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Abstract: This is a continuation of our research into the development of novel biosensing technologies
for early diagnostics of prostate cancer (PCa). The existing PCa diagnostics based on PSA detection
(prostate cancer antigen) in blood serum often yield controversial outcomes and require improvement.
At the same time, the long non-coded RNA transcript PCA3 overexpressed in PCa patients’ urine
proved to be an ideal biomarker for PCa diagnosis, and recent research mainly focuses on developing
biosensors for the detection of PCA3. One of the most promising directions in this research is the use
of aptamers as bio-receptors for PCA3. We demonstrated the earlier great potential of electrochemical
sensors exploiting aptamer labelled with redox group ferrocene. In this work, we use the RNA-based
aptamer specific to 227 nt fragment of lncRNA PCA3 labelled with methylene blue redox label which
offers a higher affinity to PCA3 than commonly used DNA-based aptamers. Before proceeding
with biosensing experiments, the gold screen-printed electrodes were cleaned by CV scanning in a
sulfuric acid solution, which removed surface contaminations and thus improved immobilization of
aptamers. The quality of the gold surface was assessed by contact angle measurements. Moreover, the
concentration of immobilized aptamers was optimized to achieve the best results in electrochemical
measurements. Initial tests were carried out using cyclic voltammograms (CV) measurements and
showed a correlation between oxidation/reductions peaks intensities and the concentration of PCA3.
Such experiments proved the main concept of the proposed apta-sensing, e.g., the changes of aptamer
secondary structure during binding the target (PCA3) resulting in redox labels coming closer to the
electrode surface and thus increasing the charge transfer. The lowest recorded concentration of PCA3
was 0.01 nM in CV measurements, which is close to the LDL level for this method. Much more
promising results were obtained with the electrochemical impedance spectroscopy (EIS) measure-
ments, which showed remarkable features of increasing sensitivity at low concentrations of PCA3.
The extrapolation of data below 0.05 nM level allowed estimating LDL of about 0.4 pM. The results
obtained are very encouraging and constitute a major step towards developing a simple, reliable, and
cost-effective diagnostic tool for the early detection of prostate cancer.

Keywords: prostate cancer; lncRNA PCA3 biomarker; RNA-based aptamer; electrochemical biosen-
sor; gold screen-printed electrodes; cyclic voltammograms; electrochemical impedance spectroscopy

1. Introduction

Prostate cancer (PCa), also known as adenocarcinoma, is the most common worldwide
type of cancer in men after lung cancer, and it is the second leading cause of mortality
among men [1,2]. Clinically, the standard diagnostics test for detection of PCa is based on
the detection and quantification of total serum prostate-specific antigen (tPSA) in serum,
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followed by further examinations such as digital rectal examination (DRE) and imaging
investigations if PCa is suspected [3,4]. Despite the benefits of these tests, physicians
still have difficulty identifying early-stage PCa due to its asymptomatic nature and/or
symptoms resembling benign conditions, such as prostatic hyperplasia (BPH) [5]. Further-
more, PSA testing has limits in terms of specificity, accuracy, and sensitivity [6–8]. Hence,
identifying other specific PCa biomarkers besides PSA for the detection of PCa is of high
importance [9,10]. The long non-coding RNA (lncRNA) known as PCA3 overexpressed in
PCa patients’ urine has been widely accepted as one of the specific biomarkers for malig-
nant prostate cells [11–13]. PCA3 level can predict prostatic biopsies’ outcome, especially
in combination with other PCa biomarkers such as PSA and can reduce the likelihood
of false-positive results [14–16]. Prognesa® test, approved in USA in 2012, is based on
detection of both PCA3 and PSA using quantitative nucleic acid amplification after digital
rectal examination and yields a PCA3 score (the ratio of PCA3 to PSA mRNA molecules
in urine specimens) [17,18]. However, such a test is time-consuming, expensive, and re-
quires highly skilled operators. Biosensing techniques involving aptamers as bioreceptors,
e.g., single-stranded RNA or DNA molecules with high affinity for target molecules, are
alternatives to well-established immunosensors. A GC3 RNA aptamer against the 277 nt
section of lncRNA transcript PCA3 was developed using SELEX process and reported by
Marangoni et al. [19]. According to this study, the GC3 aptamer showed the highest affinity
towards PCA3. From the transducer point of view, electrochemical sensors are the most
attractive because of their high sensitivity, simplicity of operation and low cost [20–22].
The concept of detection of PCA3 using specific DNA-based aptamers labelled with redox
group (ferrocene) was explained and proved in our recent publications [23,24].

