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Abstract: Indirect evaporative cooling can meaningfully improve the natural environment. It involves
low operating costs for air cooling systems. The dew point indirect evaporative cooler (DP-IEC) is
energy-efficient, ecological, and economical. The current study reports on an experimental analysis
of a DP-IEC working under a wide range of operating conditions and integrated with a solar
panel system. The electricity consumption of the DP-IEC can be met by utilizing renewable energy
technology (solar panels). The system is designed for a cooling capacity of up to 3 kW, with an energy
efficiency ratio of about 20. The experimental setup is investigated here in terms of velocity, water
temperature, ambient air temperature, and air humidity. The temperature is dropped from 43 ◦C to
23 ◦C (i.e., 20 ◦C temperature drop) at 20% humidity and from 49 ◦C to 24 ◦C (i.e., 25 ◦C temperature
drop) at 13% humidity at a fixed air velocity and water temperature. The cooling capacity, coefficient
of performance, and energy efficiency ratio values vary across the ranges of 1612–3215 W, 2.93–5.85,
and 9.21–18.37, respectively. The DP-IEC is integrated with solar panels to offset the electricity
consumption. This research work also shows that the DP-IEC, when integrated with renewable
energy technology (i.e., solar panels), provides energy savings as compared with air conditioners. As
such, it is suitable for use in several areas around the world.

Keywords: evaporative cooler; Maisotsenko cycle; thermal effectiveness; cooling technology;
solar panel

1. Introduction

Energy is a primary commodity that is needed for comfortable living. Advanced
countries around the world have plentiful energy resources, which signifies the quality
of life of their citizens. As the population is increasing, energy demands are on the rise
throughout the world. The air handling process meets the necessary requirements for
cooling by regulating the temperature, cleanliness, humidity, and circulation in the air
conditioning system [1]. The ultimate objective of HVAC systems is to provide human
comfort, and numerous studies were found in the literature showing that comfort under
steady-state conditions in terms of ambient temperature is in the range of 12–48 ◦C [2].

M-cycle cooling is becoming popular around the world, as it is an electrically efficient
technique. This type of system does require refrigerants, which generate chlorofluorocar-
bons, so this system is environmentally friendly. The technique is utilized to decrease the
temperature of the incoming air, which is considered as the ambient air in proximity to the
incoming dew point temperature [3]. It saves 80% more energy than other conventional
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systems. The process involves the pre-cooling of air using the indirect evaporator, which
then causes cooling [4].

Muzaffar Ali et al. performed an experimental study on a crossflow DP-IEC using
fins in dry channels, finding that it was more effective than a standard IEC. The results
showed a wet bulb effectiveness value of 1.43 and dew point effectiveness value of 0.93 [5].
Duan et al. performed a novel simulation study on a counter-flow M-cycle heat exchanger
and found that it was more efficient than indirect evaporative cooling. The results showed
that the heat exchanger achieved wet bulb effectiveness of 1.4 [6]. Previously, Dove et al.
studied the effectiveness and energy-saving potential of an M-cycle evaporative cooler
and showed that M-cycle-based evaporative cooling reduces energy use by up to 80% [7].
Hassan studied four dissimilar configurations for an indirect evaporative cooler, namely
counterflow, parallel flow, combined flow, and one regenerative flow. He found the wet
bulb effectiveness values of 1.26, 1.09, 1.31, and 1.16, respectively, for each system [8].
Kashif et al. studied the application of an M-cycle-based evaporative cooler in Pakistan.
This study was also conducted to compare the M-cycle evaporative cooler with other types
of evaporative coolers [9].

In view of the above literature review, it can be concluded that DP-IECs are feasible
for use in hot and dry areas with significant energy savings compared to conventional
vapor systems. Studies have been performed on systems integrated with photovoltaic
solar panels to meet the electricity consumption requirements, as referred to in the present
work. Here, a considerable experimental analysis is presented involving a wide range of
operating conditions, including the ambient air temperature, relative humidity of air at a
fixed velocity, and water temperature. Moreover, a thorough analysis is presented in terms
of the dew point effectiveness and wet bulb effectiveness, coefficient of performance, and
energy efficiency ratio.

