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Abstract: This document describes our pipeline for automatic processing of ATCO pilot audio
communication we developed as part of the ATCO2 project. So far, we collected two thousand hours
of audio recordings that we either preprocessed for the transcribers or used for semi-supervised
training. Both methods of using the collected data can further improve our pipeline by retraining our
models. The proposed automatic processing pipeline is a cascade of many standalone components:
(a) segmentation, (b) volume control, (c) signal-to-noise ratio filtering, (d) diarization, (e) ’speech-to-
text’ (ASR) module, (f) English language detection, (g) call-sign code recognition, (h) ATCO—pilot
classification and (i) highlighting commands and values. The key component of the pipeline is a
speech-to-text transcription system that has to be trained with real-world ATC data; otherwise, the
performance is poor. In order to further improve speech-to-text performance, we apply both semi-
supervised training with our recordings and the contextual adaptation that uses a list of plausible
callsigns from surveillance data as auxiliary information. Downstream NLP/NLU tasks are important
from an application point of view. These application tasks need accurate models operating on top of
the real speech-to-text output; thus, there is a need for more data too. Creating ATC data is the main
aspiration of the ATCO2 project. At the end of the project, the data will be packaged and distributed
by ELDA.

Keywords: automatic speech recognition; air traffic control; contextual adaptation; language identifi-
cation; named entity recognition; opensky network

1. Introduction

The speech-processing tools for air-traffic data could work better if we had a large
amount of reliably annotated data. However, the collection and manual annotation pro-
cesses of air-traffic data are slow and costly. The recordings are often noisy, accented, and
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speech is very fast. Moreover, for downstream tasks, we also need to label the transcripts
with air-traffic related entities. In our case, those are callsigns, commands and its values
(i.e., arguments of the command). In addition, other complications include the need for
annotators to be experts who understand the domain.

This study presents how the entire annotation process can be efficiently accelerated by
using already existing machine learning concepts. The main focus is to improve the quality
of the automatic transcripts for the annotators in order to help them work faster.

The previous EU project focused on ATC speech processing was MALORCA. It pro-
duced Active Listening Assistant (AcListant) [1],which used voice input for faster updates
of a plan in the approached planning system of an airport. However, the used speech-to-text
module was tailored only to a particular airport, because training data were collected from
two airports only. If we collect training recordings from many airports, we believe our
system will become more airport agnostic, which was a supportive argument for collecting
the data in our ATCO2 project.

The purpose of this document is to describe the final set of tools that allows us to
pre-process and automatically transcribe the audio data that we collect in ATCO2 project.
The tools are based on techniques from Signal Processing, Automatic Speech Recognition
(ASR) and Natural Language Processing (NLP), which are then applied to air-traffic record-
ings. The purpose is to speedup the process of building a large air-traffic dataset. Moreover,
the project goals aim to obtain 1000 h of recordings with automatic transcripts, from which
50 h should be manually corrected by the community. The data are planned to become
accessible both for research and commercial use.

The overview of the data processing pipeline is provided in Figure 1. It consists of (a)
speech pre-processing tools (segmentation, volume adjustment and discarding noisy record-
ings), (b) diarization (split audio per speaker), (c) speech-to-text recognition, (d) English
language detection, (e) call-sign recognition, (f) ATCO pilot classification and g) labeling of
commands and values.

OpenSky
Network

Data processing pipeline

Segmentation Demodulation Volume Control

English 
language 
detection

ASR 
“speech-to-text”

Signal-to-noise 
ratio filteringDiarization

Post-processing by NLP
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Community
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Traffic monitoring data
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Figure 1. Data collection and data-processing pipeline.

2. Data Pre-Processing and Diarization

At the very beginning, the radio signal is captured by a community of feeders from
Open Sky Network by their antenna and recording device. Since the radio broadcast is most
of the time passive, i.e., the channel is silent, we apply adaptive energy-based segmentation
to divide the signal into segments with a voice activity. The I/Q radio signal is converted
to a waveform audio signal by a software defined radio (csdr) in the demodulation block.

Volume control: The gain of the signal increased in volume control in case of a weak
signal from a distant airplane. We noticed, that the speaker turns are separated by spikes,
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which arise from push-to-talk control of the radio communication. Our method first finds
the positions of the spikes and then adjusts the volume of each segment separated by spikes
with a different scalar value. However, this method does not ensure that one segment
contains speech from a single speaker, as some spikes may not be detected.

