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Abstract: Our work consists of designing a dual-band planar antenna based on meta-materials for
5G applications. We propose a design approach consisting of a deposited patch antenna on an FR-4
type monolayer substrate placed above the CSRR cells based on the meta-materials working in
millimeter wave. Thereafter, we will do a parametric study to extract the various parameters that
influence its electromagnetic behavior. The studied and designed antenna aims to be used for 5G
phone applications in the frequency band 3.3–3.8 GHz and Wi-Fi. The design is carried out by CST
Microwave Studio software.

Keywords: design; patch antenna; bi-band antenna; miniature antenna; meta-materials; 5G; Wi-Fi;
CST Microwave Studio

1. Introduction

The commercial use of 5G has arrived to meet the growing demands for low latency,
big capacity, and ubiquitous mobile access, and will play a key role in connecting and
enabling services. 5G must address, in addition to an increase in traffic volume, the
challenge of connecting billions of devices to heterogeneous service needs [1]. 5G networks
are expected to supply a lot of improvements [2].

The antenna is an essential element in 5G networks; however, it always occupies
a higher volume in the communication chain, making it difficult to implement in small
areas. Its miniaturization has become essential for an optimal design. Many antenna
miniaturization techniques exist, and all go through a compromise between size and
performance (bandwidth and/or radiation yield) [3], such as charging by passive elements,
short circuit application, slots insertion, and use of a dielectric substrate of very high
permittivity and meta-materials, etc.

Most materials found in nature (e.g., dielectrics) have positive constitutive param-
eters (ε > 0 and µ > 0). For this reason, they are called doubly positive materials (DPS).
Materials with negative permittivity and positive permeability (ε < 0 and µ > 0) are called
epsilon-negative materials (ENG), whose characteristics are presented by plasmas at certain
frequencies [4]. On the other hand, materials with positive permittivity and negative
permeability (ε > 0 and µ < 0) are known as mu-negative materials (MNG), and ferrites
exhibit this behavior at certain frequencies [5]. Materials that have negative constitutive
parameters (ε < 0 and µ < 0) are called doubly negative materials (DNG), or meta-materials.
Until now, these materials have not been found in nature and they are obtained artificially.
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Meta-materials have attracted great attention in recent years due to their unusual
electromagnetic properties and their ability to guide and control electromagnetic waves
where natural materials cannot [6]. The meta-materials used in the antennas field offer
advantages such as reduction in weight and bulk, which is beneficial for their integration
into electronic systems such as telecommunications systems in general, and telephone
systems for the fifth generation (5G) in particular. In addition, the use of the latter aims to
improve its characteristics in terms of resonance frequency (to have multi-band structures
or rejected bands) and to make them reconfigurable, as well as for improved bandwidth,
gain, directivity, mutual coupling minimization in an antenna array, polarization, and
radiation pattern [7–9].

2. Design of a Patch Antenna for 5G

The geometry of the initial antenna is shown in Figure 1. This structure consists of a
radiating element with length Lp and width Wp, with notches, fed by a microstrip line.
It is deposited on an FR-4 type dielectric substrate with dielectric permittivity εr = 4.3, of
dimensions Ls and Ws and thickness h. The ground plane covers the substrate’s whole
rear face. Table 1 gives the dimensions of the initial antenna with notches using the given
equations in [10–12].
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Figure 1. Geometry of the initial antenna.

Table 1. Dimensions of the initial antenna.

Dimensions Size (mm)

Ls 70.68
Ws 34.9
h 1.595

Lp 19.722
Wp 24
W0 2.5

Figure 2a,b represents, respectively, the return loss, the stationary wave rate VSWR,
and the gain of the initial antenna.
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tenna input is zero. We have also presented the stationary wave rate, which we notice is 
between 1 and 2 in the theoretical frequency band 3.53–3.67 GHz, which shows a good 
impedance match between the antenna and the feed line. The bandwidth is order 3.88%. 
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1.56 mm. For the studied square RAFC, the external slot ring’s external side is equal to (A 
= 4.9 mm), and the internal slot ring’s external side is equal to (B = 4 mm). The two rings 
are concentric and spaced at 0.12 mm. Each ring is 0.33 mm wide, with a cut in the side of 
each ring presenting a gap of g = 0.59 mm.  

