engineering
proceedings

Proceeding Paper

Towards Time-Series Feature Engineering in Automated
Machine Learning for Multi-Step-Ahead Forecasting '

Can Wang *(0, Mitra Baratchi 107, Thomas Back 17, Holger H. Hoos (7, Steffen Limmer 2

and Markus Olhofer 2

check for
updates

Citation: Wang, C.; Baratchi, M.;
Back, T.; Hoos, H.H.; Limmer, S.;
Olhofer, M. Towards Time-Series
Feature Engineering in Automated
Machine Learning for Multi-Step-
Ahead Forecasting. Eng. Proc. 2022,
18,17. https://doi.org/10.3390/
engproc2022018017

Academic Editors: Ignacio Rojas,
Hector Pomares, Olga Valenzuela,
Fernando Rojas and Luis Javier

Herrera

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

1 Leiden Institute of Advanced Computer Science, Leiden University, 2333 CA Leiden, The Netherlands;
m.baratchi@liacs.leidenuniv.nl (M.B.); t.h.w.baeck@liacs.leidenuniv.nl (T.B.);
h.h.hoos@liacs.leidenuniv.nl (H.H.H.)
Honda Research Institute Europe, 63073 Offenbach am Main, Germany; steffen.limmer@honda-ri.de (S.L.);
markus.olhofer@honda-ri.de (M.O.)
* Correspondence: c.wang@liacs.leidenuniv.nl
t Presented at the 8th International Conference on Time Series and Forecasting, Gran Canaria, Spain,
27-30 June 2022.

Abstract: Feature engineering is an essential step in the pipelines used for many machine learning
tasks, including time-series forecasting. Although existing AutoML approaches partly automate
feature engineering, they do not support specialised approaches for applications on time-series data
such as multi-step forecasting. Multi-step forecasting is the task of predicting a sequence of values
in a time-series. Two kinds of approaches are commonly used for multi-step forecasting. A typical
approach is to apply one model to predict the value for the next time step. Then the model uses
this predicted value as an input to forecast the value for the next time step. Another approach
is to use multi-output models to make the predictions for multiple time steps of each time-series
directly. In this work, we demonstrate how automated machine learning can be enhanced with feature
engineering techniques for multi-step time-series forecasting. Specifically, we combine a state-of-the-
art automated machine learning system, auto-sklearn, with tsfresh, a library for feature extraction
from time-series. In addition to optimising machine learning pipelines, we propose to optimise the
size of the window over which time-series data are used for predicting future time-steps. This is an
essential hyperparameter in time-series forecasting. We propose and compare (i) auto-sklearn with
automated window size selection, (ii) auto-sklearn with tsfresh features, and (iii) auto-sklearn with
automated window size selection and tsfresh features. We evaluate these approaches with statistical
techniques, machine learning techniques and state-of-the-art automated machine learning techniques,
on a diverse set of benchmarks for multi-step time-series forecasting, covering 20 synthetic and
real-world problems. Our empirical results indicate a significant potential for improving the accuracy
of multi-step time-series forecasting by using automated machine learning in combination with
automatically optimised feature extraction techniques.

Keywords: automated machine learning; machine learning; time-series forecasting

1. Introduction

Time-series (TS) data, such as electrocardiograms, music, exchange rates, and energy
consumption, is everywhere in our daily life and business world. Multi-step-ahead fore-
casting is an important task in time-series modeling with many industrial applications,
such as crude oil price forecasting [1] and flood forecasting [2]. Both ML models [3,4] and
statistical models [5,6] are used for this purpose. Creating an ML pipeline for such TS
data analysis is, however, difficult for many domain experts with limited machine learning
expertise, due to the complexity of the data sets and the ML models.

To reduce the complexity of creating machine learning pipelines, automated ma-
chine learning (AutoML) research has recently focused on developing algorithms that

Eng. Proc. 2022, 18, 17. https:/ /doi.org/10.3390/engproc2022018017

https:/ /www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2022018017
https://doi.org/10.3390/engproc2022018017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-5048-3651
https://orcid.org/0000-0002-1279-9310
https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0003-0629-0099
https://orcid.org/0000-0003-2385-7886
https://orcid.org/0000-0002-3062-3829
https://doi.org/10.3390/engproc2022018017
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2022018017?type=check_update&version=1

Eng. Proc. 2022, 18,17

20f11

can automatically design ML pipelines optimised for a given data set without human
input [7,8]. The components in a pipeline may include a data cleaning component, feature
engineering component, ML model component, and ensemble construction component.
While there has been work proposed in the past that used AutoML for TS analysis [9],
the current AutoML systems do not support specialised techniques used for designing
machine learning pipelines for TS data, such as TS feature engineering. As demonstrated
by Christ et al. [10], including such specialized techniques for extracting TS features or
feature importance filtering could significantly improve the accuracy of ML models. There-
fore, our goal in this paper is to study if extending AutoML systems by including such
techniques can improve the quality of automatically generated machine learning pipelines
for multi-step forecasting.

