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Abstract: The radio spectrum is a finite and scarce resource needed to transport data generated by
existing and emerging wireless mobile networks and services. As the demand for wireless services is
increasing, operators look for ways to efficiently utilize their assigned spectrum. While operators
do regularly perform spectrum occupancy measurement using an external spectrum analyzer or
installing a dedicated sensing network to understand and plan the spectrum utilization level, both in
time and spatial dimensions, such a measurement-based approach is expensive, given the dynamic
and wide area covered by spectrum utilization. This paper proposes an indirect approach to assess
and predict the average spectrum utilization level using data traffic measured from base stations
of an operator network. K-Means clustering and deep learning algorithms, namely Convolution
Neural Network (CNN) and Long Short Term Memory (LSTM), are used to model and analyze the
current and future spectrum utilization in the 900 MHz frequency range. Data collected from 639 base
stations of a mobile operator are used to build the spectrum utilization model. The results show that
the CNN model trained on clustered data outperforms the model developed on non-clustered data
(with a Root Mean Square Error (RMSE) of 0.58), mainly for base station level prediction. In terms of
utilization level, the results also show that the operator does not optimally utilize the 900 MHz range.

Keywords: spectrum; utilization; prediction; time-series; clustering; K-Means; LSTM; CNN

1. Introduction

Over the last three decades, cellular data traffic has exploded due to the prolifera-
tion of attractive telecom services with requirements ranging from high throughput to
guaranteed low latency and low error rate. To respond to the demand, mobile network
operators (MNOs) continuously upgrade their networks, e.g., by deploying advanced net-
work technologies such as Advanced Fourth Generation Long Term Evolution (LTE+) and
Fifth Generation (5G) broadband cellular mobile networks. These networks are designed to
efficiently utilize the available spectrum and operate in the previously unutilized spectrum
in the GHz range.

As the radio spectrum is one of the key and finite resources to transport the grow-
ing traffic, there is an ever-increasing demand for it. Due to its favorable propagation
condition in providing high coverage and capacity, some bands (mostly sub-6 GHz) are
being intensively utilized at different times of the day and space (e.g., location and service
area), creating some sort of “scarcity”, in contrast with other bands [1]. In most cases, the
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non-uniformity of users’ spatial distribution and usage patterns within various geograph-
ical areas and times limits the full utilization of the available radio spectrum assigned
for MNOs [2]. In order to increase the efficient use of spectrum bands, MNOs consider
different spectrum harvesting approaches, such as intra or inter-operator spectrum sharing
or spectrum refarming that rely on detailed knowledge about the spectrum usage in time
and space.

From the MNO’s perspective, optimizing the spectrum usage focuses not only on
maintaining the quality of service but also on ensuring that the allocated spectral resources
can support the demands of subscribers. Thus, operators are expected to understand the
dynamics of their spectral resource utilization by continuously monitoring the use in terms
of space, time, and the number of channels (in a channelized band) that all users in a certain
territory may access. While conducting continuous spectrum measurement by dedicating
sensing networks is the most accurate approach to attaining such knowledge, it is costly
and resource intensive, given cellular traffic’s rising demand and dynamic nature. Rather,
an alternative approach is to exploit the correlation between spectrum use and transported
data/voice traffic information, which is already available in the operator’s network, to
understand, estimate, and predict the spectrum utilization.

From these aspects, several literature analyzed efficient spectrum/channel use in
spectral and temporal dimensions. Motivated by the lack of knowledge regarding spectrum
occupancy in South Africa, the authors of [3] measured the spectrum occupancy for Global
System for Mobile Communications (GSM) 900 and 1800 MHz bands. The results indicate
a maximum occupancy of 20% for UHF bands and different maximum utilization during
peak hours for the GSM 900 (92%) and 1800 (40%) MHz. Similarly, spectrum utilization in
Malaysia’s TV and cellular bands was carried out in [3] showing the maximum utilization
of 35%, 10%, and 26% in GSM900, GSM1800, and 3G bands, respectively, and 11% and 13%
utilization for TV broadcasting in VHF and UHF bands.

