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Abstract: Illicit drug consumption remains a problem to public safety and health, with abuse of
illicit drugs having increased significantly over the last years. A concern related to this abuse is
driving under the influence of drugs (DUID). Currently, police and law enforcement agencies rely on
the use of lateral flow immunoassays (LFAs), which suffer from a lack of specificity. In this report,
we present a rapid, sensitive, and affordable electrochemical method for the detection of cocaine
in oral fluid (OF) by square-wave adsorptive stripping voltammetry on screen-printed electrodes
(SPE). For the first time, the effects of the OF matrix on the electrochemical sensing of cocaine are
deeply explored. The interference of endogenous compounds in OF, cutting agents and adulterants
is studied. Interestingly, the electrochemical signal for cocaine is shown to be partially suppressed
by the biofouling properties of albumin and most probably other proteins present in the OF matrix.
Thus, strategies to mitigate these biofouling properties are explored. Subsequently, two sampling
methods for OF, expectoration and the use of a commercial OF collection device (i.e., the Intercept i2),
are investigated. The developed method shows promising potential in point-of-care testing for recent
illicit drug use.

Keywords: square wave voltammetry; oral fluid testing; cocaine; screen printed electrodes; forensic
analysis

1. Introduction

Even during the ongoing COVID-19 pandemic, the consumption of illicit drugs has
remained a problem to public health and safety [1]. In the last decade, the number of
worldwide drug users has grown at a 30% rate to reach 270 million users in 2018 [2]. In the
same year, the highest number of cocaine seizures in Europe was reported [3]. An increasing
concern related to the use of illicit drugs and cocaine is that of driving under the influence
of drugs (DUID) [4]. In the large-scale European Union (EU) study “Driving under the
Influence of Drugs, Alcohol and Medicines (DRUID)” (2012), it has been reported that the
detection rate of illicit drugs in the general driving population was 1.9% [5]. This detection
rate was higher in seriously injured drivers (2.3–12.6%). The World Health Organization
(WHO) has estimated that over 39,600 traffic deaths were caused by DUID in 2013 [4].
Of these deaths, 14% were attributed to the use of cocaine. These numbers show that it
is paramount to tackle the DUID issue to improve road safety. A potential solution is to
perform more roadside tests to identify and block DUID.

The standard process of illicit drug detection in OF consists of two steps [6]. First, a
presumptive test is performed on-site. If the results of this test are positive, they need to
be confirmed in the laboratory using techniques such as gas chromatography or liquid
chromatography coupled to mass spectrometry (GC- or LC-MS). For presumptive tests,
lateral flow immunoassays (LFAs) are currently the gold standard even though they might
exhibit some drawbacks as follows: (i) cross-reactivity with similar drugs; (ii) lack of
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specificity; (iii) time consuming (>5 min); (iv) high-cost; and (v) short shelf lives due to the
use of bioreceptors [7,8].

This work aims to tackle the identified issues related to the detection of cocaine in
OF by the development of a rapid, affordable, and sensitive sensing method based on
electrochemical sensors. The workflow of the sensing method is presented in Figure 1. For
the first time, the OF matrix effects on the electrochemical sensing of cocaine are deeply
explored by using screen-printed electrodes (SPE). First, the electrochemical behavior of
cocaine in buffer solution is investigated by square-wave adsorptive stripping voltammetry
(SWAdSV) which adsorption is enabled by the use of a surfactant. Second, the interference
of endogenous compounds in OF and cutting agents and adulterants is studied. Interest-
ingly, the electrochemical signal for cocaine is shown to be partially suppressed by the
biofouling properties of albumin and most probably other proteins present in the OF matrix.
Hence, strategies to mitigate these biofouling properties are explored. Subsequently, two
sampling methods for OF, expectoration and the use of a commercial OF collection device
(i.e., the Intercept i2), are investigated. Finally, the developed methodology is used to
analyze authentic OF spiked with cocaine.
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Figure 1. Workflow of the electrochemical sensing method for cocaine in OF. (1) OF collection via 
expectoration or using the Intercept i2 OF collection device, (2) OF fortification with cocaine, (3) 
dilution of the OF sample in buffer, (4) deposition of the sample on the electrode, and (5) SWAdSV 
test and analysis. OF = oral fluid; SPE = screen-printed electrode; SWAdSV = square-wave adsorp-
tive stripping voltammetry. 