This paper presents a study of AutoML for time-series multi-step TS forecasting
implemented through (i) multi-output modeling, and (ii) recursive modeling. We combine
the state-of-the-art AutoML system of auto-sklearn with tsfresh, a well-known library
for feature extraction from TS. We implement three AutoML variants and state-of-the-art
baseline models, including auto-sklearn, SVM, GBM, N-BEATS, and Auto-Keras. More
specifically, our contributions are as follows:

* We adapt the auto-sklearn AutoML system to the task of forecasting and introduce
three AutoML forecasting variants for multi-step-ahead TS forecasting.

* We demonstrate the importance of feature selection and window size selection in
forecasting problems and further show that by incorporating such approaches, our TS
AutoML techniques outperform available AutoML methods.

¢ We evaluate our methods on 20 benchmarking data sets from 20 different categories
and against the baselines. We found that our proposed AutoML method outperformed
the traditional ML baseline on 14 out of 20 data sets and N-BEATS on 15 out of
20 data sets.

The remainder of this paper is structured as follows: Section 2 covers related work
on TS forecasting, TS feature engineering and AutoML. Section 3 introduces the problem
statement of AutoML for multi-step TS forecasting. In Section 4, the methodology of
our newly proposed models is explained. Section 5 presents the results of the empirical
performance comparison of different ML models for multi-step TS forecasting. A summary
of our work and directions for future work are given in Section 6.

2. Related Work

Multi-step TS Forecasting: different ML methods and statistical methods have been
used for both single-step and multi-step TS analysis in the past few decades [11]. These
include artificial neural networks [3], support vector machines [4], gradient boosting ma-
chine [12], random forest [13], auto-regressive moving average models [5], and exponential
smoothing models [6]. To use these models for multi-step forecasting, two major ap-
proaches are used: direct and recursive strategies [14]. The first of these uses multi-output
regression models to predict multiple TS steps into the future directly or use multiple
models (one for each time step) to make multi-step forecasting. Multi-output models show
good performance and require less computational resources than training multiple models
to realise multi-step forecasting [15]. The second approach uses a single model recursively,
using the predicted values as an additional input to forecast the next step. In this case,
the error in the prediction may be accumulated [14]. Recursive strategies only require one
model, which saves significant computational time [14]. Other methods based on these two
approaches are also used, such as the DirRec strategy [16], which combines the recursive
strategies and direct strategies.

TS feature engineering: Feature engineering is an essential component in ML pipelines.
Feature extraction methods have also been used for TS analysis tasks [17,18]. There are a
number of TS feature extraction libraries that are widely used for TS analysis, including
tsfresh [19], Catch22 [20], and hctsa [21]. Catch22 extracts a selected list of the 22 most
useful features of the 4791 features of hctsa from a TS. Extracting features with Catch22

Eng. Proc. 2022, 18,17

30f11

is more computationally efficient than hctsa, with only a 7% reduction in accuracy on
average. In the following, we use tsfresh, which extracts more than 700 TS features in
parallel and has previously shown strong performance [19], since it does not require huge
computational resources like hctsa, or suffers from an accuracy reduction like Catch22.

AutoML: AutoML systems have been used in many domains, such as image classifi-
cation [22], language processing [23] and energy consumption forecasting [9]. However,
TS features are not well-studied in AutoML systems. In our earlier work [9], we studied
AutoML for short-term load forecasting demonstrating the competitive performance of Au-
toML systems. However, we did not investigate the use of TS features. In another work [24],
we studied AutoML with TS features for single-step TS forecasting. Our experimental
results indicate that AutoML with TS features can further improve the accuracy of AutoML
systems. In this work, we focus on studying how to improve the performance of AutoML
systems on multi-step forecasting tasks by using TS features. Many AutoML systems have
been recently developed, including Auto-sklearn [25], AutoGluon [8] and Auto-Keras [26] .
Auto-sklearn is used in our experiments, since it supports various algorithms (e.g., SVMs)
that are not available in the other systems, and it is easy to extend. Auto-Keras is used to
create a deep learning baseline in our experiments.

3. Problem Statement

Given a univariate TS x = [x1, ..., x;] composed of i observations. We are interested
in predicting the next k values x = [x;1,...,X;1], where k > 1 denotes the forecasting
window. Usually not all the data points show the same influence on the predictions of
[Xit+1,- -, X;1k]. The more recent data points tend to be more important. Specifically, given a
TS segment [X;_11, - - ., X;|, we are interested in forecasting of [x;;1, ..., X;k]; the window
size w indicates how much historical data are used to make the prediction. In our previous
work [24], we found that the window size w plays an essential role in single-step TS
forecasting; specifically, if an ML model gets too much or too little information, this may
reduce the model’s performance. Here, we extend the automated window size selection
technique to multi-step forecasting. Besides this, we use tsfresh to automatically extract
features from TS data within these windows.