The practical prowess of time series modeling methodologies are considered for
predicting spectrum occupancy in different bands and applications. In this regard, ref. [4]
applied Autoregressive Integrated Moving Average (ARIMA) models, Lagrangian Support
Vector Machine, and an Elman network (simplified models of Recurrent Neural Networks
(RNNs)) are used to predict spectrum occupancy in a TV and cellular bands. The results
show that the RNN technique outperforms the other models in prediction accuracy for
cellular networks, as it better captures the non-stationarity and several irregularities in the
data traffic. In contrast, the ARIMA model works efficiently in the TV band, since the traffic
pattern is stationary. A similar analysis is presented in [5] for GSM channel utilization
modeling and prediction with Seasonal ARIMA (SARIMA).

On the other hand, traffic volume and resource utilization mapping is presented
in [1,6]. Traffic-related measurements such as call success rate, call drop rate, and antenna
properties, including antenna height, transmit power, used/unused time, and frequency
bandwidth, are used in [6] to indirectly map system/network parameters into spectrum
utilization efficiency. Under a multi-MNOs environment, the analysis results showed a
heavy under-utilization of the spectrum. In [1], upper limits on the traffic volume and
the spectrum resource usage is evaluated for a single LTE cell to ensure seamless video
streaming in dense urban environments.

While these papers indicated: (1) the need for analyzing spectrum usage directly from
measurement or indirectly from voice/data traffic volume; and (2) the need for prediction
or classification models that are capable of understanding random spectrum usage, there is
still a limitation of capturing the spatial correlation within various geographical regions.

With the limitations in mind, the main objective of this paper is to develop a machine-
learning-based model that captures the spatio-temporal variation of spectrum utilization.
The model helps to understand (in an average sense) how the operator utilizes the different
spectrum bands allocated to it. For that, 100 days of voice traffic channel data (hourly based
frequency utilization per cell in percentage) are collected from 639 base stations operating
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at the 900 MHz frequency range. Based on the data, the approaches followed in this work
are as follows:

1. Map channel utilization measurements into spectrum utilization using an industry
practiced utilization formula. Erlang B is used to validate the formula and the mapping
in both cases is found to be similar;

2. Temporal clustering with K-mean is applied to classify the spectrum utilization of
the 639 base stations. The clustering has two-fold advantages, first to understand the
spectrum utilization in decision making, such as load optimization [7] and second, to
improve prediction accuracy [8];

3. RNN (specifically, Long Short Term Memory (LSTM)) and Convolutional Neural
Network (CNN) are applied to predict future utilization on a per cluster level;

The indirect spectrum usage assessment is of low cost and requires fewer resources, as
it uses the operator’s already monitored/available data. With knowledge of the average
spectrum utilization, operators may follow multiple approaches, such as going for a new
frequency band in the case of “full utilization”; reframing frequency, half rate configuration
implementation, and spectral efficient technologies to improve the utilization in case of
moderate/medium utilization; or in the case of low utilization even allowing other users
to utilize its frequency in the context of cognitive radios or spectrum sharing with other
operators [9]. To the best of our knowledge, no prior work has investigated spectrum
utilization based on the operator’s data. Even though our analysis considers voice traffic at
900 MHz of the spectrum channel, it can easily be extended to different spectrum bands
and data traffic volume inputs with appropriate traffic-spectrum utilization mapping and
more complex learning architecture.

The remainder of the paper is organized as follows. The spectrum utilization concept
and its traffic mapping are discussed in Section 2. We present the clustering and prediction
approaches used in Section 3, followed by the results and discussion in Section 4. Finally,
we conclude the work in Section 5.

2. Spectrum Utilization Analysis
2.1. Spectrum Bands in Cellular Mobile Networks

Radio spectrum is divided into frequency/spectrum bands, e.g., in mobile systems
800 MHz, 900 MHz, 1800 MHz, 2100 MHz, and 2600 MHz bands are allocated for various
generations of mobile systems [9]. Each band has different propagation characteristics and
bandwidth that, in turn, determine mobile network coverage and capacity [2]. Operators
further divide the frequency bands into channels (also called carriers) and are used to
transport traffic and control information. As an example in GSM systems operating in
the 900 MHz band, the band is further divided into 124 duplex channels (or carriers) of
200 kHz bandwidth.

By systematically spacing base stations in a geographic area, each base station is
configured to operate on a certain group/cluster of channels. The configured channels
are reused by other base stations as many times as the resulting co-channel interference is
within the service requirement [10]. In mobile systems, channels are classified as a physical
channel and a logical channel. The physical channel corresponds to one timeslot on one
carrier/channel, while the logical channel reflects the specific type of information carried
by the physical channel, which could be either a traffic channel or a control channel. A
traffic channel in GSM is abbreviated by TCH and is used for either voice or data service.
For voice service, each timeslot can carry a full rate TCH of 9600 bit/s,two half-rate TCHs
of each 4800 bit/s rates, or one of the control channels.

