = n∆n → +∞, then if H > 1/2, the estimators of H and σ are given by

Ĥ =
1
2

log2

(Vn,a2

Vn,a

)
, (6)

σ̂ =

 −2Vn,a

∆2Ĥ
n ∑k

i=0 ∑k
j=0 aiaj|i− j|2Ĥ

1/2

. (7)

In [1,4], the theoretical details for the asymptotic normality and consistency of Ĥ and
σ̂ can be found.

3.2. Estimation of the λ Parameters

If X = {Xt}t∈R ∼ FOU(λ
(p1)
1 , . . . , λ

(pq)
q , σ, H), where ∑

q
i=1 pi = p, the spectral density

of X is given by (see [1])

f (X)(x, λ, σ, H) =
σ2Γ(2H + 1) sin(Hπ)|x|2p−1−2H

2π ∏
q
i=1(λ

2
i + x2)pi

. (8)

From (8), we can estimate λ =
(
λ1, λ2, . . ., λq

)
using a modified Whittle contrast.

Consider (for any fixed T > 0) the function

U(n)
T (λ, σ, H) =

T
n

n

∑
i=1

h(n)T (iT/n, λ, σ, H)

where h(n)T is defined by

h(n)T (x, λ, σ, H) =
1

2π

(
log f (X)(x, λ, σ, H) +

I(n)T (x)
f (X)(x, λ, σ, H)

)
w(x)

where

I(n)T (x) =
T

2π

∣∣∣∣∣ 1n n

∑
j=1

e
ijTx

n X jT
n

∣∣∣∣∣
2

is the discretization of the periodogram of the process and w is some weight function.
Then, the vector λ can be estimated by

λ̂
(n)
T = arg min

λ∈Λ
U(n)

T

(
λ, σ̂, Ĥ

)
(9)
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where σ̂ and Ĥ are defined by (7) and (6), respectively, and Λ is some compact set. Details
about the consistency of this estimator, including how to choose the w function, can be
found in [4].

Remark 12. When q = 1, that is, {Xt}t∈R ∼ FOU
(

λ(p), σ, H
)

, the λ parameter can be
estimated more easily by the following formula:

λ̂ =

nσ̂2ĤΓ
(

2Ĥ
)

∏
p−1
i=1

(
i− Ĥ

)
(p− 1)! ∑n

i=1 X2
i


1

2Ĥ

. (10)

Theorems on the consistency and asymptotic normality of λ̂ can be found in [6].

4. Modelling an Observed Time Series Using FOU(p) Processes

Of course, before starting to model with FOU(p) it is necessary to subtract the mean
value and remove the seasonal component if it has one. Given X1, X2, . . ., Xn observations of
a stationary centred time series that we wish to model using a FOU(p) process, we firstly as-
sume that the observations form an equispaced sample on [0, T], that is, XT/n, X2T/n, . . ., XT
for some value of T. According to what was seen in the previous section, we need to esti-
mate (λ, σ, H), whose estimators depend on T. Thus, firstly we need to know the value
of T.

4.1. Choosing the Value of T

To give the value of T is equivalent to give the unit of measurement of time in which
the observations are taken. In general, it is natural to take some value of T (for example, if
the observations are weekly and we have 104 observations, it is natural to take T = 104
weeks or T = 2 years), but we can take any value of T and interpret it (in terms of the
original time measure of the data). Therefore, we can choose a value of T that optimizes
a certain criterion. According to theoretical results (see [1,4,6]), in order to model a time
series dataset using FOU(p) processes, it is necessary to have values of n and T such that
n, T → +∞ and T/n→ 0 at a certain rate. Now, n is the sample size, and the observations
lie in the range of [0, T] for some value of T. In [4], it is suggested that a certain value of T
should be chosen to optimize some criterion, for example, MAE, RMSE, AIC, BIC, or the
Willmott index.

