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Abstract: Load forecasting of a micro-grid system has become a challenging task due to its high
volatile nature and uncertainty. Residential energy consumption is one of the most talked-about
and confusing topics among different electricity loads in terms of future information and is mainly
affected by irregular human activity and changing weather conditions. Therefore, techniques and
algorithms are needed to reduce energy consumption and enhance the smartness of the system. Load
forecasting of an optimized residential system using a machine learning (ML) algorithm is proposed
for an islanded green residential system. The load profile of residential electricity consumption is
developed by real-time data collected. Photovoltaic (PV) and wind energy (WE) units are considered
renewable energy sources in batteries to entertain the residential loads in the proposed prototype.
An efficient energy management system (EMS) is introduced to create a balance between power
generation and consumption with the help of intelligent appliances under a controlled framework and
to overcome peak time consumption. Prediction of load and proper energy utilization are presented
to ensure the stability and durability of the system. For efficient micro-grid energy management,
the residential load is forecasted using a ML algorithm named non-linear autoregressive exogenous
(NARX) neural network (NN) with a minute mean absolute percentage square error of 0.226% which
is far less than that of previous work performed in different forecasting scenarios. As a result, an
efficient model is designed for a standalone DC micro-grid.

Keywords: load forecasting (LF); micro-grid (MG); energy management system (EMS); non-linear
autoregressive exogenous (NARX); neural network (NN)

1. Introduction

In recent years, energy management systems are one of the most investigated topics
in the national and international electrical research market. There are different methods
and techniques that have been used to maintain the balance between demand and supply.
For an efficient energy management system, load forecasting has become an indispensable
term. Load forecasting can play a comprehensive role in scheduling the generation, as
well as consumption. Many approaches have been proposed regarding load forecasting
and energy management system. Different neural networks are used and compared to
forecast the short term load in [1]. By considering the weather conditions, short term load
forecasting is completed with long-short term memory (LSTM) recurrent neural network
but forecasting accuracy is far less [2]. A hybrid algorithm based on NARX neural network
and particle swarm optimization (PSO) is applied to the educational buildings to predict
the energy consumption [3]. NARX neural network is exercised for the prediction of solar
irradiance with the outcome of 83% regression value [4] and 0.00279 mean square error
(MSE) value [5]. A novel short term load forecast is proposed with minute errors using
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deep learning approach in [6]. By using extreme learning, electricity price is also efficiently
forecasted considering domestic energy usage in [7]. And a brief concept of energy trading
is delivered to enhance energy utilization on the residential level [8]. The previous study
comprises the concepts of load forecasting, energy management, and energy trading. The
objective of the proposed research is to introduce a smart and joint concept of energy
management, energy trading (ET) by utilizing more efficient load forecasting using NARX
NN compared to its previous attempts.

2. Research Flow Diagram

Research flow diagram in Figure 1 describes different steps for the EMS and ET by
collecting data (DC) from a real time source and parallelly prepared the data in data
preparation (DP) block. NN model is used to analyze the incoming data from DC and DP
block using different algorithms (NARX neural network). Meanwhile, the output of NN
model is further fed to data forecasting block and EMS section. Where the predicted data
are used to maintain the balance and provide the efficient utilization of generated energy
by renewable energy sources (RES).
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3. Methodology and Design

The proposed research is based on the following steps which includes data acquisition,
NN model for data forecasting and energy management system.

3.1. Data Acquisition

To evaluate the proposed model, a real time dataset of household energy consumption
is used. The dataset is available on an online platform named Open Data Pakistan [9].
The prescribed dataset comprises of 42 households’ energy consumption data located in
Lahore and recorded at one-minute time interval. From the presented dataset, one day load
profile measured in KW of house no 6 dated 14 November 2018 is used as input data for
the application of the NN model as shown in Figure 2.
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During the application of NARX neural network, the data are prepared and loaded 
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The parameters of hidden layer are set by adjusting the no of neurons and time delay. 
Afterwards, time response, regression coefficient, and error correlation are observed. The 
whole process is undergone through the trial-and-error method by applying different 
combinations of datasets and parameters in hidden layer as shown in Figure 4. As a result, 
the most accurate predicted values are observed.  
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3.2. Neural Network Model

NARX neural network is a recurrent dynamic neural network which is used to model
different variety of non-linear systems. Series-parallel architecture of NARX network is
well known for time series problems in which present and past value of x(t) and the true
past value of y(t) are used to predict the output values as explained in Figure 3. The
mathematical model is given as,

y(t) = f (x(t − 1), . . . , x(t − d), y(t − 1), . . . . . . , y(t − d)) (1)
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During the application of NARX neural network, the data are prepared and loaded
from workspace. Then, the data are divided into training, testing and validation datasets.
The parameters of hidden layer are set by adjusting the no of neurons and time delay.
Afterwards, time response, regression coefficient, and error correlation are observed. The
whole process is undergone through the trial-and-error method by applying different
combinations of datasets and parameters in hidden layer as shown in Figure 4. As a result,
the most accurate predicted values are observed.
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3.3. Energy Management System

In Figure 5, an efficient model is presented for the energy management of a green
residential system. PV and wind are acting as renewable energy source in presence of
battery. Artificial intelligent monitoring and control unit (AIMC) analyze the forecasted
load and make optimal decisions regarding energy trading. Baseline loads are small loads
that are always connected to the supply and controllable loads are heavy and interruptible
during emergency conditions. AIMC unit automatically switch off the controllable loads
during cloudy days because renewable energy is not enough to entertain the heavy loads,
but an energy demand request is sent to the other green homes to overcome the energy
needs. With the mutual energy sharing, the overall demand can be met, and energy can be
utilized in an eco-friendly environment.
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4. Results and Discussion

MATLAB software is used for testing and development of the NARX network. Two
different types of NARX neural networks are used and their error evaluation is presented
in Table 1. The first type has proven more accurate with lesser errors and better regression
value. Figures 6 and 7 shows the time response and regression of NARX 1 and 2.

Table 1. Error evaluation of NARX networks.

Types of NARX MSE MAPE% Regression

NARX 1 0.00323 0.226 96.93%
NARX 2 0.00545 0.293 94.86%
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Figure 7. Regression value of NN model: (a) NARX 1; (b) NARX 2. 

5. Conclusions 
The results prove that the prescribed study is a good attempt to explore the load 

forecasting issue. The proposed study describes the performance of NN model in which 
the forecasting errors of 0.226% and 0.293% are observed and provides an initiative to 
build an efficient energy management system by presenting a green residential energy 
model. So, the overall efficiency of the proposed residential model is enhanced with an 
accurate forecasting and by working on the presented model it is hoped that the energy 
utilization may be improved in the future.  
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5. Conclusions

The results prove that the prescribed study is a good attempt to explore the load
forecasting issue. The proposed study describes the performance of NN model in which
the forecasting errors of 0.226% and 0.293% are observed and provides an initiative to build
an efficient energy management system by presenting a green residential energy model.
So, the overall efficiency of the proposed residential model is enhanced with an accurate
forecasting and by working on the presented model it is hoped that the energy utilization
may be improved in the future.
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