2.2. Traffic Engineering

As previously stated, the main intention of this work is to use data available in opera-
tors’ performance report systems (PRS) to estimate current and future channel utilization.
When viewed per base station level where measurement is available, channel utilization
level, among others, depends on the number of configured channels per base station; the
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specific geographic area; time of a day; users’ behaviors; service delivered; generation of
the cellular network; rate, i.e., full- or half rate, supported; and multiplexing scheme used.

Cognizant of these facts, as well as taking the availability of operator’s data and
operator’s understanding, the utilization study is a 2G network providing voice service.
The approach is, however, generalizable to other advanced networks and it is one area in
which we are working to publish the results in the future. Moreover, from the operator’s
PRS, one can collect the aggregate offered traffic, measured in Erlang, for the configured
channels per base station on an hourly basis and for both full-rate, TvF , and half-rate, TvH ,
TCH channels. For this paper, data available per base station are TCH traffic both for half
and full rate, configured channels per base station, and each site’s longitude and latitude
to analyze the spatial behavior of its utilization. Six hundred and thirty-nine sites (base
stations) are used and one-month data with a granularity of 1 hour is collected.

Traffic engineering is then used to map the utilized channels, which in turn will be
compared with the configured channels to compute the percentage utilization. Channel
utilization, CU , is defined as:

CU =
TvF

Cc ×
(

1 +
TvH
TvF

) × 100 (1)

The operator understudy designed its voice service assuming Erlang B service with
a grade of service of 98% network availability [9]. Figure 1 shows the calculated spec-
trum/channel utilization, based on Equation (1), for a particular base station.

Figure 1. Spectrum/channel utilization.

3. Methodology

As the spectrum utilization data are evaluated from the cellular traffic observed in
a timely basis, it is modeled as a non-linear and non-stationarity time series. In order
to capture the commonality in users’ behaviors and distribution at different times and
locations, a cluster-level approach is considered when predicting the utilization. The
prediction model is developed using LSTM and CNN for clustered and non-clustered data.

3.1. Utilization Clustering with K-Means

As one of the most popular unsupervised clustering algorithms due to its simplicity
and linear complexity, K-Means is widely used in many application areas such as computer
vision, image processing, and business analytics [9]. The goal of the algorithm is to group
the unlabeled multidimensional data into K clusters by assigning each data point to one
unique cluster based on the provided features. With the objective of maximizing intra-
cluster similarities and minimizing the inter-cluster similarities in the spectrum usage, we
used Silhouette analysis to find the optimum number of clusters.
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The Silhouette index (SI) is used to distinguish the different unique patterns and
measures the distance between the time series and the centroid of the cluster they belong
to compared through comparison with other clusters. Base stations might have significant
load variation, as shown in Figure 2, due to changes in work or rest time in commercial and
residential regions, as well as variations in human behavior through time and in different
locations, among other factors. Based on the district pattern on the spectrum utilization
time series data, SI can be used to cluster the different spatially distributed base stations.
The SI for the time series dataset, y, and k the number of clusters, is defined as [9]:

SI(C) =
1
N ∑

ck∈C
∑

yi∈ck

b(ck, yi)− a(ck, yi)

max(a(ck, yi), b(ck, yi))
(2)

where a(ck, yj) =
1
|ck | ∑yj∈ck

||yi − yj||,is the measure of similarity of the time series to its

own cluster and b(ck, yj) = mincm 6=ck
cm∈C

1
|ck | ∑yj∈ck

||yi − yj||, is the measure of dissimilarity

from time series in other clusters.

Figure 2. Different channel utilization observed at four base stations.

3.2. Spectrum Utilization Prediction Approach with Deep Learning

The remarkable achievement of deep learning prediction in relation to wireless net-
work problems, including its capability to capture complex nature and its processing of
time series information, was achieved with a “time-aware” architecture. Without explicitly
decomposing the different time series characteristics of spectrum utilization, deep learning
will model/learn its dynamic temporal behavior. We consider the two widely used deep
learning networks, CNN and LSTM, for the spectrum utilization problem.

