
����������
�������

Citation: Amjad, H.; Ahmad, Z.;

Abrar, M.; Rasheed, H. Investigation

on Performance of Single Precision

Floating Point Multiplier (SPFPM)

Using CSA Multiplier and Different

Types of Adders. Eng. Proc. 2021, 12,

107. https://doi.org/10.3390/

engproc2021012107

Academic Editor: Qasim Awais

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Investigation on Performance of Single Precision Floating Point
Multiplier (SPFPM) Using CSA Multiplier and Different Types
of Adders †

Hasaan Amjad *, Zeeshan Ahmad, Muneeb Abrar and Hina Rasheed

Department of Electrical Engineering, GIFT University, Gujranwala 52250, Pakistan;
zeshanahmad11@gmail.com (Z.A.); muneebabrar08@gmail.com (M.A.); hinarasheed790@hotmail.com (H.R.)
* Correspondence: hasaanamjad18@gmail.com; Tel.: +92-3086218686
† Presented at the 1st International Conference on Energy, Power and Environment, Gujrat, Pakistan, 11–12

November 2021.

Abstract: Nowadays, floating point multiplier (FPM) plays an essential role in computers. The IEEE
754 norm for floating point numbers is the most widely recognized portrayal for real numbers on
today’s PCs. Addition, multiplication, subtraction, and division are the four important functions
of single precision floating arithmetic, amongst which multiplication has the most extensive use
in every algorithm. Fast multipliers are of critical need in modern high-performance applications,
especially in digital signal processing, because DSP involves many important multiplication-based
operations, e.g., fast Fourier transform (FFT) and convolution. These speedy computations can be
implemented on field programmable gate arrays (FPGAs), because they can provide a high speed and
a large number of on-board digital resources. FPGAs are involved in many modern applications such
as cryptography and communication computations, arithmetic and scientific computation, digital
image and signal processing, etc. There are many forms of FPM available. This paper describes
an efficient way to implement single precision FPM in IEEE 754 standard format, where Verilog
hardware description language (VHDL) is used to implement the design for Xilinx Spartan 6 FPGA.
Here, the 32-bit number will be divided into three parts: sign bit, exponent, and mantissa. This paper
is implemented by using different types of adders, which includes carry increment adder (CIA), carry
select adder (CSA), ripple carry adder (RCA), and carry look-ahead adder (CLA). Carry save array
(CSA) multiplication is used for performing the mantissa multiplication.

Keywords: floating point multiplier; carry save array; carry increment adder; ripple carry adder;
carry select adder; carry save array multiplier

1. Introduction

There are many different methods to express real numbers in binary format on com-
puters. Floating point representation is the most effective way to represent real numbers in
binary form, e.g., 9876543.21 could be represented as 9.87654321 × 106 [1]. Decimal inter-
change and binary interchange are the two distinct customary formats available in IEEE 754
for floating point (FP). Booth’s multiplier algorithm uses standard add shift operations, ulti-
mately reducing the number of partial products, therefore achieving a speed advantage [2].
Wallace’s tree algorithm, using a tree of carry save adders, implemented a new way to
add the partial component bits in parallel [3]. Vedic multiplier is based on Sutra of Vedic
multiplication and reduces the hardware requirement. Sutra of Urdhava–Triyakbhayam
multiplier is used for high-speed performance [4].

The proposed paper focuses on single precision multiplication only. This paper
presents comparative investigation on SPFPM, and it is undertaken using carry save array
multiplier and different adders such as carry skip, carry save, CLA, CIA, carry select, and
RCA for calculating the addition of mantissa and for adding partial products.

Eng. Proc. 2021, 12, 107. https://doi.org/10.3390/engproc2021012107 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2021012107
https://doi.org/10.3390/engproc2021012107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://doi.org/10.3390/engproc2021012107
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021012107?type=check_update&version=1

Eng. Proc. 2021, 12, 107 2 of 4

2. Representation and Calculation of Floating Point in IEEE-754 Standard

According to this format, a floating point number N is represented as follows.
For 32-bit SPFP-numbers, the IEEE-754 norm has following three parts [5] and repre-

sentation is shown in Table 1:

i. The sign of the FP number is represented by the most significant bit (MSB): 0 for
a positive number and 1 for a negative number. By taking the XOR of sign bit of
multiplier and multiplicand, the sign-bit is consequently determined.

S = S1 ⊕ S2 (1)

Table 1. Representation of SPFP number [1].

Sign Bit Exponent Mantissa

b31 b31 b23 b22 b0

ii. Bit (30-23) is used to express a biased exponent (E). E = e + 127, where e is the actual
exponent, and 127 is the bias value for single precision. We add the exponents of two
numbers using a different type of 8-bit full adder. After adding the exponents of two
inputs, the bias is subtracted from this using a 9-bit subtractor (to cater the carry of
addition) to obtain the final output.

