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Abstract: In order to make better decisions and take efficient actions in any supply chain system,
we need to have better estimation of uncertain parameters, especially the future demands of our
customers. To do so we must use a forecasting model which gives the most useful and accurate
forecasts. Time series forecasting methods are still one of the most popular approaches used in
the business because of their simplicity. One of the most recent methods that caught the attention
of researchers and practitioners is Theta method, which was first ranked in M3 competition. This
method works based on the decomposition of the deseasonalized original demand data into two
components. The first component represents the long-term trend, and the second component indicates
the short-term behavior of the data set. ATA method is another method which has been introduced
recently. ATA method works like exponential smoothing methods, but in ATA method the smoothing
parameter is a function of time point. In this paper we have proposed a new form of Theta method
in which we have benefited from the features of ATA and presented a combination of ATA method
and Theta method. We have introduced a dynamic model which uses Theta method as the main
model and selected from among some alternative methods such as ATA method, simple exponential,
and Double Exponential smoothing methods to be used as the theta lines. Also, we optimize the
parameters of each method used in the model. Finally, we have tested the mentioned model on a real
data set and concluded that the combination of Theta and ATA methods has a better performance
compared to the other alternatives in terms of forecast accuracy.

Keywords: forecasting; time series; Theta method; ATA method; simple exponential smoothing (SES);
double exponential smoothing (DES); forecasting key performance indicator (KPI); combination

1. Introduction

One of the major concerns in most supply chain systems is finding the best ways to help
the managers and decision-makers to make right decisions and take efficient actions [1,2].
Estimating the customers’ demand in the most accurate way is one of the most critical issues
that affects many decisions in a supply chain system. Therefore, having an efficient and
reliable forecasting model plays an important role in this industry. In the past decades, time
series forecasting methods have been at the core of attention of researchers and practitioners
in this field [3–7]. These methods are usually simple and understandable. That is why
those models are still popular in the industry.

1.1. Theta Method

Theta method was introduced and ranked as the first method with the best perfor-
mance in M3 competition [8]. After that, Theta method has been the benchmark method in
the forecasting projects, competitions, and research [9]. The classic Theta method is applied
to seasonally adjusted demand data set by decomposing the deseasonalized data into
theta lines, extrapolating the theta lines, combining the extrapolated theta lines, and finally
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seasonalizing the combined line to obtain the forecasts for periods ahead [10]. In the classic
form, Theta decomposes the seasonally adjusted data into two theta lines. These two lines
refer to long-term and short-term behavior of the original data set. The implementation of
classic form of Theta method could be summarized in the following algorithm:

1.1.1. Seasonality Detection

This step can be ignored if our original data set rep-resents demand data in a yearly
basis. In case of having quarterly, monthly, weekly, and even daily data we need to detect
seasonality patterns in the historical data.

There are several ways for seasonality detection but one of the most common ways
is using autocorrelation method. Using the below equations, we can find the existence of
seasonality and the seasonal lag in our data.

rk =
∑n−k

i=1

(
di − d

)(
di+k − d

)
∑n

i=1

(
di − d

)2 (1)

|rm| ≥ q(1− α
2 )

√
1
n

(
1 + 2 ∑m−1

k=1 r2
k

)
(2)

rk: Autocorrelation coefficient for lag k.
di: Values of original time series at time i.
m: The periodicity of the data (four for quarterly data, twelve for monthly data).
The value of q refers to the (1−α/2)% confidence level in a Normal distribution
For any value of m that the absolute value if rm is greater than the right side of

Equation (2), we can say there is a seasonal pattern with lag m. In case of having more than
one value for m, we can take the largest value.

1.1.2. Removal of Seasonality

One of the most well-known approaches for removing seasonality from the original
data is decomposition methods. Classical multiplicative decomposition and classical
additive decomposition are the most popular approaches to decompose seasonal patterns
by which we can separate a time series into trend, seasonality, and remainder.