3.2.1. Spectrum Utilization Modeling Using CNN

CNN is a type of deep neural network initially designed for image processing prob-
lems, but now it is applied to data that can be represented in a grid-like matrix form. In
CNN, time-series and textual data can be represented by a 1D vector and a 2D matrix
can be used to represent the pixels in the image data [11]. Unlike image processing, the
CNN-based time series analysis/prediction requires extracting information along the time
dimension, hence the reason we use the stack 1D CNN model.

To achieve the purpose of extracting features, two layers of a 1D-convolution layer
are used. Max pooling layer follows each convolution layer to shirk the input resolution
and assist the convolution layer to extract abundant temporal correlated features under the
various input resolutions. In addition, a flattening layer for data reshaping and two dense
layers are used sequentially to get the required output shape.
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3.2.2. Spectrum Utilization Modeling Using LSTM

LSTM network is an advanced recurrent neural network (RNN) and is designed to
learn order dependence in sequence prediction. The LSTM contains three parts, namely
the Forget gate, ft, Input gate, it, Output gate, Ot, and memory cell, Ct, where each part
performs a separate function. The forget gate chooses whether the information coming
from the previous timestamp is to be remembered or is irrelevant and can be forgotten.
The input gate is used to quantify the importance of the new information carried by the
input. While in the output gate, the cell passes the updated information from the current
timestamp to the next timestamp. Even with its computational complexity for retaining
memory, it is easy to model complex non-linear feature interactions using the LSTM [12].

ft = σ(Xt ×U f + Ht−1 ×W f ) (3)

it = σ(Xt ×Ui + Ht−1 ×Wi) (4)

Ct = ft � Ct−1 + it � tanh(xt ×Uc + Ht−1 ×Wc) (5)

Ot = σ(Xt ×Uo + Ht−1 ×Wo) (6)

Ht = Ot � tanh (Ct) (7)

For our real-valued prediction problem, three layers of LSTM networks are used with
ReLU, σ(.) = R(z) = max(0, z), as an activation function.

4. Results and Discussion
4.1. Experimental Settings
4.1.1. Data Preprocessing

We considered a dataset from an operator measuring the spectrum utilization of GSM
900 in Ethiopia. The data were collected for 100 days, from 1 January to 10 April 2021, with
a granularity of 1 h for 639 base stations. Additionally, each site’s longitude and latitude
information was taken to analyze the spatial behavior of its utilization. The operator has 61
and 85 channels configured to handle GSM service at 900 Mhz and 1800 Mhz, respectively
(Tabel 1). The maximum cell capacity for GSM900 is 8TRX per cell and 12 TRX for DCS
1800 [9].

Table 1. GSM channel configuration.

Network Type Channel Type Frequency Number

GSM 900 BCCH 14
TCH 47

Guard band 1

GSM 1800 BCCH 24
TCH 61

Guard band 1

Data preprocessing techniques, such as handling missing values, standardization, and
outlier handling, are applied to the collected dataset. With that, five base stations with a
continuous missing value are excluded; the data set is divided into 80% of training data,
10% of validation data, and 10% of test data.

4.1.2. Hyperparameter Tuning

Hyperparameter tuning refers to finding the best parameters to get the best results
from models. Hyperparameters are set before training a machine learning model. These
hyperparameters need to be optimized to adapt the model to a dataset [6].

When building the LSTM model, how many hidden layers the model will include, the
number of LSTM cells that should be used in each layer, and what the dropout should be
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must be considered, in addition to other parameters. Similarly, the CNN model is defined
with various hyperparameters such as kernel size, filter size, hidden layer, optimizer
activation function, and Epoch. A grid search algorithm was used for selecting these
appropriate combinations of hyperparameters listed in Table 2 as it is critical for building a
model with better accuracy.

Table 2. Hyperparameters used in LSTM And CNN Models.

Hyperparameters
Value

CNN LSTM

Hidden Layer 2 3
Number of Filters (64), (32) -

Kernel Size (3), (3) -
Hidden layer Neurons - (48), (32), (32)

Batch Size 64 128
Dropout 0.2% 0.2%

Maxpooling-1D 2 -
Dense layer (50),(24) -
Optimizer Adam Adam

Activation Function ReLU ReLU
Epoch 2000 100

4.1.3. Evaluation Metrics

The Model evaluation aims to estimate the generalization accuracy of a model on future
or test data. We jointly used two evaluation metrics to quantify our model performance:
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

MAE =
1
N

N

∑
i=1
|yi − ŷi| (8)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2) (9)

where N is the size of the evaluated set and ŷi is the predicted utilization for yi.