E = (E1 + E2) − bias (2)

iii. The mantissa/significand for a binary number is represented by 0 to 22 bits as shown
in Table 1. Here, we are using array multiplier for this purpose as shown in Figure 1.
This involves the multiplication of 24-bit (23 fraction bits and one hidden bit) mantissas
of two input numbers and results a 48-bit mantissa, which is then truncated to 24 bits.

Eng. Proc. 2021, 12, x FOR PEER REVIEW 2 of 4

multiplier and different adders such as carry skip, carry save, CLA, CIA, carry select, and
RCA for calculating the addition of mantissa and for adding partial products.

2. Representation and Calculation of Floating Point in IEEE-754 Standard
According to this format, a floating point number N is represented as follows.
For 32-bit SPFP-numbers, the IEEE-754 norm has following three parts [5] and repre-

sentation is shown in Table 1:
i. The sign of the FP number is represented by the most significant bit (MSB): 0 for a

positive number and 1 for a negative number. By taking the XOR of sign bit of mul-
tiplier and multiplicand, the sign-bit is consequently determined.

S = S1 ⊕ S2 (1)

ii. Bit (30-23) is used to express a biased exponent (E). E = e + 127, where e is the actual
exponent, and 127 is the bias value for single precision. We add the exponents of two
numbers using a different type of 8-bit full adder. After adding the exponents of two
inputs, the bias is subtracted from this using a 9-bit subtractor (to cater the carry of
addition) to obtain the final output.

E = (E1 + E2) − bias (2)

iii. The mantissa/significand for a binary number is represented by 0 to 22 bits as shown
in Table 1. Here, we are using array multiplier for this purpose as shown in Figure 1.
This involves the multiplication of 24-bit (23 fraction bits and one hidden bit) man-
tissas of two input numbers and results a 48-bit mantissa, which is then truncated to
24 bits.

M = M1 * M2 (3)

Figure 1. Block diagram of carry save array multiplier [4]

Table 1. Representation of SPFP number [1]

Sign bit Exponent Mantissa
b31 b31 b23 b22 b0

Figure 1. Block diagram of carry save array multiplier [4].

M = M1 ∗ M2 (3)

iv. As mentioned earlier, IEEE-754 standard floating point numbers always have one
‘1’ to the left of the binary point. We ignored the binary point while multiplying the
mantissa. Therefore, the lower 46 bits are placed to the left of the binary point in the

Eng. Proc. 2021, 12, 107 3 of 4

result. In this case, we have two possibilities, i.e., the binary point could be in 47th or
46th place.

• In the first case, no normalization is required if the leading ‘1’ bit is in 46th place (i.e.,
there is just one bit ‘1’ on the left), because the result is already normalized.

• In the second case, normalization is needed if the leading ‘1’ bit is at 47th place (i.e.,
it occurs one bit away from the binary point). So, mantissa needs to be shifted one
unit left, and consequently, the exponent also requires normalization, which is done
by adding one to it.

In the final product, the output should be of 23 bits only, so we round off over the
result. So, in the first case, we select [45:23], and in the second case, [46:24].

3. Adders for Comparison
3.1. Carry Look Ahead Adder (CLA)

This is just another kind of adder that contains carry propagation that, depending on
the input signal, can calculate the carry in advance. This adder can perform faster addition
than ripple carry adder, and it can also reduce the time delay [6].

3.2. Carry Skip Adder (CSA/CBA)

This adder is also known as carry bypass adder. It improves the ripple carry adder
by reducing the delay. In this method for the propagation of carry, skip logic is used. The
basic logic to propagate carry is that bit position remains unchanged for different values of
A1, B1 [7].

3.3. Carry Increment Adder (CIA)

Incremental circuit and ripple carry adders (RCA) are used in the layout of carry
increment adder (CIA). Half adders (HA) are used in making the design of incremental
circuit of CIA. Firstly, the total number of bits is split up into groups of 4 bits, and afterwards,
addition is accomplished by respective RCA [8].

4. Results

For simulation purposes, data flow and gate level modeling is selected in the Xilinx,
and the design is a composite, using Xilinx ISIM tool, Family Spartan6, device XC6SLX45,
and package CSG324. Two 32-bit numbers were multiplied using FPM, and the desired
result was obtained.

4.1. Comparison with the Literature

The proposed technique using different adders was compared with different research
papers, in which different adders and multipliers are used as shown in Table 2. The given
literature is compared with time delay, number of LUTs, and number of occupied slices of
below-mentioned techniques.

Table 2. Comparison with literature.

Description Proposed [9] [10]

Year 2021 2020 2020
FPGA Spartan 6 Cadence EDA Tool Altera Cyclone II

Multiplication
Algorithm

Carry Save Array
Multiplier Vedic multiplier Array Multiplier

Adder Algorithm CIA, CSA, CLA, RCA Kogge stone Modified CLA

4.2. Device Utilization Summary

Carry select adder (CSA) and carry increment adder (CIA) use minimum time delay,
81.716 ns, to perform the floating point multiplication. Moreover, CIA occupies minimum
number of slices, and CSA uses minimum number of slice LUTs as shown in Table 3.