1.1.3. Theta Decomposition

In this step the seasonally adjusted series need to be separated into two components,
short-term and long-term components. In Theta method θ is the main parameter that
modifies the local curvatures of seasonally adjusted data. Using different values for θ results
in different representation of the original data. θ = 1 simply refers to the seasonally adjusted
data. θ = 0 refers to the series with no local curvatures, in other words it indicates the linear
trend. 0 < θ < 1 results in reduction of the local curvatures and, as such, amplification of
the long-term behavior. θ > 1 results in amplification of the local curvatures and, as such,
amplification of the short-term behavior.

In the classic version of Theta method, two theta lines are used, with θ1 = 0 and θ2 = 2,
denoted as t1 and t2. As noted, t1 is the linear trend line of the data and corresponds to the
long-term component, whereas t2 represents the series with double the local curvatures of
the nonseasonal data.

The first theta line is t1. In the classic Theta method, simple regression is used to fit
the nonseasonal data.

t1t(0) = d̂= b0 + b1t (3)

b0: Intercept of seasonality adjusted data
b1: Slope of seasonality adjusted data
t: Time period
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The second theta line is t2.

t2t(θ) = θdt + (1− θ)t1t (4)

with θ = 2:
t2t(2) = 2dt − t1t (5)

1.1.4. Extrapolation

In the standard form, t1 is extrapolated by a normal linear regression line, while
t2 is extrapolated using simple exponential smoothing. Extrapolation of the long-term
component using normal linear regression line is as follow:

f 1t+1 = b0 + b1(t + 1) (6)

Extrapolation of the short-term component using SES is:

f 2t+1 = αt2t + (1− α) f 2t (7)

1.1.5. Combination

The final forecast is a combination of the forecasts of the two theta lines using equal
weights. The forecasts of long-term and short-term theta lines should be combined (in the
classic version, with equal weights; w1, w2 = 0.5).

ft+h = 0.5 f 1t+h + 0.5 f 2t+h (8)

For θ > 1 we can use the following equation for optimizing the weights [11]:

w2 =
θ2 − 1
θ2 − θ1

, w1 = 1− w2 (9)

Using the above formula, forecast could be obtained by:

ft+h = w1 f 1t+h + w2 f 2t+h (10)

1.1.6. Reseasonalization

If the series was identified as seasonal in step one, then the final forecasts are multiplied
by the respective seasonal indices. Therefore, we must add/multiply the seasonality indices
(calculated in step two) to the forecasts obtained in step five.

1.2. ATA Method

ATA method was introduced by a Turkish team in 2017 [12]. An alternative for two
major forecasting approaches: exponential smoothing (ES) and autoregressive integrated
moving average (ARIMA). The ATA method works by modifying the smoothing constants
of various exponential smoothing models in a way that the smoothing constant becomes
a function of t. This modification helps deal with initialization problems and makes the
optimization process easier. Also, with ATA it is possible to assign past information equal
weights. The ATA method has a similar form to ES, but the smoothing parameters are
modified so that when obtaining a smoothed value at a specific time point, the number of
observations that can contribute to the value being smoothed is taken into account when
the weights among the observations are distributed. Therefore, the smoothing parameter
for this method is a function of t, unlike ES where no matter where the value you are
smoothing resides on the timeline, the observations receive weights depending only on
their distances from the value being smoothed. The standard form of ATA method is given
in the following aquations.
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at =
( p

t

)
dt +
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(at−1 + bt−1) (11)

bt =
( q

t
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(
t− q

t

)
bt−1 (12)

ft(h) = at + h bt (13)

p ∈ {1, 2, . . . , n}, q ∈ {1, 2, . . . , p}, t > p ≥ q
For t ≤ p, at = dt
For t ≤ q, bt = dt − dt−1
b1 = 0

where:
dt: the value of the original series
at: the smoothed value at time t
bt: the trend component
p: the smoothing parameter for level
q: the smoothing parameter for trend
ft(h): the h-step-ahead forecast value for h = 1, 2, . . .
To be able to tackle with dampening trends in the historical patterns, we can us the

dampening factor in ATA method as follows:

at =
( p

t

)
dt +

(
t− p

t

)
(at−1 + ϕbt−1) (14)

bt =
( q

t

)
(at − at−1) +

(
t− q

t

)
ϕbt−1 (15)

ft(h) = at +
(

ϕ + ϕ2 + . . . + ϕh
)