AutoML for Multi-Step TS Forecasting

We define the Combined Algorithm Selection and Hyperparameter optimisation (CASH)
problem [27] for multi-output TS forecasting as the following joint optimisation problem:
Given a TS data set x = [x1,. .., X,] that is split into X;,4;; and X,,;i4, We are interested in
building an optimised model using X;,,;, by minimising loss on x,,;;;. Formally, we define
the automated TS forecasting problem as:

Let A = {AW), ..., AR} be a set of algorithms with associated hyperparameter spaces
A, AR, Let w = {w®), ..., w ")} be the set of the possible window sizes. Furthermore,

let Xtyqin be a training set, and X,,;4 be a validation set. Finally, let E(Agi),w(j),xtrain,xwlid)

denote the loss that algorithm AW achieves on Xy when trained on Xppgiy with hyperparameters
A € AY and window size w'). Then the automated TS forecasting problem is to find the window
size, algorithm, and hyperparameter setting that minimises this loss, i.e., to determine:

(A", A", w") € argmin LA\, W, Xtrain, Xoatid) 1)
Ae AN eENwew
4. Methodology

This section presents the two multi-step forecasting techniques and the AutoML
technique enhanced with TS features we use later in our experiments.

4.1. Multi-Step Forecasting

Recursive strategy: In this strategy, given a univariate TS x = [x1,...,x,]| com-
posed of n observations, a model f is trained to perform a single-step ahead forecast:

Eng. Proc. 2022, 18,17

40f11

Riv1 = f(xi_wy1, ., x;) withi € {w,...,,n — 1}. Then we use ;.1 as an input to predict x;. 5.
Rivo = f(Xi—wi2, s Xj, Xiy1) With i € {w, ..., n — 1}. We continue recursively, making new
predictions in this manner until we forecast x; .

Direct Multi-Output strategy: A multi-output strategy has been proposed by Taieb
and Bontempi [28] to solve multi-step TS forecasting tasks. In this strategy, one multi-output
model f is learned, i.e., (%11, ..., Xisk] = f(Xi—wi1, -, X)) Withi € {w, ..., n —k}.

4.2. Auto-Sklearn with TS Feature Engineering

In this work, we study how we can extend auto-sklearn [25] to perform automatic
feature extraction on TS data. Originally, the pipelines constructed by auto-sklearn include
a preprocessor, feature preprocessor and ML components. The ensemble construction
used in auto-sklearn uses a greedy algorithm to build the ensembles. The workflow of
auto-sklearn is illustrated in Figure 1. Auto-sklearn has a powerful feature preprocessor
component. However, it does not support any specialised TS feature extractors. In our
work, we use our newly proposed TS feature extractors in the search space instead of
the feature extractor in auto-sklearn. Automated feature extraction in this case considers
both the selection of the window size and extraction of relevant features. Therefore, we
propose three variants of auto-sklearn that are specially designed for TS forecasting tasks
by replacing the feature extractors of auto-sklearn with one of the following.

e —
data and
budget
K meta- automated bh
learning auto-sklearn

Bayesian optimisation

machine
pre- feature pre- [
processor processor 9
model
1
ensemble
\\ construction

¥

‘ model

validation
o

Figure 1. Workflow of auto-sklearn. Auto-sklearn uses Bayesian optimisation to search the space of
ML pipelines, including a preprocessor, feature preprocessor and ML components.

1. Auto-sklearn with automated window size selection (W): the first variant of auto-
sklearn for TS forecasting optimises the window size w. The TS x = [x;_y 11, - .., X;]
are used to train a model that predicts [x; 11, ..., X |-

2. Auto-sklearn with tsfresh features (T): the second variant of auto-sklearn extracts
tsfresh TS features from the TS segment x = [x;_y11, ..., X;] to predict [x;1,..., X; k]
In this case, the window size w is predefined and fixed. The TS features g(x) =
g([Xi—w+1, - -, x;]) are calculated using the TS feature extractor g. Feature importance
is calculated using the Benjamini-Hochberg procedure [29] to select the important
features. The Benjamini-Hochberg procedure selects important features for each step
in the TS separately. We then use the union of all the important features to predict
[Xiy1, o Xiggl-

3. Auto-sklearn with automated window size selection and tsfresh features (WT):
this approach combines the two previously mentioned approaches. Both window size
w and the TS extractor g are optimised in this variant.

5. Experimental Results

Our key empirical results are based on aggregate performance over 20 data sets
and 8 models. More detailed descriptions of the data sets and models are described in
the section.

Eng. Proc. 2022, 18,17

50f11

5.1. Data Sets

The open-source datasets from CompEngine [30] are used in our experiments. Com-
pEngine is a TS data engine containing 197 types of data sets comprising 29,514 in total.
These data sets include both real-world and synthetic data sets. We chose ten real-world
and ten synthetic data sets from different categories. These are comprised of the follow-
ing 20 categories: Audio: Animal sounds, Human speech, Music; Ecology: Zooplankton
growth; Economics: Macroeconomics, Microeconomics; Finance: Crude oil prices, Ex-
change rate, Gas prices; Medical: Electrocardiography ECG; Flow: Driven pendulum with
dissipation, Duffing-van der Pol Oscillator, Driven van der Pol oscillator, Duffing two-well
oscillator, Diffusionless Lorenz Attractor; Stochastic Process: Autoregressive with noise,
Correlated noise, Moving average process, Nonstationary autoregressive, Random walk.