  

Figure 2. (a) Return loss. (b) Stationary wave rate. (c) Antenna gain.

Figure 2a shows that the adaptation is well-realized since the return loss S11 attains a
level close to −41.86 dB at the resonant frequency 3.6 GHz, so the reflection at the antenna
input is zero. We have also presented the stationary wave rate, which we notice is between
1 and 2 in the theoretical frequency band 3.53–3.67 GHz, which shows a good impedance
match between the antenna and the feed line. The bandwidth is order 3.88%. The antenna
gain is around 3.567dB at the resonance frequency 3.6 GHz.

Figure 3a–c represents, respectively, the polar radiation patterns, in 2D and 3D, of the
antenna at the resonant frequency 3.6 GHz.
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Figure 3. (a) Radiation pattern in 2D, plan H. (b) Radiation pattern in 2D, plan E. (c) Radiation pattern
in 3D.

We notice that the exhibit antenna has almost omnidirectional radiation in the E-plane
(ϕ = 0◦) and in the H-plane (ϕ = 90◦). These plots are verified on the radiation pattern plot
in 3D.

3. Design of the CSRR Cell for 5G

The two-dimensional periodic structure of a complementary split-ring resonator
(RAFC) is shown in Figure 4. The CSRR (complementary split-ring resonator) is placed
on a lossy FR-4 type substrate characterized by a permittivity of 4.3, with a thickness of
1.56 mm. For the studied square RAFC, the external slot ring’s external side is equal to
(A = 4.9 mm), and the internal slot ring’s external side is equal to (B = 4 mm). The two
rings are concentric and spaced at 0.12 mm. Each ring is 0.33 mm wide, with a cut in the
side of each ring presenting a gap of g = 0.59 mm.
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Figure 5 represents the modulus in dB of the return loss (S11) and transmission
coefficient (S21) of the CSRR cell obtained by CST MWS software.
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Figure 5. Transmission coefficient and return loss of the CSRR cell.

From the presented results in Figure 5, it can be seen that:

- The return loss S11 modulus presents a resonance at 3.602 GHz with a reflection of
−2.28 dB.

- The transmission coefficient S21 modulus goes down to a value of −14.69 dB at the
resonant frequency 3.602 GHz.

4. Design of a Dual-Band Antenna Based on Meta-Materials

Figure 6 presents three proposals for the radiating element of the initial antenna
combined with CSRR cells. We have modified the number of CSRR cells on the radiating
element in order to see their influences on the adaptation, while keeping the other antenna
parameters unchanged.
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Figure 6. (a) Radiating element plus a CSRR cell. (b) Radiating element plus three CSRR cells.
(c) Radiating element plus several CSRR cells.

Figure 7 represents, respectively, the return losses for the three structures proposed
previously.
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The notes that can be extracted from these curves are:
The simulation result for the first structure of a CSRR cell (Figure 6a) gives a monofre-

quency operation with a return loss of −17.14 dB at the resonant frequency 3.6 GHz. For the
second three-cell structure (Figure 6b), the antenna exhibits tri-band operation at the res-
onant frequencies 3.466 GHz, 4.352 GHz, and 4.834 GHz, with return loss levels below
−44.73 dB, −12.55 dB, and −40.45 dB, respectively.

The design result for the last structure, where we inserted several CSRR cells on
the radiating element (Figure 6c), shows that the reflected power contains three reso-
nant frequencies—3.596 GHz, 4.275 GHz, and 4.91 GHz—with levels equal to −16.86 dB,
10.29 dB, and −43 dB, respectively.

Accordingly, the best structure one can choose to complete our study is the third
structure because of its gives multi-band operation where the first peak of the return loss
resonates almost at the desired resonance frequency of 3.6 GHz.

