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Abstract: This study reports a design of an e-textile microstrip patch antenna for wireless sensing of
the moisture content of a fabric substrate. The microstrip patch antenna with a proximity coupled
feeding line is implemented on two layers of polyester felt substrate. The performance of the antennas
in terms of the reflection coefficient S11 is measured, indicating that the resonance frequency of the
antenna shifts to a lower frequency for moisture contents ranging from 20% to 100%. This is the result
of a change in the dielectric constant and the loss tangent of the substrate material caused by the
presence of moisture. The proposed moisture sensor exhibits high linearity and higher sensitivity
than state-of-the-art textile-based antenna sensors, and is suitable for a variety of applications such as
sweat and wound monitoring.
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1. Introduction

There has been an increased interest in recent years in designing antenna-based
sensors, due to their simple structure, low-cost, battery-free, and wire-free operation [1].
The majority of wireless sensors use the resonant technique to sense a variety of materials
from liquid characterisation to temperature sensing, and even crack and strain monitoring.
Moisture causes the antenna to detune and introduces losses into the textile antenna. As
water has a much higher and more stable dielectric constant, it can significantly change
the dielectric properties of the fabric leading to a shift in the antenna resonance frequency.
By monitoring the resonant frequency of the antenna, which changes as a function of the
water content absorbed by the fabric substrate, a wireless sensor can be realized. Such a
moisture sensor can be used for various applications such as for measuring water drops or
sweat and fluid loss in wound care.

In Refs. [2,3], a planar inverted F-antenna (PIFA) was implemented by embroidering
conductive yarn on a denim textile for moisture sensing. However, non-linearity in the
antenna response meant that the sensor did not provide accurate results. Furthermore, the
patch was shorted at the end, which required the destruction of the textile substrate. As a
result, the antenna was hard to fabricate on textile materials.

This study investigates the performance of microstrip patch antennas in terms of vari-
ation in the reflection coefficient in response to different moisture contents. The microstrip
patch antennas with proximity coupled feeding lines were implemented in two-layer felt
substrates, and the dimensions of the antenna were tuned to resonate at 2.45 GHz. The
antennas were tested with different moisture contents and the results showed that the reso-
nance frequency of the antenna shifted to a lower frequency, demonstrating its suitability
to be used as a moisture sensor. Compared with alternative textile antenna designs, the
proposed antenna designs are more suitable for integration within textiles, and can be
easily fabricated.
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2. Antenna Design

The geometry of the proximity coupled microstrip patch antenna is shown in Figure 1a.
The length and width of the patch are 52 mm and 46 mm, respectively. The patch length
can be optimised to tune the antenna’s resonance frequency, i.e., increasing the length of
the patch will shift the resonance frequency to a lower band. A 50 Ω microstrip feed line,
4.15 mm wide and 31 mm long, was designed and symmetrically positioned under the
patch on top of substrate 2. Moreover, a 1-mm-thick polyester substrate with a dielectric
constant of (εr) of 1.2 and loss tangent (δ) of 0.02 at 2.45 GHz was used to simulate the
antenna in CST Microwave Studio [4] in two configurations: (i) polyimide laminates [5],
and (ii) copper fabric [6], used for the patch, the microstrip, and the ground plane.
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The simulated and measured reflection coefficients of the antennas are shown in
Figure 1b, indicating that both antennas were well matched (S11 > –10 dB) at 2.45 GHz.
There was a slight shift in the measured frequency response of the fabric antenna, which
was caused by cutting the patch a little short. Figure 1c–e shows the radiation pattern of
the patch in yz-plane, xy-plane and xz-plane, respectively, and it can be observed that both
antennas had a gain of about 4.98 dB with a radiation efficiency of 49.5% at 2.45 GHz.

3. Measurements and Results

The antenna (Figure 1a) was fabricated. In the first prototype, a copper laminate was
used for the patch, the microstrip, and the ground plane, while a copper fabric was used in
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the second prototype, realizing a fully textile, breathable, and flexible antenna, as shown
in Figure 2a. A repositionable adhesive pray [7] was used to attach the coppers to the
substrates. The antenna designs (Figure 2a) were baked in the oven for about 5 hours at
105 ◦C to dehumidify the substrate, and then the reflection coefficient measurements were
performed with a calibrated network analyser, as shown in Figure 2b. Figure 2c,d shows a
shift in the resonance frequency as the antenna substrate gradually absorbs more water,
where 0% refers to the dry antenna. The amount of the water content absorbed by the fabric
was calculated as:

Moisture content (%) =
mwet − mdry

mdry
× 100 (1)

where mwet and mdry are referring to the wet and dry weight of the antenna. The results
show that the resonance frequency of both antennas shifted to a lower frequency when the
different moisture content was applied. It can be observed that the maximum water content
for the fabric antenna reached 77%. This was due to the amount of water lost from the
substrate through the ground plane, as the fabric was not water-resistant compared to the
copper antenna. At the dry state, both antennas resonated at the 2.45 GHz ISM band. On the
other hand, when the antennas were fully wet, the antenna made of polyimide resonated
at 1.34 GHz, while the antenna made of ohmic sheet resonated at 1.45 GHz. The shifting
in the resonance frequency of the antennas determined the moisture content absorbed
by the antenna substrate, and hence the sensor response. Comparing with alternative
textile antennas, the proposed patch antenna is more suitable for textile applications as
it has a more linear response and can be easily fabricated. The results indicated that the
fully textile antenna had a higher sensitivity value of 0.532% compared to the copper
antenna and the antenna proposed in Refs. [2,3], which had sensitivity values of 0.443%
and 0.463%, respectively.
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4. Conclusions

Two patch antennas operating at 2.45 GHz have been demonstrated in this paper,
enabling low-cost moisture sensing. The resonance frequency of the antenna shifts to a
lower frequency band as the antenna absorbs more moisture. This shift in the resonance
frequency of the antenna indicates the amount of moisture absorbed by the fabric. It
was observed that the full fabric patch antenna design was more sensitive compared to
the polyimide antenna. The antennas are flexible, low-cost, easy to fabricate, and can be
seamlessly integrated with clothing for on-body applications. The objective of our future
work is to investigate different types of fabrics which are more absorbent, such as escalade,
cotton and linen.
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