Signal-to-noise ratio based filtering: Our intention is to remove of noisy segments
that are unintelligible. However, our aim is not to discard all noisy segments as moderate
noise levels in some of the training data will render the speech-to-text system more robust
to noise. For estimating the Signal-to-noise ratio (SNR), we first separate the speech and
non-speech parts by a Voice Activity Detection tool (VAD) described in [2]. For the use
in SNR filtering, we adjusted its hyper-parameters to ensure that almost no non-speech
parts are marked as speech. Since the true non-speech segments are not recorded because
of push-to-talk, we estimate SNR from the distribution of the speech signal only, which we
perform with the WADA-SNR (Waveform Amplitude Distribution Analysis) algorithm [3].
This method is based on the assumption that the distribution of samples from a clean speech
signal is a Gamma function with a predefined shaping parameter, and the distribution
of samples from additive noise is Gaussian. The method should be reliable for the SNR
interval 0–20 dB and produces estimates of SNR values. By setting an appropriate threshold,
we can discard audio data that are too noisy, i.e., the SNR value is too low.

Diarization: Eventually, the segments are further divided into single-speaker seg-
ments by diarization. The subsequent NLP tasks such as call-sign recognition or command
extraction need to operate on a message that comes from exactly one speaker. Thus, in this
sense, it is strategic to identify speaker turns before automatic transcription is performed.
Our diarization is based on Bayesian HMM clustering (VBx) [4]. Diarization is also very
useful for annotators; otherwise, they would have to divide speakers manually. Currently,
we use diarization only to split speech into single-speaker segments. We do not use diariza-
tion to separate ATCO pilot speech nor to track the utterances of the same speaker within
or across recordings.

3. Automatic Speech Recognition

After the recordings are pre-processed, the segments are transcribed by speech-to-
text system, which is also frequently called Automatic Speech Recognition (ASR). It is a
key component in our pipeline, since it affects the performance of the downstream tasks,
and we are also interested in delivering automatic transcripts of high quality. That is why
we trained an ASR system tailored for ATC domain. The performance of a COTS ASR
would be poor on ATC data.

In this study, we used a standard hybrid speech recognizer in which the temporal
dynamics of speech are modeled by Hidden Markov Models (HMM). The recognizer
consists of language model and acoustic model. The scores of the two models are combined
together to obtain the best transcript of observed speech. The decoding itself is performed
with the token passing algorithm, which operates within a recognition network (HCLG
graph). The HCLG graph is a WFST composition [5] of a graph with phone-level HMMs
(we used biphones, i.e., a context dependent phonemes) H, context-dependency graph C,
pronunciation lexicon graph L and language model graph G. The algorithm uses a beam
search heuristic to prune improbable searched paths as the decoding progresses over time.
All likely paths are then stored in a compressed format called lattice, i.e., a structure with
timing information and pronunciation of each likely sentence. The final transcript of
the segment is generated by taking the best hypothesis from the lattice. The generated
transcripts inevitably contain some errors (search errors, OOVs, etc.). Our goal is to build a
system producing the least amount of errors possible.

For language modelling, we first created ATC text corpora from seven ATC databases
we worked with (see Section 5.1 in [6]). We enriched the text corpus by a list of callsigns
gathered by OpenSky Network in years 2019 and 2020 (crowdsourced air traffic data from
the OpenSky Network 2020: https://zenodo.org/record/5644749, accessed in February
2021). The call-signs are expanded into words by our verbalization tool, and the expansion

https://zenodo.org/record/5644749
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follows the ICAO standard [7], and other common variants are generated. The expansion
tool is described in our previous studies [6,8,9]. We also collected a list of runways and
air navigation waypoints that exist in Europe from Traffic [10] and expanded these into
idiomatic contexts for language model training. It should ensure that ASR is able to
recognize all known callsigns, waypoints and runways. The final language model is an
interpolated 3-gram in ARPA format trained with SRILM toolkit [11].

For acoustic modelling, we train a CNN-TDNN-F [12] neural network model from
Kaldi with the Lattice-free MMI objective function. The input features are high-resolution
Mel-frequency cepstral features (MFFC) with online Cepstral mean normalization (CMN).
The features are extended with online i-vectors [13]. The model produces posterior probabili-
ties of senones (states in the HCLG recognition network) that are used by the HMM decoder.

