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Abstract: A simple to realize optical fiber sensor specific for uranium(VI) detection in water is
reported to demonstrate the sensing approach’s capability to determine uranyl (UO2

2+) in water
solution in the ppb range. The proposed sensor was obtained by combining a specific receptor layer
for uranium to a gold thin film at which the surface plasmon resonance (SPR) phenomenon takes
place via optical fiber. In particular, an SPR D-shaped plastic optical fiber (POF) probe was used
for signal transduction. The proposed optical-chemical sensing method is attractive because, in
principle, it can be applied directly in the field, giving an analytical response in a fast and not overly
expensive manner.

Keywords: chemical sensors; surface plasmon resonance (SPR); plastic optical fibers (POFs); uranium;
optical fiber sensors

1. Introduction

The concentration of uranium in non-contaminated environmental waters is very
low, often lower than 1 ppb in freshwater and around 3 ppb in sea water [1], so it is not
of environmental or health concern. However, it can be much higher at contaminated
sites. In particular, the by-product of the uranium enrichment process, depleted uranium,
has been applied as armor-piercing ammunition in several international military conflicts
because of its high density, hardness, and pyrophoric properties [2]. The testing and use
of such ammunitions have led to the release of depleted uranium into the environment at
several locations worldwide [3]. In this situation, the use of marker-free sensing devices for
monitoring the uranium content of natural and contaminated waters can be of particular
interest. Even if several analytical methods are currently available for the determination
of uranium at the very low concentrations present in environmental waters, the proposed
sensing method is attractive because, in principle, it can be applied on-site directly, giving
an analytical response in a faster and not overly expensive manner.

In the present investigation, an optical fiber sensor for uranyl detection in water, based
on surface plasmon resonance (SPR) transduction, is proposed. More specifically, an SPR
D-shaped plastic optical fiber (POF) [4] has been covered by a specific receptor monolayer.
This optical platform was developed by our research group more than ten years ago, and
presents advantages in terms of low cost and small dimensions with respect to the classical
Kretschman configuration [4]. It has already been applied to the detection of many different
molecular species [5]. In some cases, it has been applied to detect different metal ions, such
as copper(II) [6] and iron(III) [7]. In [6,7], strong and selective ligands for these metal ions
were fixed at the SPR interface as a monolayer.
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In this work, for the uranium(VI) detection, 11-mercaptoundecylphosphonic acid
(MUPA) was used as a receptor monolayer, which is commercially available and possesses
a sulfide terminal group that can be easily fixed to the gold surface of the SPR POF probe.
In a previous research, the same receptor has been demonstrated to be suitable for a uranyl
sensor with electrochemical transduction [8]. As a preliminary investigation, experimental
results have been reported for a uranyl sensor based on the SPR POF platform combined
with MUPA.

2. Materials and Methods
2.1. Reagents

For this study, 11-mercaptoundecylphosphonic acid (MUPA) was purchased from
Sigma-Aldrich, as was uranyl (UO2

2+) standard (uranyl nitrate, standard for ICPOES,
1000 mg L−1). The lower concentration standards were obtained daily by dilution with
Milli-Q water. Other reagents were always of the purest grade available and were used
as received.

2.2. Instruments and Experimental Setup

The same experimental setup already used in [4,6,7] was employed here. The white
light source (Halogen lamp HL-2000-LL manufactured by Ocean Optics, Dunedin, FL,
USA) presents an emission range from 360 nm to 1700 nm, whereas the spectrometer
FLAME-S-VIS-NIR-ES (manufactured by Ocean Optics, Dunedin, FL, USA) has a detection
range from 350 nm to 1023 nm. The transmission spectra were displayed by Spectra Suite
software (Ocean Optics, Dunedin, FL, USA). The spectra were normalized by the MATLAB
software (MathWorks, Natick, MA, USA) using, as reference for normalization, the spec-
trum acquired with air as a surrounding medium over the gold surface (D-POF-bare) or
MUPA-derivatized gold surface (D-POF-MUPA). All measurements were performed at
25 ◦C.

2.3. SPR-POF Platforms Preparation

The SPR platform was realized by exploiting a plastic optical fiber (POF) with a core
of poly-methylmethacrylate (PMMA) of 980 µm and a cladding of fluorinated polymer of
10 µm (a total diameter of 1 mm), embedded in a resin support and erased as previously
described [7] to produce a D-shaped region via polishing. The multilayer interface was
realized as described for similar sensors. First, a Microposit S1813 photoresist, with a
refractive index higher than that of the POF core, was deposited on the exposed POF
by spinning at 6000 rpm for 60 s and polymerizing. Then, a gold film 60 nm thick was
sputtered on the photoresist layer by a Bal-Tec SCD 500 machine.