4.2. Model Performances
4.2.1. Clustering with K-Means

As the utilization of the spectrum resource at a particular base station relates to the
number of channels allocated and the aggregated traffic requested from the users, its
temporal pattern resembles, to certain extent, the users’ behavior.

In the K-Means analysis, the closeness of the utilization pattern of a particular base
station to the mean traffic pattern of a cluster is evaluated for cluster membership. Using
preprocessed data, the K-Means algorithm clusters the data into an optimal cluster size
of five based on the minimum SI score. Figure 3 illustrates the utilizations pattern and
the spatial distribution of the corresponding base stations. The plots illustrate a distinct
variation in utilization pattern due to factors such as user behavior (the high call rate during
working hours indicated by the high picks) and a higher number of channel allocations
(reflected in 3rd cluster,from left to right). Aside from being an input for better spectrum
utilization through dynamic spectrum allocation, the clustering based approach averaged
out the different patterns observed at a base station level to four, simplifying network-
level predictions.
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Figure 3. The four clustered base stations based on their average spectrum utilization patterns.The
top-row plots representing the average utilization pattern of each cluster in five days duration, and
the bottom-row plots represents the spatially distributed base stations of each cluster.

4.2.2. Prediction Performance

The prediction for spectrum utilization at a cluster level and base station level was
made considering the two models: LSTM and CNN. Figure 4 and Table 3 present results
for cluster-level prediction that showed close performance between the LSTM and CNN
models in capturing characteristics of the GSM 900 spectrum usage. Similarly, results for
24 h base station level prediction are shown in Table 4 and Figure 5.

Figure 4. Actual vs. predicted plot for CNN and LSTM.

Table 3. Cluster level prediction performance.

Clustered Non-Clustered

RMSE MAE RMSE MAE

LSTM 0.8 0.845 1.197 1.057
CNN 0.585 0.26 0.767 0.521
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Table 4. Performance evaluation results for base station level prediction.

RMSE MAE MAPE MSE

LSTM-Prediction 13.34 010.325 7.684 1.434
LSTM-Prediction Clustered 2.4492 2.092 6.872 0.641

CNN-Prediction 7.114 5.058 4.433 0.589
CNN-Prediction Clustered 1.04 0.76 2.3821 0.201

Figure 5. Base station level prediction with both LSTM and CNN.

As noted, the prediction error produced by our LSTM model is much greater than the
CNN (RMSE of 0.58) in both cluster and base station levels, showing its limitation was
an inability to sufficiently learn the patterns (i.e., trend, seasonalities, and non-linearities)
inherent in the data.

Compared to the error generated by the cluster level prediction (RMSE of 1.04), the
base station level approaches in both models perform poorly. Especially during high
utilization, the prediction error is very significant, which will create network condition and
QoS degradation in case of prediction-based network resource allocation and optimization.

5. Conclusions

In wireless network planning and optimization, data-prediction-assisted analysis
provides the opportunity for operators to determine the extent to which the resources are
utilized and quality of service is attained. As spectrum is the scare resource in wireless
communication, it is important for MNOs to understand how the spectrum is utilized over
time and space.

In our paper, spectrum utilization data are modeled as time series data during model
development, and various strategies for enhancing the model’s performance are employed
to obtain a better model with the least amount of error. Since the utilization data in
practice are not typically measured, we exploit the traffic utilization relation. A cluster-
level approach is considered with the help of K-Means to provide network-level spectrum
utilization prediction CNN and LSTM algorithms. Based on the temporal pattern, the GSM
900 band utilization is clustered into four. To compare and evaluate the prediction accuracy,
four different metrics are used. As shown, the model developed for the cluster data using
the CNN outperforms the LSTM algorithm with an RMSE value of 0.58. Similarly, for
base-station-level prediction, CNN is found to be the best predicting model with an RMSE
value of 1.04.

We hope the presented results provide a new insight for MNOs to understand the
utilization level of the spectrum allocated to them that can also be extended to 3G and
beyond networks. Moreover, the presented approach is on a per-cluster level, which spans
a wider geographic area. How to obtain base-station-level knowledge and for a large
number of base stations is another area to explore in future work.
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