3.1. Call-Sign Boosting

In speech-to-text, we experimented with contextual adaptation. This improves ASR
performance by integrating rapidly changing textual context into decoding. Since we have
access to various information about the processed communication (e.g., time, location of
a receiver and ADS-B surveillance data), we are able to increase the chance of correctly
recognizing some specific words; in our case, these were the callsigns.

The entire process of contextual adaptation is depicted in Figure 2. For each record-
ing, we know the location and timestamp. With this information, we query the OpenSky
Network database [14] for a list of callsigns using the pyopensky python interface [15].
Next, the callsigns were verbalized into all its possible word sequences. Then, two boosting
graphs were built from the list of verbalized callsigns: one for HCLG boosting and one for
lattice boosting. These graphs are further used during decoding, as we recently described
in [8]. Note that this boosting technique allows us to perform on-the-fly contextual adap-
tation. We have chosen to boost the callsigns, since this is the most important entity in
communication. However, the described technique can be applied to any other entity,
e.g., runway number, frequency, etc.

Figure 2. Data flow diagram of boosting.

First, we apply the graph for HCLG boosting. This is performed by WFST composition
of the recognition network (HCLG) and the boosting graph BHCLG.

HCLG′ = HCLG ◦ BHCLG (1)

The boosting graph BHCLG contains language model score discounts for particular rare
single words that are then transferred into the recognition network HCLG′. This causes the
paths with desired boosted words to become less likely to be pruned out during decoding.
Thus, more of the boosted words are present in the lattice produced by ASR. The boosting
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graph BHCLG is depicted in Figure 3a. Note that the topology of the HCLG boosting graph
is simpler compared to lattice boosting graph in Figure 3b. This is needed for an affordable
runtime of the composition with the relatively large HCLG graph.
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Figure 3. Boosting graph examples for both (a) HCLG boosting and (b) Lattice boosting.

Next, after lattice generation is completed, we apply lattice boosting of callsigns.
Similarly to HCLG boosting, lattice boosting is performed by WFST composition of a
boosting graph BL with the ASR output lattice L.

L′ = L ◦ BL (2)

The toy example of boosting graph is shown in Figure 3b. We are boosting entire word
sequences such as "c_s_a alfa bravo". Figure 3b contains the upper part that encodes
the word sequences to be boosted in a particular segment. The language model score
discounts −4 or −6 are on the word links. The lower part contains all words from lexicon,
which ensures that no words are dropped by the composition. Moreover, the lower part
is accessed only if the partial word sequence from the lattice cannot be matched with the
upper part. HCLG boosting is performed before lattice boosting only to increase a chance
that the lattice contains the boosted rare words. Moreover, lattice boosting increases the
chance of the boosted word sequence to appear in the final best hypothesis, i.e., in the
final transcript.

The effect of call-sign boosting is shown in Table 1. The performance was measured on
our internal LiveATC test set and our public ATCO2 test set for which we have surveillance
data available. With boosting, we reduced the word error rate (WER) by 12.5% relative to
the LiveATC test set and 6.5% relative to the ATCO2 test set. Note that we obtained better
results with both HCLG and lattice boosting than with only lattice boosting. The effect of
boosting is even stronger for call-sign recognition accuracy (CA), where it removed roughly
one-third of errors. Call-sign accuracy improved by 26.0 % on the LiveATC test set and by
8.0 % on ATCO2 test set.
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Table 1. Performance improvements from various call-sign boosting strategies in speech-to-text.
Measured on LiveATC test set and public ATCO2 test set in terms of word error rate (WER) and call-sign
accuracy (CA) (ATCO2 test set: https://www.atco2.org/data, accessed in August 2021).

LiveATC ATCO2

WER (%) CA (%) WER (%) CA (%)

no-boosting 35.9 46.8 21.4 77.3
HCLG-boosting 35.4 50.0 21.4 81.3
lattice-boosting 31.8 70.2 20.1 84.6

HCLG + lattice-boosting 31.4 72.8 20.0 85.3

Oracle (correct transcripts) 0.0 89.6 0.0 92.0

3.2. Semi-Supervised Learning

We used our collected data for semi-supervised learning (SSL) experiments. This im-
proved our acoustic model by adding the untranscribed data into the training. The un-
transcribed data were processed by our pipeline that filtered out noisy and non-English
data. In SSL, a seed-system was used to produce automatic transcripts and confidences.
We incorporated acoustic word confidences generated by Minimum Bayes Risk decoding
of lattices [16]. Word confidence is a probabilistic value taken from a confusion network
that has lists of candidate words for word slots.