bt (16)

p ∈ {1, 2, . . . , n}, q ∈ {1, 2, . . . , p}, ϕ ∈ (0, 1], t > p ≥ q
For t ≤ p, at = dt
For t ≤ q, bt = dt − dt−1
b1 = 0

where:
dt: the value of the original series
at: the smoothed value at time t
bt: the trend component
p: the smoothing parameter for level
q: the smoothing parameter for trend
ft(h): the h-step-ahead forecast value for h = 1, 2, . . .
ϕ: dampening parameter
The algorithm of implementing ATA method could be summarized as three main steps.
Step 1: Deseasonalize the data by the classical decomposition methods, if necessary.
Step 2: Arbitrary models were used for different data types.
Find an optimal value for the parameter p by minimizing the in-sample one-step-ahead

sMAPE using following models and obtain forecast values as desired.
Yearly: ATAadd(p, 1, ϕ) where ϕ ∈ {0.61, 0.62, . . . , 1}
All other types: (quarterly, monthly, weekly, daily, hourly)
ATAadd(p, 0, 1) and ATAadd(p, 1, 1) were obtained and averaged.
(“add” refers to using additive decomposition method in the first step)
Step 3: The forecasts are reseasonalized using seasonal indices from classical

decomposition.
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2. Materials and Methods

In this work Theta method has been considered as the base model. In Theta method
other models need to be used to extrapolate theta lines. As explained in the first section,
there are two theta lines in the standard form of Theta method representing the long-term
and short-term components of the demand. In the standard form the values of theta
parameters are considered as 0 and 2 for the first and second theta lines, respectively.
In the proposed model we tested the Theta method with both two and three theta lines.
Regarding the mentioned unique features of ATA method and its ability to project the trend
in the time series, ATA has been selected to extrapolate the first theta line which represents
the long-term component. Therefore, in the third and fourth steps of Theta method, we
use the formulas of ATA method (ATA and ATA with damped trend) instead of simple
regression model. It means in the proposed method we use Equations (11)–(16) instead of
Equations (3) and (6).

Furthermore, exponential smoothing methods (SES and DES methods as well as DES
with damped trend) are used as the other candidates to extrapolate the other theta lines.

In order to find the best parameters that result in the most accurate forecasts, all
parameters are optimized dynamically. As the demand range varies for different stock
keeping units (SKUs), we need to attribute different importance to different products in
order to pay more attention to the errors on those products with higher demand. To do
so, weighted mean absolute error (wMAE) has been selected as a KPI to measure the
performance of the forecasting methods in which we normalize the error based on the scale
of demand of each product. Therefore, best values for the related parameters are chosen
among the potential values for each model at each iteration (see Appendix A). The possible
values that we have considered for each parameter have been listed in Table 1.

Table 1. Potential values for different parameters.

Parameter Model(s) Values

θ Theta {1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3.0}
α SES, DES {0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 0.9}
β DES {0.1, 0.2, 0.3, 0.8, 0.9}
ϕ ATA and DES with damped trend {0.6, 0.7, 0.8, 0.9}
n MA {3, 4, 5, 6, 7}
p ATA, ATA with damped trend {2, 3, 4, 5, 6, 7, 8, 9, 10}
q ATA, ATA with damped trend {2, . . . , p}

3. Results

The given method was implemented on python NumPy library. A large demand
dataset from a major international company was used to test the model. The mentioned
dataset includes the demand data of 54 months for 19,691 SKUs in their logistics network
in the Europe. We implemented the proposed model using NumPy and Pandas libraries
on Python 3.7.0 and ran it on the given data set.

In Tables 2 and 3, we have presented the results obtained from different models
compared to the results from applying MA and SES (as the benchmarks) on the given data
set. We have optimized the value of n and α in MA and SES for each SKU. The first column
shows the number of periods that we have considered as the test set. Indeed, we do not
train the models on this data set and it remained hidden so as to test the performance of
models. The second and third columns show the comparison of the results from classic
Theta method in which the first theta line is the simple regression and the second (and third)
theta line have been dynamically chosen among SES, DES, and DES with damped trend.
The fourth and fifth columns represent the results from ATA and ATA with damped trend
methods compared to that of MA. And finally, the last two columns indicate the results
from the proposed method in which the first theta line has been fitted and extrapolated
using ATA with damped trend method with two and three theta lines, respectively. As



Eng. Proc. 2022, 18, 25 6 of 8

we can see in the last row of the tables, the proposed method has a better performance
compared to MA and SES as the benchmarks by 5.50% and 3.73%, respectively.