The platforms produced in this way are indicated as SPR-D-POF-bare. The procedure
is reported schematically in Figure 1.

2.4. MUPA Deposition

The selected ligand for uranium(VI) (i.e., MUPA) was immobilized as a monolayer on
the gold surface, taking advantage of the presence of the sulfide group terminal group in
MUPA according to the procedure previously described for an electrochemical sensor of
uranyl [8]. The gold film was contacted overnight with a solution containing 2.5 mM MUPA
in water. The modified POF platform was then abundantly rinsed with ethanol and Milli-Q
water before use. The sensors produced in this way are indicated as SPR-D-POF-MUPA.

2.5. Measurements

About 50 µL of the aqueous sample solution were dropped over the flat sensing
region and incubated at room temperature for ten minutes. The spectrum was registered
and normalized, and the minimum transmission wavelength (the resonance wavelength)
was evaluated.
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Figure 1. Preparation of the SPR platform based on D-shaped POF.

The quantity of analytical interest is the resonance wavelength variations with respect
to the resonance wavelength of the blank solution (∆λris). The function ∆λris versus
uranyl concentration (c) were fitted by the Hill equation [9], using the software OriginPro
(Origin Lab. Corp., Northampton, MA, USA). When the measured signal (∆λris (c)) is
directly proportional to the concentration of the analyte adsorbed on the layer in contact
with the gold surface, the response of the sensor is as follows:

∆λris (c) = λc − λ0 = ∆λmax · (c/(K + c)) (1)

The symbols λc and λ0 indicate the resonance wavelength at 0 and c uranyl concentra-
tion, respectively. ∆λmax is the value of the maximum resonance wavelength variation at
increasing concentration of uranyl (c) (i.e., the value at saturation when c is much lower
than K). Notice that according to the Langmuir adsorption model, K corresponds to the
reciprocal of the affinity constant of the ion UO2

2+ for MUPA forming the thin receptor
layer at the surface of gold. It can be evaluated, together with ∆λmax, from Equation (1).
Conversely, Equation (1) can be used as a standardization curve once the parameters
are known.

3. Results

The optical sensitivity (bulk sensitivity) of the platforms was determined by measuring
λris at the bare platform in dielectrics with different refractive indexes, as previously
reported [4]. Water-glycerol solutions were used for this experiment, obtaining a sensitivity
of 2500 nm RIU−1 in the wavelength range considered.

The presence of the receptor layer on the gold surface was demonstrated by the SPR
method by comparing the transmission spectrum of the bare platform (SPR-D-POF-bare)
in water with that of the MUPA-derivatized platform (SPR-D-POF-MUPA) in water. An
example is reported in Figure 2, in which it is seen that the spectrum of SPR-D-POF-MUPA
normalized on the spectrum in air is similar to that of the SPR-D-POF-bare normalized
on the spectrum in air, but with the resonance wavelength shifted to higher values. This
clearly indicates the presence of some receptor molecules at the gold surface producing a
refractive index higher than that of pure water.
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Figure 2. Transmission spectra of SPR-D-POF-bare and SPR-D-POF-MUPA in water normalized to
the spectrum of the corresponding platform in air.

The spectra of SPR-D-POF-MUPA in 0.1 M NaNO3 solution containing different
concentrations of uranium(VI), normalized on the corresponding spectra in air, are reported
in Figure 3. As shown in Figure 3, when the analyte concentration increases, the resonance
wavelength increases and shifts to the right; in fact, the refractive index in contact with the
gold nanofilm increases with the uranium concentration.
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Figure 3. SPR spectra obtained at different uranium concentrations (in mg L−1 (ppm)).

4. Conclusions

The developed SPR sensor for uranium(VI) is based on an optical platform that is
fast and easy to prepare, including the deposition of the receptor, a monolayer of a well-
known commercially available complexing agent for uranyl. When deposited on the gold
surface, its affinity for uranyl is sufficiently high to reach a LOD of a few µg L−1, suitable
for detection in slightly contaminated waters. However, this limit could be improved by
optimizing the procedure of the monolayer deposition in order to have a higher density of
complexing sites at the sensor surface or by selecting a stronger ligand.
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