Since there are usually more than one data set in each category, we choose the first
one of each category. We split every data set into 67% training and 33% test set, based on
temporal order, since the data sets are TS.

5.2. Experimental Setup

All the experiments were executed on 8 cores of an Intel Xeon E5-2683 CPU (2.10 GHz)
with 10 GB RAM. In the experiments, version 0.8.0 of auto-sklearn and version 0.16.1
of tsfresh were used. To evaluate the quality of an ML pipeline, we used quantified er-
ror/accuracy. RMSE was used as a performance metric in the optimisation. The maximum
evaluation time for one ML pipeline was set to 20 min wall-clock time. The time budget
for every AutoML optimisation on each data set was set to 3 h wall-clock time. In these
experiments, we used hold-out validation (training:validation = 67:33), the default valida-
tion technique in auto-sklearn. The split was carried out only on the training data, such
that the optimisation process never sees the test data. However, we did not shuffle the
data set in order to preserve the temporal structure of the TS data. All remaining choices
were left at their default settings. Since experiments are very time-consuming, we used
bootstrapping to create distributions of performance results in order to investigate their
variability. Every experiment was run 25 times. We then randomly sampled 5 out of the
25 results and selected the model with the lowest RMSE on the training set out of these
five models and reported the RMSE on the test set. We repeated this process 100 times per
model and data set. The distributions we showed are based on these 100 values.

We compared the AutoML methods, including Auto-Keras, auto-sklearn and our
proposed variants, with traditional ML baselines and N-BEATS. Both recursive and multi-
output techniques are used in the ML baselines (GBM and SVM). All other models use the
multi-output approach.

5.3. Baselines

¢ Gradient Boosting Machine (GBM): Gradient Boosting Machine is a classical ML
model used for TS analysis tasks that has shown promising performance in the M3,
M4 competitions [31]. For hyperparameter optimisation, we performed a random
search on GBM with 30 iterations and window size w = 100 [32]. In this case, the
search space is the same as the search space of GBM in auto-sklearn. In this experiment,
we did not split the training set into the training set and validation sets.

* Support vector machine (SVM): SVM is another classical ML model that has been
used for TS forecasting (e.g., [13]). Similar to GBM experiments, we use 30 iterations of
random search and window size w = 100. The search space is the same as the search
space of SVM in auto-sklearn.

e N-BEATS: N-BEATS [33] uses fully-connected layers with residual links to improve
3% over the winner of the M4 competition, which demonstrates state-of-the-art perfor-
mance. We used the default hyperparameter settings in the implementation provided
by Oreshkin et al. [33] and the bootstrapping approach mentioned in Section 5 to
create distributions of results. The number of epochs was set to 500.

Eng. Proc. 2022, 18,17

60f11

* Auto-Keras: Auto-Keras [26] is a neural architecture search system that uses Bayesian
optimisation to search for high-performance neural network architectures. Some
neural network units available in its search space (e.g., LSTM, GRU), have been used
for TS forecasting (see, e.g., [34,35]). Vanilla Auto-Keras does not support multi-output
models. To deal with multi-step forecasting tasks, we designed our new search space
using three types of blocks available in Auto-Keras: Input block, RNN Block and
Regression Head (see Figure 2). The RNN Block is the critical component in our
networks. We use RNN as a baseline, as it has been recently studied in the literature
on TS forecasting (see, e.g., [34,36]). Several hyperparameters need to be considered
for this block, including bidirectionality, the number of layers and layer type (LSTM
or GRU). Auto-Keras cannot choose the window size w automatically. We manually
preprocessed the data with window size w = 100. We used Bayesian optimisation for
architecture search. The number of epochs was set to 100, and we left the remaining
settings of Auto-Keras at their default values.

* Vanilla auto-sklearn (VA): We manually preprocessed the data with window size
w = 100 and then fed it to the auto-sklearn. The time budget for the optimisation was
set to 3 h.

of epochs

(" The numbers 1
(_and iterations

)

/ automated by Auto-Keras

(Input H RNN Block

Regression
Head 1

.

Regression
Head 10

. /

Figure 2. Workflow of our customised search space of Auto-Keras for TS forecasting. The input

data flows through the RNN Block. Hyperparameters, such as the number of layers and learning
rate, will be optimised during the search. The Regression Head then generates output based on the
information from the RNN Block.

5.4. Our Methods

e Auto-sklearn with automated window size selection (W): For the W variant, we
did not need to manually preprocess the data, since the window size w is selected
automatically. The window size ranges from 50 to 200.

e Auto-sklearn with tsfresh features (T): In the T variant, the TS feature extractor
tsfresh was used as an internal component of auto-sklearn. Auto-sklearn used these
TS features as input data to search over ML pipelines. The window size was set to
w = 100.