To show the effect of the different geometrical parameters of the chosen structure (the
widths W and W1 of the notches, the location X2 of the second CSRR cell, the location
X3 of the third CSRR cell, and the length Ls of the ground plane and of the substrate) on
the antenna characteristics (Figure 5c), we carried out a parametric study to observe the
influence of these elements on the antenna-matching.

4.1. Variation in Notch Width W

The curves shown in Figure 8 present a dual-band operation in which we observe two
resonance frequencies: the first is at 3.59 GHz and the second is around 4.9 GHz.

We notice that the level of the return loss is inversely proportional to the notch width
W for the first peak, where the decrease of the width W leads to an increase of the S11 level.
For the second peak, the return loss increases when W increases. The best obtained result
corresponds to W = 1.6 mm, such that the return loss reaches a value lower than −34.73 dB
at the frequency 3.5912 GHz.
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4.2. Variation of the Notch Width W1

The variation of the width W1 of the simulated antenna by CST MWS by fixing the
width W to 1.6 mm is shown in Figure 9. This geometry appears as the most promising
for W1 = 2.3 mm, where the amplitude of the reflected power is less than −47.66 dB at the
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desired frequency 3.5864 GHz. This variation provides a particular improvement in the
adaptation of the antenna compared to the previous study.
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4.3. Variation of the X2 Distance of Second CSRR Cell

From the obtained results, we can visualize that the increase of the return loss level
is inversely proportional to the X2 distance. We also observe a slight improvement in
the resonance frequency that becomes to equal 3.5977 GHz, almost equal to the desired
resonance frequency 3.6 GHz.

4.4. Variation of the X3 Distance of the Third CSRR Cell

In this phase, we made a slight variation to this distance by placing X2 at 8.29 mm.
Figure 10 shows us that the curves are almost identical in the shape, but they have different
levels of the return loss S11.
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Now, we are interested in the influence of the length Ls of the ground plane and the
substrate on the adaptation by fixing X3 at 8.29 mm (Figure 11).
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According to Figure 12, the curves have identical shapes with different levels of the
return loss. It is noticed that the reflection coefficient is inversely proportional to the length
Ls of the ground plane and the substrate. The best result recorded corresponds to the length
Ls = 65.68 mm.
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Figure 12. Influence of the length Ls on adaptation.

In Figure 13a–c, respectively, we represent the return loss, the VSWR, and the gain of
the final dual-band antenna according to the last parametric study of the length Ls.
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Figure 13. (a) Return loss. (b) Stationary wave rate. (c) Antenna gain.

According to the last study that we carried out and for Ls equal to 65.68 mm, the
simulation results bring back a perfect adaptation to the resonance frequencies for a dual-
band antenna. From Figure 13a, it can be said that the reflected power at the antenna
input is zero since the two peaks reach values less than −55.23 dB and −32.70 dB at the
frequencies 3.597 GHz and 4.876 GHz, respectively, according to the 5G and Wi-Fi systems.
This result is very encouraging when comparing it with the initial result we recorded in
our main antenna (Figure 1) with a miniaturization rate of around 07.07%.

We have also presented the stationary wave rate, which is of the order of one for
each of the two resonance frequencies, which gives a good impedance match between the
antenna and the feed line. The bandwidths are of the order of 101.5 MHz and 116 MHz
for the two resonance frequencies, respectively. The antenna gain is around 2.93 dB at the
3.597 GHz resonance frequency.
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Moreover, we find that the percentage of miniaturization of 07.07% is the best since it
presents a perfect adaptation and a very satisfactory frequency band.

5. Conclusions

During this work, we have studied and designed a rectangular patch antenna intended
for the new generation of mobile telephony, the fifth generation (5G). To learn about the
effect of meta-material technology on printed antennas, we have inserted CSRR cells on the
proposed rectangular patch antenna. The new geometry simulated by the CST Microwave
Studio software presents a miniature bi-band antenna based on meta-materials according
to the two 5G and Wi-Fi systems.
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