2. Materials and Methods 
2.1. Materials 

Standards of cocaine∙HCl were purchased from Chiron AS, Norway. Analytical 
grade salts of potassium chloride, potassium phosphate, sodium phosphate, sodium bo-
rate, sodium acetate, potassium hydroxide and sodium hydroxide were purchased from 
Sigma-Aldrich (Overijse, Belgium). Sodium dodecyl sulphate (SDS) was purchased from 
Sigma-Aldrich (Overijse, Belgium). Intercept i2 (OraSure Technologies) oral fluid collec-
tion devices were purchased from Qarad (Geel, Belgium). 

Figure 1. Workflow of the electrochemical sensing method for cocaine in OF. (1) OF collection
via expectoration or using the Intercept i2 OF collection device, (2) OF fortification with cocaine,
(3) dilution of the OF sample in buffer, (4) deposition of the sample on the electrode, and (5) SWAdSV
test and analysis. OF = oral fluid; SPE = screen-printed electrode; SWAdSV = square-wave adsorptive
stripping voltammetry.

2. Materials and Methods
2.1. Materials

Standards of cocaine·HCl were purchased from Chiron AS, Norway. Analytical grade
salts of potassium chloride, potassium phosphate, sodium phosphate, sodium borate,
sodium acetate, potassium hydroxide and sodium hydroxide were purchased from Sigma-
Aldrich (Overijse, Belgium). Sodium dodecyl sulphate (SDS) was purchased from Sigma-
Aldrich (Overijse, Belgium). Intercept i2 (OraSure Technologies) oral fluid collection devices
were purchased from Qarad (Geel, Belgium).

All solutions were prepared in 18.2 MΩ cm−1 doubly deionized water (Milli-Q
water systems, Merck Millipore, Germany). The pH was measured using a pH-meter
(914 pH/Conductometer, 2.914.0020, Metrohm, Switzerland).
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2.2. Methods

Electrochemical measurements were performed using a MultiPalmSens 4 (PalmSens,
Houten, The Netherlands), a MultiEmstat3 (PalmSens, Houten, The Netherlands), or a
PalmSens4 (PalmSens, Houten, The Netherlands) combined with a MUX8-R2 multiplexer
(PalmSens, Houten, The Netherlands) controlled by PSTrace/MultiTrace software. Unmod-
ified Italsens IS-C SPE (PalmSens, Houten, The Netherlands) were used for all experiments.
The IS-C SPE contains a carbon working electrode (Ø = 3 mm), a carbon counter electrode,
and a silver reference electrode. All potentials reported in this work are versus Ag pseu-
doreference electrode. Square wave voltammetric (SWV) measurements were performed in
Britton–Robinson buffer with 0.1 M KCl by depositing 100 µL of the sample solution on
the SPE. The samples were allowed to interact with the electrode surface for five minutes
before the measurements were started. Instrumental parameters were: 60 mV amplitude;
25 Hz frequency; 5 mV potential step. All SWVs obtained were baseline corrected using a
mathematical algorithm “moving average” (peak width = 1) in PSTrace software to improve
the resolution of the peaks over the background.

2.3. Cocaine Detection in Oral Fluid

OF samples were collected from healthy volunteers from the research group immedi-
ately before analysis. Samples were collected at least 2 h after food consumption or taking
any medication. OF collection was performed in two manners: (i) by expectoration in a
3 mL testing tube, or (ii) by using an Intercept i2 oral fluid collection device (OraSure Tech-
nologies). The OF samples were diluted in Britton–Robinson buffer solution (pH 10, unless
specified otherwise) containing SDS at the desired dilution factor before electrochemical
interrogation.

3. Results and Discussion
3.1. Analytical Characterization of Cocaine in Buffer Solution

In the first step, the electrochemical behavior of cocaine in buffer solution (pH 9) was
studied. As our group had previously shown that the use of the surfactant SDS can enhance
the cocaine signal, SDS was added to the buffer solution (0.075 mg mL−1) [9]. Thus, a
cocaine oxidation peak was observed around +0.85 V. The performance of the detection
method was assessed by executing a calibration curve (Ip (µA) = 1.41 × ccocaine (µM) − 0.88)
with concentrations in the range from 0.1 to 10 µM (Figure 2). While the limit of detection
(LOD) of 1.0 µM is not adequate for roadside drug testing, it is similar to LODs reported
for the direct electrochemical detection of cocaine using SWV by other authors [10,11].
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3.2. Study of the OF Matrix Effects

