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Abstract: Short term load forecasting (STLF) is an obligatory and vibrant part of power system
planning and dispatching. It utilized for short and running targets in power system planning.
Electricity consumption has nonlinear patterns due to its reliance on factors such as time, weather,
geography, culture, and some random and individual events. This research work emphasizes STLF
through utilized load profile data from domestic energy meter and forecasts it by Multiple Linear
Regression (MLR) and Cascaded Forward Back Propagation Neural Network (CFBP) techniques.
First, simple regression statistical calculations used for prediction, later the model improved by using
a neural network tool. The performance of both models compared with Mean Absolute Percent Error
(MAPE). The MAPE error for MLR observed as 47% and it reduced to 8.9% for CFBP.

Keywords: short term load forecasting; cascaded forward back propagation neural network; artificial
neural network; multiple linear regression

1. Introduction

Energy crisis in Pakistan urged the need to focus on running solution along with
planning future to reduce the demand supply energy gap [1]. This energy demand gap
reaches its peak during summer due to rise in temperature and air conditioning loads. The
unit commitment for distribution companies is challenging during summer. It is thus very
effective if these months are planned in time. Short Term Load Forecasting becomes vital in
this time.

Electrical load forecast is necessary due to the growing trends such as population,
urbanization, culture, economic trends, industrial growth and uncertainties in weather.
Previous data gathered from a residential three phase static energy meter installed under
Gujranwala Electric Power Company (GEPCo) division.

Good estimation is as best fit between prediction and target points. Estimation can
result in both positive and negative variation from the required value. Regression through
neural al network is most commonly used for short term load forecasting [2,3]. Hid-
den layers are induced in regression models for better calculation such as human brain
mechanism.

Generally, energy forecasting methods can be broadly classified in to three major
classes; Artificial Intelligence (AI) Method, Statistical Method and Engineering Method [4].
Popular methods widely used in load forecasting is the Artificial Intelligence (AI) Method,
which includes Support Vector Machine (SVM) and Artificial Neural Network (ANN). The
other two techniques, i.e., Engineering Methods and Statistical Methods are yet connected,
yet a few inadequacies distinguished in both strategies, midst the insufficiency in engi-
neering method is its complexity to apply it for all intents and purposes, its absence of
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information data [5]. ANNs have been extremely great application in time-series predic-
tion, because of their accuracy and simplicity. The erudition practice is usually relying
on slope strategy back propagation (BP) computation. Back spread estimation has note-
worthy detriments: the learning strategy is repetitive and there is no meticulous statute
for setting the number of covered neurons to evade over or under fitting, and in a perfect
world, influencing the figuring out how to arrange concurrent. Comparison was made
utilizing distinctive strategies [6]. Regression and Neural network working topology can
be described by Figure 1.
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Regression Neural Network (GRNN). This problem can be dealt using fruit fly algorithm. 
Step Fruit-fly Optimization Algorithm (SFOA) is combines with GRNN with decreasing 
step. This model is compared with other ANN on the basis of prediction error [9]. Neural 
networks have been very impressive for load forecasting in present era many papers with 
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Arrangement of Data 
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Figure 1. This figure depicts regression through employment of artificial neural networks. (a) Describ-
ing simple linear regression for predicting a single variable (b) Estimating more than one variable
through a greater number of hidden layers and complex variables.

STLF is more focused in terms of load forecasting, used ANN models as clustering to
predict the bus load for next hour or a day [7]. Hybrid fore casted model gives improved
accuracy than traditional models. This was tested on bus model. PSF can be modeled
with ANN. The model is in two levels first PSF is used for prediction than ANN is used to
refine the results [8]. STLF is nonlinear in nature. Regression with combination of ANN is
very suitable for load curves Spread parameter determines the performance of the General
Regression Neural Network (GRNN). This problem can be dealt using fruit fly algorithm.
Step Fruit-fly Optimization Algorithm (SFOA) is combines with GRNN with decreasing
step. This model is compared with other ANN on the basis of prediction error [9]. Neural
networks have been very impressive for load forecasting in present era many papers
with different models have been published with practical application with high success
rates [10–14]. ANN can completely adjust master information and change their parameters
as needs to recreate the issue’s attributions through preparing ideal models [15].

2. Methodology

The methodology of this work is composed of; Data Collection > MLR > Data sorting
for ANN > ANN development > Simulation> Results > Conclusion.

ANN requires input and target data. The accuracy of the ANN output is very much
affected by type and depth of the data, it is not so much useful for less data. ANN accepts
data in form of matrices. it took input as rows of a matrix and respective weights in column.
ANN train the input data and tries to fit the plot between target values. To improve the
accuracy of the ANN, data as descried in Table 1 is fed to the input:

Table 1. Data arrangement for ANN input.

Arrangement of Data

Day/time Peak Load(kW) of Hours of Days Forecast

48 Days 48 × 1 matrix Data from Meter 48 × 24 matrix 48 H 48 × 1 matrix

3. Results

Data obtained from the energy meter is represented in Figure 2, number of power
outages in this duration in Figure 3 and target day curve is revealed in Figure 4.
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These power outages induce complexity and uncertainty in output. To avoid this 
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and plotted with comparison of the targets as shown in Figure 5. 
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Network created with succeeding parameters: Network Type was “Cascaded Forward
Back Propagation Neural Network (CFBP)” Training function used “trainlm”, Adaption
function was “learndgm”, Performance function was “mse”, Nos of layers were “2”, Nos
of neuron were layer1: 10, layer2: 1 and Transfer function was “purelin”.

Created network executed for 48 h forecast. The load profile collected from energy
meter was in raw form. There were many power outages that can be noticed from profile
as gap of the continuity in the load profile timing.

These power outages induce complexity and uncertainty in output. To avoid this prob-
lem refined duration with minimum power outages in 30 days is selected and regression
analysis is applied to it using Data analysis tool in MS Excel. The results are obtained and
plotted with comparison of the targets as shown in Figure 5.
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The results of regression analysis were not so much accurate when compared to target
values. Some alternatives should be used for better results. MAPE is measured as;

MAPE =
N

∑
i=1

∣∣∣Ti − Pi
Ti

∣∣∣
N

× 100 (1)

4. Conclusions

Limited scope of MLR over non-linear trends suggest using alternate solution for
energy forecasting. ANN tools are widely used for this purpose. This research work also
proposed ANN best suitable for STLF. MAPE used as performance comparison criteria for
regression and proposed ANN. It was evident from the comparison results that CFBP out-
performed in contrast with MLR. The error was reduced to 8.9% by CFBP from 47% by MLR.
Neural networks outperformed in forecasting with high nonlinearity and discontinuity.
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