This work is a further study of the implementation of electrochemical sensing com-
bined with redox-labelled aptamers for the detection of PCA3. Here, we used the original
GC3 RNA-based aptamer, which is supposed to provide higher specificity towards PCA3
target. It is also labelled with another redox chemical, e.g., methylene blue. Two electro-
chemical methods of cyclic voltammetry (CV) and electrochemical impedance spectroscopy
(EIS) were exploited here using screen-printed gold electrodes (SPGE) and interdigitated
gold electrodes (IDGE), respectively, and compared the sensitivity of detection with so-far
published papers. The properties of the gold surface of these electrodes and its effect on
electrochemical measurements were also assessed in this study. CV is a common electro-
chemical method for analysing redox reactions at the electrode surface [25], while EIS is a
very sensitive method capable of detecting tiny changes in a double layer on the electrode
surface [26]. The high sensitivity of EIS could be beneficial for apta-sensing and for the de-
tection of PCA3, as has been shown in [24]. The results obtained are very encouraging and
constitute a major step towards developing a simple, reliable, and cost-effective diagnostic
tool for the early detection of prostate cancer.

2. Materials and Methods
2.1. Chemicals and Reagents

The CG RNA-based aptamer reproducing the following sequence of nucleotides 5′-
AGUUUUUGCGUGUGCCCUUUUUGUCCCC-3′ published by the inventors [19] was
customised by Merck Life Science Ltd. (Dorset, UK). This aptamer has been used in our
previous work [23]. The methylene blue and thiol groups were attached to C5 and C3
termini, respectively. The target analyte, e.g., the 277 nt fragment of lncRNA PCA3 was
purchased from Eurofins Scientific (Guildford, UK branch) and prepared in PBS (pH 7.5).

HEPES binding buffer (HBB) pH 7.6, sodium phosphate di-basic (Na2HPO4), potas-
sium phosphate mono-basic (KH2PO4), potassium chloride (KCl), magnesium chloride
(MgCl2), dithiothreitol (DTT), and sodium chloride (NaCl), were procured from Sigma-
Aldrich (Gillingham, UK). All reagents were of analytical grade. The target analyte, e.g.,
the 277 nt fragment of lncRNA PCA3 was purchased from Eurofins Scientific (Guildford,
UK) and prepared in PBS (pH 7.5). All aqueous solutions were prepared using 18.2 MΩ·cm
deionized (DI) water (Millipore, Watford, UK). The methylene blue labelled CG RNA based
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aptamer [19], which was used in our previous work [23], was acquired from Merck Life
Science Ltd. (London branch, UK). The methylene blue and thiol groups were attached to
C5 and C3 termini, respectively.

2.2. Measurements and Instrumentation

Three-electrode gold screen-printed assemblies (AT) with Ag/AgCl reference elec-
trodes with 4 mm diameter working electrodes from DropSens Metrohm (Runcorn, UK)
were used for CV measurements with Dropsens potentiostat Stat8000. Voltage ranges from
−0.4 to 0.2 V with the step of 10 mV and scan rate of 40 mV/s were used. CV cycles
were recorded 5 times until the current readings were stabilized. In addition to cyclic
voltammetry, the time dependencies of cathodic current at −0.25 V were recorded on
electrodes during exposure to PCA3 of different concentrations for kinetic study of the
PCA3 to aptamer binding. Interdigitated gold electrodes having 50 fringes with the spacing
of 5 µm were used for EIS measurements with Parastate 4000 impedance analyzer. The AC
signal of 50 mV amplitude (and zero DC bias) with the frequency varied from 0.1 Hz to
100 kHz was used in these measurements. Moreover, the sessile drop method was used
in water contact angle measurements with OCA 15EC Goniometer. DI water 10 µL drops
were dispensed on top of the electrode surface, and the droplet microscopic images were
captured and analysed using built-in software.

2.3. Immobilization of Aptamers and Preparation for CV and EIS Measurements

The aptamers were immobilized on the surface of both types of electrodes (SPGE and
IDGE) following the procedure described in detail in our earlier publications [24,27]. Extra
cleaning of the electrodes method has been done using CV cleaning scans in 0.1 M H2SO4
until the gold oxide reduction peak no longer increased in size. Such treatment removes
surface contaminants without damaging the gold surface as described in [20].