Before the electrochemical method was tested in OF, the influence of several com-
pounds present in OF on the cocaine signal was investigated. Whole saliva is a complex
heterogeneous mixture containing proteins, electrolytes and small organic compounds
and is rich in antioxidants [12,13]. The effect of the anti-oxidants uric acid (200 µM) and
ascorbate (vitamin C, 5 µM), as well as that of urea (4.5 mM) in a binary mixture with 5 µM
cocaine in a buffer solution containing 0.075 mg mL−1 SDS was evaluated using SWAdSV.
The concentrations of the potential interferents were selected according to the regular physi-
ological levels found in OF [14]. The voltammograms showed that ascorbate and urea were
not electroactive under the experimental conditions (Figure 3A). The voltammogram of
uric acid showed an oxidation peak at +0.12 V, with a shoulder around +0.3 V. The presence
of all three compounds resulted in a decrease in peak current for cocaine as compared to
a 5 µM cocaine reference sample. This decrease was highest for urea, with a 21% loss in
peak current.
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Figure 3. Investigation of the OF matrix effects on 10 µM cocaine under optimal conditions: (A) Effect
of constituents: ascorbate, urea, uric acid and (B) effect of albumin concentration. Effect of the pH
on the oxidation signal for 10 µM cocaine in the presence of 0.2 mg mL−1 albumin with (C) pH 9,
(D) pH 10, and (E) pH 11. Black line: 10 µM cocaine, blue line: 10 µM cocaine in the presence of
0.2 mg mL−1 albumin. All tests were executed in BR buffer containing 0.075 mg mL−1 SDS.

Proteins are known to have biofouling effects on electrodes due to non-specific ad-
sorption on the surface of the biochemical sensor [15]. This can result in the decrease in
performance of the biosensor and loss in sensitivity and specificity for the target analyte.
As saliva can contain over 1000 different peptides and proteins, the detection of cocaine
in OF is expected to be hindered by biofouling effects [16]. To investigate this biofouling
phenomenon, albumin was selected as a model protein because it is the most abundant
protein in biofluids [17]. First, the effect of different albumin concentrations (0, 0.1, 0.2,
0.5, 1, 2.5, and 3 mg mL−1) on the electrochemical signal for 10 µM cocaine was evaluated
(Figure 3B). Albumin was shown to be electroactive, with an oxidation peak at +0.54 V.
Interestingly, the albumin peak decreased at concentrations above 2.5 mg mL−1. As ex-
pected, the cocaine peak current decreased with an increase in albumin concentration.
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Unfortunately, at an albumin concentration of 3 mg mL−1, the cocaine peak was completely
suppressed. However, average levels of albumin in OF are ca. 0.9 mg mL−1 [18], which
should still allow for the electrochemical detection of cocaine.

In a strategy to minimize the biofouling effects, the effect of pH was studied (Figure 3C–E).
As the pKa values of the α-amino hydrogen of amino acids are in the range 8.72–10.70 [19],
it was predicted that at pH 11 albumin would be negatively charged. Therefore, a repulsion
by the negatively charged SDS moieties is expected. The SDS/SPE was tested with 10 µM
cocaine and a binary mixture of 10 µM cocaine with 0.2 mg mL−1 albumin in buffer solu-
tions of pH 9, pH 10, and pH 11. The albumin peak potential shifted towards less positive
values with increased pH, as its deprotonated form is easier to oxidize. While the decrease
in the electrochemical signal was 1.6-fold at pH 9, it was only 1.2-fold for pH 10 and pH 11.
This indicated that less albumin was adsorbed at the electrode surface as predicted. It is
important to note that the concentration of albumin and other proteins in OF might vary
between individuals. To obtain a more reproducible method of cocaine detection, it is there-
fore important to minimize the biofouling effects of proteins. Hence, pH 10 was selected as
a compromise situation between reduced biofouling effects of albumin compared to buffer
pH 9, and a higher peak current compared to buffer pH 11.

3.3. Investigation of Two OF Collection Methods

Direct electrochemical measurement in OF is possible, as OF contains electrolytes and
is ionically conductive [20]. However, since the OF composition and pH of individuals may
vary, it is preferable to add a buffer solution in order to control the chemical composition
and pH of the solution. Dilution of the buffer solution has the disadvantage that the
concentration of the illicit drug in the total solution decreases, but it can cope with strong
interferences. A dilution factor of 1:5 (OF:buffer) was selected as a compromise between
the decrease in cocaine concentration, decrease in background effects, and stability of
sample pH.