Table 2. Comparing the results obtained from applying different methods on the given data set with
the results of the first benchmark (optimized MA).

Number of Test
Periods

wMAE Theta2 vs.
MA

wMAE Theta3 vs.
MA

wMAE ATA vs.
MA

wMAE ATA
Damped vs. MA

wMAE Theta2 & ATA
Damped vs. MA

wMAE Theta3 & ATA
Damped vs. MA

8 6.06% 3.03% 7.58% 7.58% 9.09% 7.58%
10 −1.56% 6.25% 9.38% 9.38% 6.25% 3.13%
12 0.00% −3.57% −1.79% 0.00% 1.79% 0.00%
14 −1.67% 0.00% 3.33% 5.00% 3.33% 3.33%
18 3.51% 1.75% 1.75% 1.75% 7.02% 5.26%

Average 1.27% 1.49% 4.05% 4.74% 5.50% 3.86%

Table 3. Comparing the results obtained from applying different methods on the given data set with
the results of the second benchmark (optimized SES).

Number of Test
Periods

wMAE Theta2 vs.
SES

wMAE Theta3 vs.
SES

wMAE ATA vs.
SES

wMAE ATA
Damped vs. SES

wMAE Theta2 & ATA
Damped vs. SES

wMAE Theta3 & ATA
Damped vs. SES

8 0.00% −3.23% 1.61% 1.61% 3.23% 1.61%
10 −4.84% 3.23% 6.45% 6.45% 3.23% 0.00%
12 1.75% −1.75% 0.00% 1.75% 3.51% 1.75%
14 −1.67% 0.00% 3.33% 5.00% 3.33% 3.33%
18 1.79% 0.00% 0.00% 0.00% 5.36% 3.57%

Average −0.59% −0.35% 2.28% 2.96% 3.73% 2.05%

4. Conclusions

One of the main concerns of managers and decision-makers in supply chain systems is
having accurate estimation of uncertain parameters. Using time series forecasting methods
has been always one of the reliable alternatives to obtain the forecasts. In this paper we
have benefited from the advantages of some the well-known methods and, combining
them, we concluded that we can improve the accuracy of the forecasts using this combined
model in which we have used ATA and ATA with damped trend as the first theta line. By
testing the performance of other alternative methods (SES, DES, and DES with damped
trend), the best method(s) is selected to extrapolate the other theta line(s). The model is
also capable of finding the best values for each parameter aiming at minimizing wMAE.
We implemented the proposed model on Python and tested it on a real data set. For the
future works, we can compare the results from the proposed model with that of machine
learning algorithms.
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Appendix A

Algorithm A1. This algorithm represents the configuration of python code.

for periods in {8, 10, 12, 14, 18}:
d_test = data_set [ : , - periods: ]
d_train = data_set [ : , : - periods]

# 1. Theta classic with 2 theta lines
t1 = regression
for t2 in [SES, DES, DES_damped]:

for theta, alpha, beta, phi in thetas, alphas, betas, phis:
f1 = theta2(d = d_train, t1 = regression, 2nd_theta_line = t2, theta =

theta, alpha = alpha, beta = beta, phi = phi)
kpi_train = wMAE(f1, d_test)

select the best parameters based on minimum kpi
select the best model for t2 based on minimum kpi
f_theta2 = theta2(d=d_train, t1=regression, 2nd_theta_line=best_model, theta =
best_theta, alpha = best_alpha, beta = best_beta, phi = best_phi)
kpi_theta2 = wMAE(f_ theta2, d_test)