4.2. An Application to Real Data

In this section, we work with the well-known Series A (a record of 197 chemical process
concentration readings, taken every two hours). To model this with a FOU(p) process, we
use values of p = 2, 3, 4. As a first step, for each one of these models, we select a suitable
value of T. We minimize the error forecasts for the last m observations

h

√
1
m

m

∑
i=1

∣∣∣Xn−m+i − X̂n−m+i

∣∣∣h
for h = 1 (mean absolute error, MAE) and h = 2 (the root mean square error prediction,
RMSE) and maximize the Willmott index defined by

Wh = 1−
∑m

i=1

∣∣∣Xn−m+i − X̂n−m+i

∣∣∣h
∑m

i=1

(∣∣∣X̂n−m+i − X(m)
∣∣∣+ ∣∣Xn−m+i − X(m)

∣∣)h

where X(m) := 1
m ∑m

i=1 Xn−m+i and X1, X2, . . ., Xn (or XT/n, X2T/n, . . ., XT) are the real
observations, for h = 1 and h = 2. Observe that Wh takes values between 0 and 1, and
the predictions improve as Wh grows (W2 is called Willmott index and W1 is called the
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Willmott L1 index). In Table 1, we show the values of the four forecast quality measures for
the AR(7), ARMA(1, 1) models and every adjusted FOU(p) models for p = 2, 3, 4. Every
considered FOU(p) model, performs similarly and near to AR(7) in the four measures.
In Figure 1, we show the values of the four forecast quality measures in the function of
T for the FOU(λ(2), σ, H) model (the other FOU(p) models behave similarly) for m = 50
predictions. That is, for every value of T and every model, we estimate the parameters of
the FOU(p) model and then we obtain the m predictions for the last m observations (at
one step) and compute the RMSE, MAE, W1, and W2. In every case, the optimal value is
reached in the neighbourhood of T = 11. To estimate (σ, H), we used a Daubechies filter of
order 2:

a =
1√
2
(0.482962,−0.836516, 0.224143, 0.129409).

ARMA (1, 1) and AR(7) are suggested for modeling the Series A dataset (see [9] where
this dataset was introduced) [10,11]. In Figure 2, we show that the adjusted FOU(λ(3), σ, H)
and FOU(λ(4), σ, H) have a better fit than the two ARMA models considered.

Figure 1. RMSE, MAE, W1, and W2 (for m = 50 predictions) when the model used is FOU(λ(2), σ, H)

as a function of T.
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Figure 2. In black, the empirical auto-covariance function and in blue, the fitted auto-covariance
function, according to the adjusted model for the Series A dataset.

Table 1. Values of W2, W1, RMSE, and MAE for different models adjusted to Series A. In bold the
optimum value.

Model W2 W1 RMSE MAE

AR(7) 0.6184 0.4943 0.2995 0.2167
ARMA(1, 1) 0.5883 0.4620 0.3120 0.2343

FOU(λ1, λ2, σ, H) 0.6263 0.4743 0.3076 0.2372
FOU(λ1, λ2, λ3, σ, H) 0.6260 0.4743 0.3076 0.2371

FOU(λ1, λ2, λ3, λ4, σ, H) 0.6244 0.4733 0.3074 0.2369
FOU

(
λ(2), σ, H

)
0.6247 0.4712 0.3086 0.2393

FOU
(

λ(3), σ, H
)

0.6277 0.4750 0.3078 0.2373

FOU
(

λ(4), σ, H
)

0.6264 0.4742 0.3076 0.2372

5. Some Concluding Remarks

We summarize below the main conclusions obtained (details can be found in [1,4,6]):

1. FOU(p) processes are a Gaussian family of continuous-time stochastic processes that
generalize (by taking p = 1) the classical fractional Ornstein–Uhlenbeck processes.
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2. When p ≥ 2, any FOU(p) has short-range dependence for every value of H, whereas
for p = 1 and H > 1/2, it is well known that the classical fractional Ornstein–
Uhlenbeck process has a long-range dependence. In addition, any long-range depen-
dence fractional Ornstein–Uhlenbeck process (H > 1/2) can be approximate for some
FOU(2) (short-range dependence).

3. As p grows, the FOU(p) process has a shorter memory (in the sense that the autocor-
relation function goes more quickly to zero).

4. Under general conditions, it is possible to estimate all the parameters of any FOU(p)
process in a consistent way.

5. FOU(p) processes are able to model a wide range of time series. In [4,6], four examples
of real datasets with small and large sample sizes and with short-range and long-range
dependence can be found (one of them is the Series A dataset used in Section 4).

6. Another possible advantage (that should be studied) of using a FOU(p) process to
model a continuous-time dataset (rather than a discrete-time model) is the Hölder
index (H), since H gives a measure of the irregularity of the trajectories. Smaller
values of H indicate more irregular trajectories.
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