As OF collection by expectoration is slow and unpleasant for donors, and also suffers
from a lack of hygiene, OF collection by a commercial device was explored. The Intercept
i2 was used as a model device. The Intercept i2 works by placing it under the tongue of the
donor until the indicator turns blue and the desired amount of is collected. According to
the manufacturer, this device collects 1 mL of in an average time of 3–4 min [21]. To test
the performance of the devices, several experiments were carried out to determine (i) the
time of OF collection, (ii) the amount of OF collected, (iii) the amount of OF extracted, and
(iv) the recovery of cocaine. First, the amount of collected and the collection time were
examined. The OF from two individuals was collected three times using the Intercept i2.
Before and immediately after collection, the devices were weighed. On average, 1.2 g of
OF was collected. Assuming a density of 1 g mL−1, this amounts to approximately 1.2 mL
of OF, which is more than the manufacturer claimed. The average collection time was
just over 1 min, which is substantially shorter than the waiting time mentioned by the
manufacturer.

Three different approaches were explored for the recovery of cocaine and extraction of
OF from the Intercept devices. OF was collected by expectoration and spiked with 10 µM
cocaine. A small amount of spiked OF was put aside for comparison, while the remaining
sample was collected with the Intercept device. The recovery of cocaine was examined
by comparing the voltammograms obtained from the recovered samples with a reference
voltammogram from the OF that was set aside (Figure 4A–C). In these experiments, the
recovered fluids were diluted with 2 mL of buffer solution containing 0.075 mg mL−1 SDS
(dilution factor 1:2). It was assumed that 1 mL of OF was collected with the Intercept
devices, as this is the amount stated by the manufacturer and what laboratories work
within their analyses. In the first cocaine recovery approach, the preservation liquid in the
Intercept i2 collection vial was removed and replaced with the buffer solution. After the
OF was collected with the Intercept device, the collection pad was placed in the collection
vial. The vial was vigorously shaken, and then left to rest for 5 min so that diffusion
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could take place, before the liquids in the collection vial were collected and analyzed
with SWV. After recovery from the Intercept device, the peak currents for cocaine and
albumin decreased 2.4-fold and 2.1-fold, respectively (Figure 4A). This indicated that the
OF and cocaine recovery from the device was not complete. The second approach of
recovery consisted of centrifugation at 3000 rpm for 5 min, as this is recommended in
the manual by the manufacturer. After centrifugation, buffer solution was added to the
recovered fluids. The voltammogram of the recovered cocaine showed a more intense peak
than the reference voltammogram (Figure 4B). This could have been due to evaporation
of the sample during the manipulation leading to an error in comparison to spiked OF.
Recovery by centrifugation has the disadvantage that it makes the total procedure for
roadside testing more difficult and more expensive. Therefore, as an alternative approach,
the recovery was performed by pressing the collection pad using a syringe. To do this,
the Intercept i2 collection device was broken open and the collection pad was removed.
The recovered fluids were collected in a tube and mixed with the buffer solution. The
voltammograms showed a slight decrease (9%) in peak current for cocaine (Figure 4C).
The peak current for albumin decreased with 26%, indicating that albumin might be more
retained at the collection pad than cocaine. As the change in peak current for cocaine was
smallest when the recovery was performed using a syringe, this strategy was chosen as an
optimal procedure for cocaine recovery. The recovery of cocaine in this approach was tested
using three Intercept devices (Figure 4D–F). On average, 57.8 ± 4.8%) of the collected OF
was recovered. For all three collection devices, the peak current of the recovered cocaine
was higher than the peak current for cocaine in the reference sample. The increase in peak
current was largest for device 1 (1.5-fold increase), which was also the device from which
most oral fluid was recovered.
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Figure 4. Recovery of 10 µM cocaine from the Intercept i2 collection device by (A) vigorously shaking,
(B) centrifugation for 5 min at 3000 rpm, and (C) removing the collection pad from the device and
pressing it using a syringe. Recovery of 10 µM cocaine from three Intercept i2 devices using the
syringe method for (D) device 1, (E) device 2, and (F) device 3. Black line: 10 µM cocaine in OF
for reference, red line: recovery of 10 µM cocaine from the Intercept i2 device. All SWVs for the
recovery study were performed with 3-fold diluted OF in Britton–Robinson buffer pH 10 containing
0.075 mg mL−1.