This additional cleaning procedure has resulted in consistent and a smooth electrode
surface. The target analyte (PCA3) was resuspended in detection buffer (HEPES pH 7.5,
120 mm NaCl, 5 mm KCl,) at different concentrations from 100 nM down to 0.01 nM and
were used in both CV and EIS measurements.

3. Results and Discussion
3.1. Characterization of Gold Electrodes after Cleaning

Characterization of gold surface wettability before and after CV cleaning in 0.1 mM
H2SO4 solution was carried out by contact angle measurement. Figure 1a shows a typical
CV of SPGE during cleaning, similar to that described in [20]. Figure 1b shows the effect of
CV cleaning on the wettability of various gold electrodes surfaces using the contact angle
measurement data. Images of water droplets are shown below.
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Figure 1. Cleaning and characterization of gold surfaces: (a) Typical CV curve of SPGE in 0.1 M
H2SO4 solution cleaning responses. (b) Results of contact angle measurements of SPGE and IDGE.
Images of water droplets are shown above.
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Since the cleaning methodology is essential, as is described in [28]. A minimum
of three sets of measurements were performed across the surface of each sample. The
homogeneity and structure of the gold electrode surface influence the peak currents in
CV and amperometry detection [29]. For this reason, the gold electrode surface must be
cleaned before the immobilization of aptamers. The final stabilized CV curve after 10 cycles
of cleaning is shown in Figure 1a. The reduction in contact angles for both electrodes AT
SPGE and IDGE after cleaning indicates better wettability of the gold surface is shown in
Figure 1b.

3.2. Electrochemical Apta-Sensing of PCA3

Typical CV curves were recorded on SPGE with immobilized aptamers before and
after exposure to PCA3 of different concentrations, as shown in Figure 2. The characteristic
oxidation and reduction peaks of methylene blue appeared on all CV curves at around
−0.2 and −0.25 V, respectively. The intensity of redox current peaks varied dramatically
depending on the concentration of PCA3 bound to aptamers. Initial peaks for aptamers
appear as small humps on CV curves. The intensity of these peaks increases progressively
with the increase in PCA3 concentration. This trend can be observed clearly on the inset in
Figure 2, showing concentration dependence of the absolute values of changes in cathodic
current at −0.25 V. The values of |∆Ic| were calculated by subtracting the baseline Ic value
for pure aptamer from Ic values corresponding to different concentrations of PCA3.
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Figure 2. Typical CV curves recorded on SPGE functionalized with aptamers before and after
exposure to PCA3 of different concentrations. Inset shows the dependence of absolute values of
changes in cathodic current at −0.25 V on PCA3 concentration.

The graph in Figure 2 (inset) represents the beginning of a standard sigmoid curve.
The saturation of the sensor response could be achieved at much larger concentrations of
PCA3. At low concentrations of PCA3 the response is almost flattened between 0.05 and
0.01 nM, which means that the LDL can be estimated as 0.05 nM. This value corresponds
to 0.125 ng/mL, considering the molecular weight of about 2.5 kD for a 78 bp fragment
of lncRNA PCA3), which is close to LDL = 0.1 ng/mL evaluated previously [24] for CV
measurements for ferrocene-labelled aptamer. It should be noted that the lowest concentra-
tion of PCA3 detected on SPGE before CV cleaning was only 0.1 nM. Therefore, electrodes’
cleaning resulted in 5 to 10 folds increase in the sensitivity. The optimal concentration of
aptamers yielding less noisy CV graphs was 1 µM.
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3.3. Electrochemical Impedance Spectroscopy (EIS)

The results of EIS measurements are presented in Figure 3 as the dependencies of
the imaginary (Zim) vs real (Zre) parts of impedance known as Nyquist plots. As one
can see, all Nyquist plots recorded on IDGE with immobilized aptamers before and after
exposure to different concentrations of PCA3 appear as almost ideal semi-circles with
the anticlockwise direction of AC frequency increase. This is a clear indication of the
negligible contribution of diffusion of redox chemicals to the electrode surface, which is
obvious since the redox labels are attached to aptamers. Therefore, the behaviour of IDGE
modified with redox-labelled aptamers can be described by a simplified (without diffusion
impedance) equivalent circuit shown as an inset in Figure 3a. The sizes (diameters) of
Nyquist semi-circles correlate with the concentration of PCA3 bound to the aptamers. The
layer of fresh aptamers shows the largest diameter, which decreases with an increase in
PCA3 concentration.
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layer on the concentration PCA3.