* Auto-sklearn with automated window size selection and tsfresh features (WT): In
WT, we set the window size w to range from 50 to 200. The TS features were extracted
from these input data.

Tables 1 and 2 compare the performance achieved by different methods in terms of
RMSE on the test set. Table 1, shows the results for traditional ML baseline models, while
Table 2 presents the results for AutoML techniques and N-BEATS. To present the results in
these tables, we calculated the statistical significance of the results by the non-parametric
Mann-Whitney U-test [37] with a standard significance level set to 0.05. The bold-faced
entries show the lowest mean RMSE achieved on a given data set, and the * means the
RMSE is statistically best.

Eng. Proc. 2022,18,17 7 of 11

Table 1. RMSE on test set acquired from traditional ML baselines. GBM-recursive, GBM-multiout,
SVM-recursive, and SVM multioutput win on 6, 6, 0, and 8 out of 20 data sets respectively.

Dataset RMSE (GBM RMSE (GBM RMSE (SVM RMSE (SVM
-Recursive) -Multioutput) -Recursive) -Multioutput)

Autoregre noise 0.458890 0.461558 0.484516 0.459410

Correlated noise 1.872176 1.862137 2.012916 2.004572

Lorenz Attractor 0.102323 0.088045 0.188223 0.152384

Pendulum 0.112041 0.104519 0.172118 0.035350
Driven oscillator 0.121606 0.124701 0.231661 0.224206
zzvc‘l’llzvt‘jrl 0.033950 0.032462 0.075318 0.007772
Duffing 0.025830 0.021330 0.075308 0.013762
oscillator ’ ’ ’)

Moving average 0.629791 0.627176 0.641453 0.622803
Nonstationary 6.049796 5.987631 6.796246 6.448516
Random walk 12.766561 13.690753 30.594553 25.654821

Crude oil prices 28.215008 32.909490 42.278003 20.867176

ECG 79.209558 103.881034 128.420743 126.1525026
Exchange rate 0.006880 0.006823 0.028571 0.005433
Gas prices 102.819893 100.612148 166.021626 172.605827
Human speech 0.059365 0.054838 0.085002 0.057631
Macroeconomics 779.515969 806.704035 713.073168 713.363569
Microeconomics 647.432403 705.051879 3500.094238 3865.235605
Music 0.082864 0.076047 0.068341 0.052978
Tropical sound 0.009468 0.006285 0.034925 0.008820
Zooplankton 312.033380 385.377067 319.839856 320.049399

Table 2. RMSE on test set acquired from different AutoML methods including vanilla auto-sklearn
(VA), our proposed variants (W, T, and WT), Auto-Keras and the state-of-the-art method N-BEATS.
The accuracy of N-BEATS, Auto-Keras, VA, W, T, WT are statistically significant on 5, 0, 2, 8, 3, and 3

out of 20 data sets, respectively.

RMSE

RMSE

(N-BEATS) (Auto-Keras) RMSE (VA) RMSE (W) RMSE (T) RMSE (WT)
N _ 0.491133 A 0.454026 0.453002 0.464252 0.463611
utoregre noise +0.001470 0.468036 +0.000502 +0.000137 * +0.000286 +0.000302
_ 1.949831 1.832344 1.822611 1.841418 1.843744
Correlated noise +0.012037 1.848905 +0.003727 +0.0009631 * +0.000878 +0.000858
. N 0.076379 o4 0.050628 0.039705 0.140621 0.249406
orenz Aftractor +0.007143 248956 +0.009272 +0.003994 * +0.081695 +0.012638
sl 0.113806 0.055285 0.021416 0.154815 0.177645
Pendulum +0.010232 0.512860 +0.020322 +0.022933 * +0.100197 +0.048287
, , 0.101795 0.094895 0.085300 0.061014 0.149184
Driven oscillator +0.006627 0232306 +0.010350 +0.005317 +0.001292 * +0.003854

Eng. Proc. 2022, 18,17

8of 11

Table 2. Cont.