4. Conclusions

In this work, a rapid, inexpensive, and sensitive electrochemical method for the
detection of cocaine in OF was explored. In buffer solution, the LOD for cocaine detection
was found to be 1 µM. For the first time, the interference of endogenous compounds present
in the OF matrix on the electrochemical detection of cocaine was studied. Albumin showed
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to have fouling effects on the electrode, causing a decrease in the sensitivity. The antifouling
effects were successfully reduced by adjusting the pH of the buffer solution from pH 9 to 10.
A sampling method for the direct measurement in OF was developed and integrated with
the SDS/SPE system, as a first step towards the application of electrochemical methods for
illicit drugs detection in OF in the field.

Author Contributions: Conceptualization, F.J. and M.P.; methodology, F.J.; validation, F.J.; formal
analysis, F.J.; investigation, F.J. and M.P.; resources, K.D.W.; data curation, F.J. and M.P.; writing—
original draft preparation, F.J.; writing—review and editing, F.J., M.P. and K.D.W.; visualization, F.J.
and M.P.; supervision, M.P. and K.D.W.; project administration, K.D.W.; funding acquisition, K.D.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the FWO NRF Bilateral Scientific Cooperation South Africa
(grant number G0F9820N) in the project Electrochemistry and nanostructured electrocatalysts for
tackling substance abuse. The authors also acknowledge financial support from the University of
Antwerp (IOF).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Drug Report 2021; United Nations Office on Drugs and Crime (UNODC): Vienna, Austria, 2021.
2. World Drug Report 2020; United Nations Office on Drugs and Crime (UNODC): Vienna, Austria, 2020.
3. European Drug Report 2020: Trends and Developments; European Monitoring Centre for Drugs and Drug Addiction (EMCDDA):

Lisbon, Portugal, 2020.
4. Drug Use and Road Safety; World Health Organization (WHO): Geneva, Switzerland, 2016.
5. Schulze, H.; Schumacher, M.; Urmeew, R.; Auerbach, K.; Alvarez, J.; Bernhoft, I.M.; de Gier, H.; Hagenzieker, M.; Houwing,

S.; Knoche, A.; et al. Driving Under the Influence of Drugs, Alcohol and Medicines in Europe—Findings from the DRUID Project;
Publications Office of the European Union: Luxembourg, 2012.

6. Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG). Scientific Working Group for the Analysis of Seized Drugs
(SWGDRUG) Recommendations. Available online: https://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%
20Version%208_FINAL_ForPosting_092919.pdf (accessed on 24 June 2021).

7. Ahmed, S.R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A.R. Recent Biosensing Advances in the Rapid Detection
of Illicit Drugs. TrAC Trends Anal. Chem. 2020, 131, 116006. [CrossRef]

8. Posthuma-Trumpie, G.A.; Korf, J.; Van Amerongen, A. Lateral Flow (Immuno)Assay: Its Strengths, Weaknesses, Opportunities
and Threats. A Literature Survey. Anal. Bioanal. Chem. 2009, 393, 569–582. [CrossRef] [PubMed]

9. Parrilla, M.; Joosten, F.; De Wael, K. Enhanced Electrochemical Detection of Illicit Drugs in Oral Fluid by the Use of Surfactant-
Mediated Solution. Sens. Actuators B Chem. 2021, 348, 130659. [CrossRef]

10. De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K. Electrochemical Fingerprint of Street Samples
for Fast On-Site Screening of Cocaine in Seized Drug Powders. Chem. Sci. 2016, 7, 2364–2370. [CrossRef] [PubMed]

11. Rocha, R.G.; Stefano, J.S.; Arantes, I.V.S.; Ribeiro, M.M.A.C.; Santana, M.H.P.; Richter, E.M.; Munoz, R.A.A. Simple Strategy
for Selective Determination of Levamisole in Seized Cocaine and Pharmaceutical Samples Using Disposable Screen-Printed
Electrodes. Electroanalysis 2019, 31, 153–159. [CrossRef]

12. Del Vigna de Almeida, P.; Trindade Grégio, A.M.; Naval Machado, M.Â.; Adilson Soares de Lima, A.; Reis Azevedo, L. Saliva
Composition and Functions: A Comprehensive Review. J. Contemp. Dent. Pract. 2008, 9, 72–80.