Analysis of Nyquist graphs is based on the formula of electrical impedance (Z) of a
simplified equivalent circuit (see inset in Figure 3a) described earlier [24]:

Z = Zre − jZim; Zre =
RDL

1 + ω2R2
DLC2

DL
+ RS ; Zim =

ωR2
DLCDL

1 + ω2R2
DLC2

DL
,

where Zre and Zim are respectively the real and imaginary parts of impedance, which
depend on the resistance and capacitance of a double layer (RDL and CDL) and bulk
resistance of the solution (RS) as well as the frequency (ω) of AC signal. Analysis of the
above equation gives at low frequencies ( ω → 0) Z0

re = RDL + RS and Zo
im = 0, while at

high frequencies ( ω → ∞ ) Z∞
re = RS and Z∞

im = 0. Therefore, the characteristic parameter
of double-layer resistance RDL can be calculated as RDL = Ro

re − Z∞
Re.
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On the other hand, the capacitance of a double layer (CDL) can be calculated from the
maximal values of Zmax

im ≈ 1/ωCDL.
The values of RDL and CDL were calculated from the Nyquist plots in Figure 3a for

all concentrations of PCA3, including zero concentration corresponding to the aptamer
layer before binding PCA3, and the results are given in Figure 3b,c. As one can see from
Figure 3b,c, the sensitivity of detection increases with the decrease in PCA3 concentration,
which is opposite to CV measurements (see inset in Figure 2). Unfortunately, it is impossible
to precisely evaluate the LDL of EIS measurements because the lowest concentration of
PCA3 was only 0.05 nM. However, it is possible to estimate the LDL from the slope of
the RDL vs CPCA3 graph at low concentrations (between 0.05 and 0 nM) in Figure 3b.
The gradient of this graph ∆CPCA3/∆RDL = 0.05/378.7 = 1.3 × 10−4 nM/Ω, therefore
assuming the triple noise level of about 3 Ω, the LDL can be estimated as 0.4 pM. A similar
estimation of LDL can be done from the CDL vs CPCA3 graph in Figure 3c. The gradient
∆CPCA3/∆CDL = 0.05/2.5 = 0.02 nM/µF. Assuming the triple noise level of 0.01 µF, the
LDL of 0.2 pM can be estimated.

4. Conclusions

The results obtained in this work proved a concept of electrochemical detection of
prostate cancer marker PCA3 using RNA-based aptamers labelled with methylene blue
redox group. The mechanism of detection is based on the increasing of charge transfer be-
tween the redox label and the electrode because of aptamers engulfing the target molecules
(PCA3) and bringing redox labels (methylene blue) closer to the electrode surface. One of
the main advantages of such an approach is the absence of redox chemicals in solution,
which may allow performing tests on real samples of urine in future. Cyclic voltammogram
measurements resulted in moderate LDL values between 0.05 and 0.01 nM, similar to the
values obtained in our previous work on DNA-based aptamers labelled with ferrocene [25].
Such sensitivity should be sufficient for clinical use. However, EIS method appeared to
be much more promising because of a different nature of the sensor response having the
sensitivity increasing at low concentrations. The absence of redox chemicals in the solution
allowed using a simplified model for EIS data analysis, which resulted in a correlation
between both the resistance and capacitance of a double layer on the electrode surface and
the concentration of PCA3 consistent with the above model of aptasensing. Our estimations
showed that LDL for EIS measurements could be in sub-pM range. Additionally, some
important technological steps of sensors preparation, such as electrochemical cleaning of
gold screen-printed electrodes and optimization of the aptamer concentration for immo-
bilization on the surface of gold, were implemented. Overall, this work is a major step
towards the future development of a novel methodology of prostate cancer diagnostics.
This work is ongoing and focuses on more detailed CV and EIS measurements in a wide
range of PCA3 concentrations, statistical analysis of data, and more precise evaluation of
LDL. PCA3 detection in complex media such as urine will be attempted.
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