We applied word confidences to discard 10% sentences with lowest mean confidence.
Next, we discarded all words with confidence lower than 0.5 (5% words). Finally, we used
word confidences to scale gradients in back-propagation training. We noticed that the
confidences were biased towards high values even for incorrect words. In order to mitigate
this, we applied power 4.0, which transformed the word confidences to lower values. This
is a rather empirical calibration, and we can afford to scale down some of the correct words
from the automatic transcripts.

In our experiments, we used 1190 h of untranscribed speech, partly from ATCO2

platform and partly from LiveATC. The results are shown in Table 2. For system 2, WER was
reduced by 14.8% for LiveATC and 13.6% for ATCO2 test sets, respectively. The combination
of SSL and test phase call-sign boosting achieved the best performance of 26.8% WER for
LiveATC and 17.6% WER for ATCO2 test sets, respectively. Currently, this is the best model
we have. We further plan to start using call-sign boosting for automatic transcripts in SSL,
as we previously tried in [17].

Table 2. Performance improvements from semi-supervised learning (SSL) and test phase call-sign
boosting. Measured on LiveATC and ATCO2 test set.

LiveATC ATCO2

# WER (%) CA (%) WER (%) CA (%)

1 seed-system 35.9 46.8 21.4 77.3
2 SSL + gradient weighting 30.6 56.8 18.6 81.3

3 (2) + lattice boosting 27.2 73.0 17.6 85.3
4 (2) + HCLG+lattice boosting 26.8 75.8. 17.6. 86.0

Oracle (correct transcripts) 0.0 89.6 0.0 92.0

4. English Language Detection

We have developed and deployed a suitable English language detection system (ELD) [18]
to discard non-English utterances in newly collected data. We tested an acoustic based
system with x-vector extractor, but then we decided to use an NLP approach that processes
ASR output with word confidences, as its performance was better. The NLP approach can
jointly use outputs from several ASR systems, which further improves the results.

https://www.atco2.org/data
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For the processing pipeline, we integrated the NLP-based English detector operating
on Czech and English ASR. The integrated English detector consists of TF-IDF for re-
weighting the accumulated soft word counts, and a logistic regression classifier was used
to obtain English non-English decisions.

For each recording, we extracted bag-of-words statistics from the automatic transcrip-
tions generated by ASR systems. We concatenate word lists from lexicons of both ASR
systems. Moreover, statistics are accumulated from the posterior probabilities in the bins
of confusion networks. TF-IDF adjusts these per-word statistics by deweighting words
that appear frequently in other documents (i.e., recordings). Finally, the binary logistic
regression classifier decides between English and non-English classes.

On our evaluation set of Czech–English examples (CZEN), we achieved an equal
error rate of 0.0470 (see Table 3). By training on more languages, the CZEN equal error
rate increased to 0.0617, but for French (FREN) and German (GEEN), the error rate be-
came smaller. If we set a threshold of 0.8, we can almost completely remove non-English
utterances, while discarding only a small amount of English data.

Table 3. Performance of the English language detector with different training data (with Czech–
English data CZEN or with Czech–French–German–English data).

ASR Train Data Equal Error Rate
CZEN FREN GEEN

EN + CZ CZEN 0.0470 0.2397 0.3433
EN + CZ CZEN + FREN + GEEN 0.0617 0.1338 0.2602

5. Post-Processing by NLP/NLU

The goal of the Natural Language Understanding (NLU) part is to extract knowledge
from the text produced by the speech-to-text system. In ATCO2, we focus on these tasks:

• Call-sign recognition (i.e., locate the call-sign and convert it to code such as "DLH81J");
• ATCO—pilot classification (i.e., decide who is speaking in the entire utterance);
• ATC-Entity recognition (i.e., highlight the callsign, command and value in text).

These tasks were selected in cooperation with our industry project partners (Honey-
well, Airbus).