13. Battino, M.; Ferreiro, M.S.; Gallardo, I.; Newman, H.N.; Bullon, P. The Antioxidant Capacity of Saliva. J. Clin. Periodontol. 2002, 29,
189–194. [CrossRef] [PubMed]

14. Rehak, N.N.; Cecco, S.A.; Csako, G. Biochemical Composition and Electrolyte Balance of “unstimulated” Whole Human Saliva.
Clin. Chem. Lab. Med. 2000, 38, 335–343. [CrossRef] [PubMed]

15. Russo, M.J.; Han, M.; Desroches, P.E.; Manasa, C.S.; Dennaoui, J.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Guijt, R.M.; Greene,
G.W.; et al. Antifouling Strategies for Electrochemical Biosensing: Mechanisms and Performance toward Point of Care Based
Diagnostic Applications. ACS Sens. 2021, 6, 1482–1507. [CrossRef] [PubMed]

16. Inzitari, R.; Cabras, T.; Rossetti, D.V.; Fanali, C.; Vitali, A.; Pellegrini, M.; Paludetti, G.; Manni, A.; Giardina, B.; Messana, I.; et al.
Detection in Human Saliva of Different Statherin and P-B Fragments and Derivatives. Proteomics 2006, 6, 6370–6379. [CrossRef]
[PubMed]

https://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%20Version%208_FINAL_ForPosting_092919.pdf
https://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%20Version%208_FINAL_ForPosting_092919.pdf
http://doi.org/10.1016/j.trac.2020.116006
http://doi.org/10.1007/s00216-008-2287-2
http://www.ncbi.nlm.nih.gov/pubmed/18696055
http://doi.org/10.1016/j.snb.2021.130659
http://doi.org/10.1039/C5SC04309C
http://www.ncbi.nlm.nih.gov/pubmed/29997780
http://doi.org/10.1002/elan.201800716
http://doi.org/10.1034/j.1600-051X.2002.290301x.x
http://www.ncbi.nlm.nih.gov/pubmed/11940135
http://doi.org/10.1515/CCLM.2000.049
http://www.ncbi.nlm.nih.gov/pubmed/10928655
http://doi.org/10.1021/acssensors.1c00390
http://www.ncbi.nlm.nih.gov/pubmed/33765383
http://doi.org/10.1002/pmic.200600395
http://www.ncbi.nlm.nih.gov/pubmed/17080484


Eng. Proc. 2022, 16, 13 8 of 8

17. Deutsch, O.; Fleissig, Y.; Zaks, B.; Krief, G.; Aframian, D.J.; Palmon, A. An Approach to Remove Alpha Amylase for Proteomic
Analysis of Low Abundance Biomarkers in Human Saliva. Electrophoresis 2008, 29, 4150–4157. [CrossRef] [PubMed]

18. Shaila, M.; Pai, G.P.; Shetty, P. Salivary Protein Concentration, Flow Rate, Buffer Capacity and PH Estimation: A Comparative
Study among Young and Elderly Subjects, Both Normal and with Gingivitis and Periodontitis. J. Indian Soc. Periodontol. 2013, 17,
42–46. [CrossRef] [PubMed]

19. Vanderbilt University. Amino Acids. Available online: https://www.vanderbilt.edu/AnS/Chemistry/Rizzo/stuff/AA/
AminoAcids.html (accessed on 25 June 2021).

20. Aframian, D.; Davidowitz, T.; Benoliel, R. The Distribution of Oral Mucosal PH Values in Healthy Saliva Secretors. Oral Dis. 2006,
12, 420–423. [CrossRef] [PubMed]

21. OraSure Technologies. Oral Fluid Drug Testing. Available online: https://www.orasure.com/products-substance-abuse/i2.html
(accessed on 25 June 2021).

http://doi.org/10.1002/elps.200800207
http://www.ncbi.nlm.nih.gov/pubmed/18937257
http://doi.org/10.4103/0972-124X.107473
http://www.ncbi.nlm.nih.gov/pubmed/23633771
https://www.vanderbilt.edu/AnS/Chemistry/Rizzo/stuff/AA/AminoAcids.html
https://www.vanderbilt.edu/AnS/Chemistry/Rizzo/stuff/AA/AminoAcids.html
http://doi.org/10.1111/j.1601-0825.2005.01217.x
http://www.ncbi.nlm.nih.gov/pubmed/16792729
https://www.orasure.com/products-substance-abuse/i2.html

	Introduction 
	Materials and Methods 
	Materials 
	Methods 
	Cocaine Detection in Oral Fluid 

	Results and Discussion 
	Analytical Characterization of Cocaine in Buffer Solution 
	Study of the OF Matrix Effects 
	Investigation of Two OF Collection Methods 

	Conclusions 
	References