RMSE RMSE
(N-BEATS) (AutoKeras) RMSE (VA) RMSE (W) RMSE (T) RMSE (WT)
L osel 0.010395 0.032185 0.033103 0.019638 0.057722
Two-well oscillator ¢ goog97 * 0.201339 +0.006572 +0.000724 +0.001726 +0.009568
o N 0.004316 0.011301 0.010777 0.020875 0.019648
Duffing oscillator +0.001006 * 0.500197 +0.011301 +0.000844 +0.000919 +0.001661
, 0.662554 : 0.615606 0.614169 0.609240 0.608775
Moving average +0.002471 0.610291 +0.000661 + 0.000080 +0.000326 + 0.000241 *
_ 6.253612 5.775404 5783582 6.720498 6.826646
Nonstationary +0.034291 9.888761 +0.048135 * +0.012927 * +0.023618 +0.022398
3.099224 13.478998 13.240742 14.765951 15.411989
Random walk + 0.058073 * 19.385011 40172438 +0.138406 +0.843100 +0.368020
o 32.199970 34.766214 34.669098 33.134671 35.373982
Crude oil prices + 0.846056 * 44.305246 +0.702608 +0.374047 +0.228864 +0.209542
G 143.617378 4057701 96.577900 102.0317220 104.228003 103.260689
+7.120182 9.577016 + 3.258370 * +14.282081 +1.6258357 +2.110540
. 0.004831 0.006049 0.003627 0.006886 0.004569
Exchange rate +0.001875 0.013859 +0.000130 +0.001326 * +0.000237 +0.001505
_ 50.147486 611201 118.033606 101.514037 109.711360 121.133289
Gas prices +3.122861 * 26.112217 +25.754493 +0.021932 +4.170307 +1.387935
0.089423 0.061140 0.061280 0.058722 0.057920
Human speech +0.001085 0.065285 +0.001988 +0.002512 +0.000191 -+ 0.000288 *
, 755.905175 791.586127 766.036513 682.959633 662.098158
Macroeconomics +11.131619 711.622796 +37.469871 +31.082581 +3.559769 +24.511173 *
, , 2179.375169 805.637017 733.760632 1295531031 1348.425680
Microeconomics 4 go43 gpp058 9945979242 161.049526 +12.795080 * 4 34.305972 +264.961810
_ 0.078767 0.085224 0.072422 0.068895 0.084715
Music +0.001062 0.091060 +0.005985 +0.002119 +0.000906 * +0.002951
. 0.010038 0.008483 0.008407 0.008930 0.008717
Tropical sound +0.000203 0.010660 +0.000072 +0.000013 * +0.000029 +0.000044
oo lank 306.329197 105 297.091504 282.485896 278.597102 301.160979
ooplankton +2.591637 310.290963 +2.118263 +1.234165 +1.237304 * +4.331423

5.5. Research Questions

Q1: How do recursive and multi-output techniques compare in terms of accuracy?

To determine the answer to this question, we compared the recursive and multi-output

versions of GBM and SVM algorithms. Among the baselines we consider, N-BEATS as
described in the original work is not a recursive model. Therefore, we do not consider it for
this analysis. Looking at Table 1, we generally observe that GBM-multioutput performs
better than GBM-recursive on 12 out of 20 data sets, while SVM-multioutput outperforms
SVMe-recursive on 17 out of 20 data sets in terms of RMSE. As we have observed that
multi-output models tend to perform better, which is in line with the results from [14].
Therefore, we only use the multi-output technique in our next experiments.

Q2: To what extent can AutoML techniques (Auto-Keras, auto-sklearn, and our variants)
beat the traditional baselines (GBM, SVM)?

Looking at Tables 1 and 2, one can compare the performance achieved by different
methods in terms of RMSE on the test set. We observe that Auto-Keras beats all the
traditional ML baseline models (GBM-recursive, GBM-multioutput, SVM-recursive, and
SVM-multioutput) on 4 out of 20 data sets. Vanilla auto-sklearn outperforms all the

Eng. Proc. 2022, 18,17

9o0f 11

traditional ML baselines on 8 out of 20 data sets. Our three variants W, T, WT show lower
error than all the traditional ML baselines on 10, 5, and 5 out of 20 data sets, respectively.
The best AutoML (W) outperforms the best traditional ML baseline (SVM-multioutput) on
14 out of 20 data sets.

Q3: To what extent can AutoML techniques beat N-BEATS?

Looking at Table 2, we observe that the best AutoML (W) outperforms N-BEATS on 14
out of 20 data sets. For other AutoML techniques we observe that Auto-Keras, VA, T, and
WT beat N-BEATS on 5, 12, 11, and 10 out of 20 data sets, respectively. AutoML methods
that are based on standard machine learning are beating this neural networks based model.

6. Conclusions

In this paper, we extend AutoML for multi-step TS forecasting with TS features. We
found that AutoML can achieve significantly higher accuracy than the traditional ML
baselines on 14 out of 20 data sets in terms of RMSE. Although N-BEATS performs better
than Auto-Keras and vanilla auto-sklearn on many data sets, our AutoML TS variants still
managed to beat it on 14 out of 20 data sets. We found that the multi-output technique
tends to perform better with the same budget than the recursive technique in the multi-step
TS forecasting tasks. Overall, these results clearly demonstrate that the use of AutoML
techniques and multi-output strategies for multi-step TS forecasting is promising.

Interesting avenues for future work include AutoML for online learning and TS
classification. Most AutoML systems focus on a stable data set. Characteristics of TS
data might change over time and consequently, the best configuration of data sets may
vary over time. We see potential value in extending AutoML on evolving data streams.
Furthermore, in TS classification typically classification with a fixed-sized sliding window
has been studied. However, the best window size might not be easily determined. Our
automated window size selection technique may help to improve the performance of the
classification tasks.