# 2. Theta classic with 3 theta lines
t1 = regression
for t2, t3 in [SES, DES, DES_damped]:

for theta2, theta3, alpha, beta, phi in thetas, alphas, betas, phis:
f2 = theta3(d = d_train, t1 = regression, 2nd_theta_line = t2,
3rd_theta_line = t3, theta2 = theta2, theta3 = theta3, alpha = alpha, beta =
beta, phi = phi)
kpi_train = wMAE(f2, d_test)

select the best parameters based on minimum kpi
select the best models for t2 and t3 based on minimum kpi
f_theta3 = theta3(d = d_train, t1 = regression, 2nd_theta_line = best_model1,
3rd_theta_line = best_model2, theta2 = best_theta2, theta3 = best_theta3 alpha =
best_alpha, beta = best_beta, phi = best_phi)
kpi_theta3 = wMAE(f_ theta3, d_test)

# 3. ATA
for p, q in ps, qs:

f3 = ata(d=d_train, p = p, q = q)
kpi_train = wMAE(f3, d_test)

select the best parameters based on minimum kpi
f_ata = ata(d = d_train, p = best_p, q = best_q)
kpi_ata = wMAE(f_ ata, d_test)

# 4. ATA with damped trend
for p, q, phi in ps, qs, phis:

f4 = ata_damped(d = d_train, p = p, q = q, phi = phi)
kpi_train = wMAE(f4, d_test)

select the best parameters based on minimum kpi
f_ata_damped = ata_damped(d = d_train, p = best_p, q = best_q, phi = best_phi)
kpi_ata_damped = wMAE(f_ata_damped, d_test)

# 5. Theta_ata with 2 theta lines
t1 = ata

for t2 in [SES, DES, DES_damped]:
for theta, alpha, beta, phi, p, q in thetas, alphas, betas, phis, ps, qs:

f5 = theta2_ata(d = d_train, t1 = ata, 2nd_theta_line = t2, theta = theta,
alpha = alpha, beta = beta, phi = phi)
kpi_train = wMAE(f5, d_test)

select the best parameters based on minimum kpi
select the best model for t2 based on minimum kpi
f_theta2_ata = theta2_ata(d = d_train, t1 = ata, 2nd_theta_line = best_model, theta =
best_theta, alpha = best_alpha, beta = best_beta, phi = best_phi)
kpi_theta2_ata = wMAE(f_ theta2_ata, d_test)

# 6. Theta_ata with three theta lines
t1 = ata
for t2, t3 in [SES, DES, DES_damped]:

for theta2, theta3, alpha, beta, phi, p, q in alphas, betas, phis, ps, qs:
f6 = theta3_ata(d = d_train, t1 = ata, 2nd_theta_line = t2, 3rd_theta_line =
t3, theta2 = best_theta2, theta3 = best_theta3, alpha = alpha, beta = beta,
phi = phi, p = p, q = q)
kpi_train = wMAE(f6, d_test)

select the best parameters based on minimum kpi
select the best models for t2 and t3 based on minimum kpi
f_theta3_ata = theta3_ata(d = d_train, t1 = ata, 2nd_theta_line = best_model1,
3rd_theta_line = best_model2, theta2 = best_theta2, theta3 = best_theta3 alpha =
best_alpha, beta = best_beta, phi = best_phi, p = best_p, q = best_q)
kpi_theta3_ata = wMAE(f_ theta3_ata, d_test)
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Algorithm A1. Cont.

for periods in {8, 10, 12, 14, 18}:
d_test = data_set [ : , - periods: ]
d_train = data_set [ : , : - periods]

# 7. Moving average
for n in ns:

f7 = ma(d=d_train, n=n)
kpi_train = wMAE(f7, d_test)

select the best parameters based on minimum kpi
f_ma = ma(d = d_train, n = best_n)
kpi_ma = wMAE(f_ma, d_test)

# 8. Simple exponential smoothing
for alpha in alphas:

f8 = ses(d = d_train, alpha = alpha)
kpi_train = wMAE(f8, d_test)

select the best parameters based on minimum kpi
f_ses = ses(d = d_train, alpha = best_alpha)
kpi_ses = wMAE(f_ses, d_test)

Output kpi_theta2, kpi_theta3, kpi_ata, kpi_ata_damped, kpi_theta2_ata, kpi_theta3_ata, kpi_ma, kpi_ses
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