2. System Description

The DP-IEC has a crossflow arrangement with dry channels that are covered with
alternate wet channels. These channels are made of plastics sheets and fiber cloth. The
plastics sheets and fiber cloth are joined with the help of an adhesive bond. Acrylic dividers
are also joined with plastics sheets and fiber cloth with the help of an adhesive bond. The
dividers are fixed on both sides of the sheet. The heat and mass exchanger (HMX) is made
of 19 wet and 18 dry channels.

The dew point indirect evaporative cooler consists of the HMX, fan, pump, and solar
panel system. The HMX consists of polypropylene-based 37 channels (19 wet and 18 dry), as
shown in Figure 1a. The DP-IEC is integrated with the PV solar panel system to fulfill the
electricity requirements. The power consumption of the dew point indirect evaporative cooler
is 70 W, which is fulfilled using the 100 W photovoltaic solar panel system. The schematic
diagram of the DP-IEC integrated with the solar panel system is shown in Figure 1b.
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3. Experimental Setup

The air conditioning laboratory unit (ACLU) is used to connect to the DP-IEC. The air
conditioning laboratory trainer (ACLT) is designed to validate the operation and perfor-
mance of the ACLU. It is designed to create various conditions and environments. It also
controls the airflow for certain processes such as cooling, pre-heating, re-heating, humidify-
ing, and de-humidifying. It is designed to investigate primary factors that are controlled in
a conventional air conditioning system. When using this system, the required temperature
and humidity values must be set. This system is tested under a wide range of temperatures,
which vary from 30 to 49 ◦C, while the other parameters such as velocity (6.1 m/s) and
water temperature (20 ◦C) are fixed. Another parameter is the relative humidity, which
varies from 13 to 20% of dry air during the experimentation. The DP-IEC is coupled at
the outlet of the air conditioning laboratory unit, as shown in Figure 2a. The DP-IEC is
also integrated with PV solar panels to fulfill the electricity consumption of the system.
The DP-IEC consists of the HMX, water pump, and axial fan, which has a total power
consumption of 0.70 kWh, as shown in Figure 2b. The required power for the axial fan and
water pump is easily achieved by installing the PV solar panel setup.
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4. Results and Discussion

In this study, the results were obtained using the ACLU by creating different tempera-
ture and humidity conditions. With this system, the temperature difference of the processed
air through dry channels increases by increasing the ambient air temperature (Ta) at fixed
velocity (V) and water temperature (Tw) values. The evaporation of the air increased
by increasing the ambient temperature of the air, which contains more moisture before
achieving the saturation point. The processed air holds more water vapor as the ambient
temperature is increased. Therefore, the temperature difference and other parameters are
also increased. The temperature difference (∆T) varied from 12.95 to 26.04 ◦C, as shown in
Figure 3a. The dew point and wet bulb effectiveness values were higher values at higher
processed air temperatures as compared to lowered process air temperatures. The dew
point effectiveness values varied from 0.5 to 0.75, as shown in Figure 3b. The wet bulb
effectiveness varied from 0.84 to 1.07, as shown in Figure 3c. The maximum CC, COP, and
EER values were measured with optimal input parameters, i.e., Ta = 49 ◦C, Vin = 6.1 m/s,
RH = 13 %, and Tw = 25 ◦C. The cooling capacity (CC) increases when the inlet temperature
is increased and decreased or when RH is increased. Here, the CC values were between
3215 and 1612 W, as shown in Figure 3d. It can be observed that increasing the CC results
in higher COP and EER values. The COP and EER values varied from 2.93 to 5.85 and from
9.21 to 18.37, as shown in Figure 3e,f, respectively.
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5. Conclusions

In this study, a thorough experimental investigation was performed. The inlet parame-
ters were varied across wide ranges in term of the processed air temperature (33–49 ◦C)
and relative humidity (13–20%). Comparative investigations were performed in terms of
temperature differences in the produced air and the wet bulb and dry bulb effectiveness. It
is worth noting that the maximum produced air temperature was achieved at Ta = 49 ◦C,
RH = 13%, V = 6.1 m/s, and Tw = 20 ◦C. The higher temperature difference resulted in
extreme CC, COP, and EER values in the ranges of 1612–3215 W, 2.93–5.85, and 9.21–18.37,
respectively. The experimental results showed that the DP-IEC can be energy-efficient
when used for cooling purposes. Another investigation was performed by integrated the
DP-IEC with a PV solar panel system. It is worth noting that the electricity consumption of
the DP-IEC can be easily offset by installing a PV solar system.
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