Author Contributions: Conceptualization, C.W., M.B. and H.H.H.; methodology, C.W., M.B. and
H.H.H.; software, C.W.,; validation, C.W.; formal analysis, C.W.; investigation, C.W., M.B. and H.H.H.;
resources, C.W., M.B. and H.H.H.; data curation, C.W.; writing—original draft preparation, C.W.;
writing—review and editing, M.B., T.B., H.H.H., S.L. and M.O.; visualization, C.W.; supervision,
M.B., T.B.,, HH.H, SL. and M.O.; project administration, T.B.,, HH.H., S.L. and M.O.; funding
acquisition, T.B., HH.H., S.L. and M.O. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is part of the research programme C2D-Horizontal Data Science for Evolving
Content with project name DACCOMPLI and project number 628.011.002, which is (partly) financed
by the Netherlands Organisation for Scientific Research (NWO).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data sets used in our experiments are available in https://github.
com/wangcan04/AutoML-multistep-forecasting, accessed on 1 June 2022.

Conflicts of Interest: The authors declare no conflict of interest.The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:
TS Time-series

ML Machine Learning
AutoML Automated Machine Learning

https://github.com/wangcan04/AutoML-multistep-forecasting
https://github.com/wangcan04/AutoML-multistep-forecasting

Eng. Proc. 2022,18,17 10 of 11

References

1. Xiong, T.; Bao, Y.; Hu, Z. Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for
crude oil prices. Energy Econ. 2013, 40, 405-415. [CrossRef]

2. Chang, FJ.; Chiang, Y.M.; Chang, L.C. Multi-step-ahead neural networks for flood forecasting. Hydrol. Sci.]. 2007, 52, 114-130.
[CrossRef]

3. Chen, P; Liu, S.; Shi, C.; Hooi, B.; Wang, B.; Cheng, X. NeuCast: Seasonal Neural Forecast of Power Grid Time Series. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden,
13-19 July 2018; pp. 3315-3321.

4. Nie, H.; Liu, G,; Liu, X,; Wang, Y. Hybrid of ARIMA and SVMs for Short-Term Load Forecasting. Energy Procedia 2012,
16, 1455-1460. [CrossRef]

5. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,
USA, 2015.

6. Nedellec, R.; Cugliari, J.; Goude, Y. GEFCom?2012: Electric load forecasting and backcasting with semi-parametric models. Int. J.
Forecast. 2014, 30, 375-381. [CrossRef]

7. Guyon, I.; Sun-Hosoya, L.; Boullé, M.; Escalante, H.J.; Escalera, S.; Liu, Z.; Jajetic, D.; Ray, B.; Saeed, M.; Sebag, M.; et al. Analysis
of the AutoML Challenge Series 2015-2018. In Automated Machine Learning; Springer: Berlin, Germany, 2019; pp. 177-219.

8. Shi, X,; Mueller, J.; Erickson, N.; Li, M.; Smola, A. Multimodal AutoML on Structured Tables with Text Fields. In Proceedings of
the 8th ICML Workshop on Automated Machine Learning (AutoML), Virtual, 23-24 June 2021.

9. Wang, C; Back, T.; Hoos, H.H.; Baratchi, M.; Limmer, S.; Olhofer, M. Automated Machine Learning for Short-term Electric
Load Forecasting. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6-9
December 2019; pp. 314-321.

10. Christ, M.; Kempa-Liehr, A.W.; Feindt, M. Distributed and parallel time series feature extraction for industrial big data
applications. arXiv 2016, arXiv:1610.07717.

11. Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914-938. [CrossRef]

12. Li, L.; Dai, S.; Cao, Z.; Hong, J.; Jiang, S.; Yang, K. Using improved gradient-boosted decision tree algorithm based on Kalman
filter (GBDT-KF) in time series prediction. J. Supercomput. 2020, 76, 6887—-6900. [CrossRef]

13. Candanedo, L.M.; Feldheim, V.; Deramaix, D. Data driven prediction models of energy use of appliances in a low-energy house.
Energy Build. 2017, 140, 81-97. [CrossRef]

14. Taieb, S.B.; Bontempi, G.; Atiya, A.F; Sorjamaa, A. A review and comparison of strategies for multi-step ahead time series
forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39, 7067-7083. [CrossRef]

15. Ferreira, L.B.; da Cunha, F.F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Comput.
Electron. Agric. 2020, 178, 105728. [CrossRef]

16. Sorjamaa, A.; Lendasse, A. Time series prediction using DirRec strategy. In Proceedings of the ESANN 2006, 14th European
Symposium on Artificial Neural Networks, Bruges, Belgium, 26-28 April 2006; pp. 143-148.

17. Coyle, D.; Prasad, G.; McGinnity, T M. A time-series prediction approach for feature extraction in a brain-computer interface.
IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 461-467. [CrossRef] [PubMed]

18. Phinyomark, A.; Quaine, F; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F,; Laurillau, Y. Feature extraction of the first difference
of EMG time series for EMG pattern recognition. Comput. Methods Programs Biomed. 2014, 117, 247-256. [CrossRef] [PubMed]

19. Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time series feature extraction on basis of scalable hypothesis tests (tsfresh—A
python package). Neurocomputing 2018, 307, 72-77. [CrossRef]

20. Lubba, C.H.; Sethi, S.S.; Knaute, P.; Schultz, S.R.; Fulcher, B.D.; Jones, N.S. catch22: CAnonical Time-series CHaracteristics. arXiv
2019, arXiv:1901.10200.