5.1. Call-Sign Recognition

For call-sign recognition, we use a complete neural-network based end-to-end model,
which is based on BERT [19]. The model extracts call-sign codes (e.g., DLH81J) from the
speech-to-text output and the corresponding list of surveillance call-signs. We found that
this model architecture outperforms cascaded systems, where in the first step a named entity
recognizer tags the callsign in the transcript and in the second step a call-sign mapper converts
the call-sign to the corresponding ICAO format.

The performance of our fully neural call-sign recognizer was previously shown in
Tables 1 and 2. The performance is measured as call-sign accuracy (CA). We also observe
that integrating contextual information into speech-to-text engine via call-sign boosting
was essential for achieving good call-sign recognition results.

5.2. ATCO—Pilot Classification

As part of labelling the data, we aim to automatically classify utterances based on
whether it is the controller or the pilot speaking. The classifier is trained on top of the
ASR-output, since there exists some disjoint vocabulary between the pilot and the controller.

The classification experiments were performed using three classifiers. The first one
uses a TF-IDF per-word statistics followed by binary logistic regression, the second one
is based on convolutional neural networks (CNN) and the third is based on transformer
architecture called Bi-directional Encoder Representations from Transformers (BERT) [19].
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The BERT model was pre-trained on masked language modelling task on large amounts of
publicly available data, and it was taken from Huggingface [20]. Then, we used ground
truth transcripts to finetune the model on the sequence classification task. Around 15 thou-
sand utterances (samples) for both ATCO and pilot classes were used for finetuning the
model. The classification results are presented in Table 4.

Table 4. Performance of ATCO pilot classifier.

Classification Accuracy
Model ATCO2 LiveATC

TF-IDF + LR 77.8 76.6
CNN (no pre-training) 80.2 82.2
BERT (pre-training + fine-tuning) 91.0 87.0

The ATCO pilot classification is not yet integrated into the data processing pipeline.
The details of our work on the topic are in [21].

5.3. ATC-Entity Recognition

The breakdown a transcript into its different components or entities can be imple-
mented as a Named entity recognition (NER) task. The entities of interest are callsign <CAL>,
command <COM>, value <VAL> and unknown phraseology <PHR>. NER architecture is
similar to Figure 4, but the output are NER tags in IOB format.

Transcript

Surveilance

Call-sign Extraction ICAO Call-sign

Figure 4. End-to-end model for call-sign recognition, the inputs are speech-to-text output and
surveillance callsigns (list of plausible callsigns from the OSN database).

An example of a tagged transcript is as follows.

<COM> CLIMBING TO </COM> <VAL> FLIGHT LEVEL SEVEN ZERO </VAL>
<CAL> OSCAR KILO TANGO UNIFORM ROMEO </CAL>

We are currently building a database for training an ATC entity recognition network.
Table 5 shows the first results for a train|val|test split of 300|100|100 for the LiveATC
and ATCO2 test set.

Table 5. F1 Scores on LiveATC and ATCO2 test sets.

Entity Callsign Command Value Unknown Phraseology

LiveATC 80 52 52 34
ATCO2 89 77 68 57

6. Conclusions

We have successfully created an operating pipeline for processing and automatically
annotating ATCO and pilot air traffic control audio data. The pipeline discards noisy and
non-English data and generates automatic transcripts from which it extracts a callsign
code. Later, we will be able to automatically decide if it is the ATCO or pilot speaking
and highlight entities in the text (callsign, command and value). The purpose of the ATCO2

project is to collect a large database of ATC audio data that will help develop better voice
tools. Perhaps one day, the voice tools will finally serve pilots and ATCOs.
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An approach to leverage air-surveillance and untranscribed ATC data in ASR systems. In Proceedings of the Interspeech 2021,
Brno, Czech Republic, 30 August–3 September 2021; pp. 3296–3300. [CrossRef]

https://www.atco2.org/data
http://doi.org/10.21437/Interspeech.2008-644
http://dx.doi.org/10.1016/j.csl.2021.101254
http://dx.doi.org/10.1006/csla.2001.0184
http://dx.doi.org/10.3390/proceedings2020059014
http://dx.doi.org/10.21105/joss.01518
http://dx.doi.org/10.21437/Interspeech.2018-1417
http://dx.doi.org/10.1016/j.csl.2011.03.001
http://dx.doi.org/10.21437/Interspeech.2021-1373


Eng. Proc. 2021, 13, 8 10 of 10
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