21. Fulcher, B.D.; Jones, N.S. hctsa: A computational framework for automated time-series phenotyping using massive feature
extraction. Cell Syst. 2017, 5, 527-531. [CrossRef] [PubMed]

22. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings
of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18-22 June 2018;
pp. 8697-8710.

23. Bisong, E. Google automl: Cloud natural language processing. In Building Machine Learning and Deep Learning Models on Google
Cloud Platform; Springer: Berlin, Germany, 2019; pp. 599-612.

24. Wang, C.; Baratchi, M.; Back, T.; Hoos, H.H.; Limmer, S.; Olhofer, M. Towards time-series-specific feature engineering in
automated machine learning frameworks. 2022, under review.

25. Feurer, M,; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning.
In Advances in Neural Information Processing Systems 28; Curran Associates, Inc.: Montreal, QC, Canada, 7-12 December 2015;
pp- 2962-2970.

26. Jin, H,; Song, Q.; Hu, X. Auto-Keras: An Efficient Neural Architecture Search System. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4-8 August 2019; ACM: New York, NY,
USA, 2019; pp. 1946-1956.

http://doi.org/10.1016/j.eneco.2013.07.028
http://dx.doi.org/10.1623/hysj.52.1.114
http://dx.doi.org/10.1016/j.egypro.2012.01.229
http://dx.doi.org/10.1016/j.ijforecast.2013.07.004
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1007/s11227-019-03130-y
http://dx.doi.org/10.1016/j.enbuild.2017.01.083
http://dx.doi.org/10.1016/j.eswa.2012.01.039
http://dx.doi.org/10.1016/j.compag.2020.105728
http://dx.doi.org/10.1109/TNSRE.2005.857690
http://www.ncbi.nlm.nih.gov/pubmed/16425827
http://dx.doi.org/10.1016/j.cmpb.2014.06.013
http://www.ncbi.nlm.nih.gov/pubmed/25023536
http://dx.doi.org/10.1016/j.neucom.2018.03.067
http://dx.doi.org/10.1016/j.cels.2017.10.001
http://www.ncbi.nlm.nih.gov/pubmed/29102608

Eng. Proc. 2022,18,17 11 of 11

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined Selection and Hyperparameter Optimization of
Classification Algorithms. In KDD’13, Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Chicago, IL, USA, 11-14 August 2013; ACM: New York, NY, USA, 2013; pp. 847-855.

Taieb, S.B.; Bontempi, G. Recursive Multi-step Time Series Forecasting by Perturbing Data. In Proceedings of the 11th IEEE
International Conference on Data Mining, ICDM 2011, Vancouver, BC, Canada, 11-14 December 2011; pp. 695-704. [CrossRef]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat.
Soc. Ser. B (Methodol.) 1995, 57, 289-300. [CrossRef]

Fulcher, B.D.; Lubba, C.H.; Sethi, S.S.; Jones, N.S. CompEngine: A self-organizing, living library of time-series data. arXiv 2019,
arXiv:1905.01042.

Januschowski, T.; Gasthaus, J.; Wang, Y.; Salinas, D.; Flunkert, V.; Bohlke-Schneider, M.; Callot, L. Criteria for classifying
forecasting methods. Int. J. Forecast. 2020, 36, 167-177. [CrossRef]

Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281-305.

Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series
forecasting. arXiv 2019, arXiv:1905.10437.

Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of
the 17th IEEE International Conference on Machine Learning and Applications, ICMLA, Orlando, FL, USA, 17-20 December
2018; pp. 1394-1401.

Zhang, X; Shen, F.; Zhao, J.; Yang, G. Time Series Forecasting Using GRU Neural Network with Multi-lag After Decomposition.
In Proceedings of the Neural Information Processing—24th International Conference, ICONIP 2017, Guangzhou, China, 14-18
November 2017; Springer: Berlin, Germany, 2017; Volume 10638, pp. 523-532.

Yamak, P.T.; Yujian, L.; Gadosey, PK. A comparison between arima, Istm, and gru for time series forecasting. In Proceedings of
the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 20-22 December 2019;
pp- 49-55.

Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.
Stat. 1947, 18, 50-60. [CrossRef]

http://dx.doi.org/10.1109/ICDM.2011.123
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1016/j.ijforecast.2019.05.008
http://dx.doi.org/10.1214/aoms/1177730491

	Introduction
	Related Work
	Problem Statement
	Methodology
	Multi-Step Forecasting
	Auto-Sklearn with TS Feature Engineering

	Experimental Results
	Data Sets
	Experimental Setup
	Baselines
	Our Methods
	Research Questions

	Conclusions
	References