Eng. Proc. 2021, 12, 107 4 of 4

Table 3. Device utilization summary.

Description
Ripple Carry

Adder-
(Used/Available)

Carry Skip
Adder

(Used/Available)

Carry Select
Adder

(Used/Available)

Carry Look
Ahead Adder

(Used/Available)

Carry Increment
(Used/Available)

Number of Slice LUTs 821/27,288 821/27,288 822/27,288 823/27,288 823/27,288
Occupied Slices 341/6822 352/6822 353/6822 347/6822 325/6822

Bonded IOBs 144/218 144/218 144/218 144/218 144/218
Average Fan-out 4.58 4.58 4.58 4.57 4.57

Total Delay 82.292 ns 81.783 ns 81.716 ns 82.138 ns 81.716 ns

5. Conclusions and Future Work

The major focus of this paper is to perform a 32-bit floating point multiplier that
supports IEEE 754 format; the multiplier performs significands multiplication, thus nor-
malizing the mantissa to obtain a 32-bit accurate output. The design may be implemented
on intel’s Stratix10NX, Heterogeneous FPGA in the future to obtain fastest multiplication
for higher bit numbers [11].

Author Contributions: Conceptualization by M.A.; Methodology by H.A. and Z.A.; Software by H.A.
and H.R.; Formal Analysis by Z.A. and H.R.; Investigation by M.A. and H.A.; Resources by M.A.; Data
curation by H.A.; writing original draft preparation by H.R. and Z.A.; writing review and editing by
M.A. and H.A.; Visualization by H.A.; Supervision by M.A.; project administration by H.A.; funding
acquisition by H.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Acknowledgments: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Floating Point Number. 754-2008 IEEE Standard for Floating-Point Arithmetic. 2008, pp. 1–70. Available online:

https://steve.hollasch.net/cgindex/coding/ieeefloat.html (accessed on 20 April 2021).
2. Manolopoulos, K.; Reisis, D.; Chouliaras, V.A. An efficient multiple floating point multiplier. In Proceedings of the 2011 18th IEEE

International Conference on Electronics, Circuits, and Systems, Beirut, Lebanon, 11–14 December 2011; pp. 153–156.
3. Weste, N.H.E.; Harris, D. CMOS VLSI Design: A Circuits and Systems Perspective, 3rd ed.; Pearson Education: London, UK, 2005;

pp. 345–356.
4. Digital Multipliers. Available online: https://www.ijemr.net/DOC/DigitalMultipliers-AReview(220-223)8aa5905d-5da5-4b50-

8b2e-f0bd850becb7.pdf (accessed on 17 May 2021).
5. Mangalath, N.S.; Priya, R.; Malathi, P. An efficient universal multi-mode floating point multiplier using Vedic mathematics.

In Proceedings of the IEEE 2014 International Conference on Advances in Communication and Computing Technologies
(ICACACT), Mumbai, India, 10–11 August 2014; pp. 1–4. [CrossRef]

6. Raahemifar, K.; Ahmadi, M. Fast carry-look-ahead adder. In Proceedings of the Engineering Solutions for the Next Millennium. 1999
IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411), Edmonton, AB, Canada, 9–12 May 1999.

7. Jom, S.; Asha, J. Hybrid Variable Latency Carry Skip Adder. In Proceedings of the International Conference on Circuits and
Systems in Digital Enterprise Technology (ICCSDET), Kottayam, India, 21–22 December 2018; pp. 1–6.

8. Devi, A.B.; Kumar, M.; Laishram, R. Design and Implementation of an Improved Carry Increment Adder. Int. J. VLSI Des.
Commun. Syst. 2016, 7, 21–27. [CrossRef]

9. Ramya, V.; Seshasayanan, R. Low power single precision BCD floating–point Vedic multiplier. Microprocess. Microsyst. 2020, 72,
102930. [CrossRef]

10. Krishnan, T.; Saravanan, S. Design of Low-Area and High Speed Pipelined Single Precision Floating Point Multiplier. In
Proceedings of the IEEE 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS),
Coimbatore, India, India 6–7 March 2020; pp. 1259–1264. [CrossRef]

11. McNamaraField, D. Programmable Gate Arrays Accelerate Applications from the Cloud to the Edge; Intel Corporation: Santa Clara, CA,
USA, 2021.

https://steve.hollasch.net/cgindex/coding/ieeefloat.html
https://www.ijemr.net/DOC/DigitalMultipliers-AReview(220-223)8aa5905d-5da5-4b50-8b2e-f0bd850becb7.pdf
https://www.ijemr.net/DOC/DigitalMultipliers-AReview(220-223)8aa5905d-5da5-4b50-8b2e-f0bd850becb7.pdf
http://doi.org/10.1109/EIC.2015.7230724
http://doi.org/10.5121/vlsic.2016.7103
http://doi.org/10.1016/j.micpro.2019.102930
http://doi.org/10.1109/ICACCS48705.2020.9074366

	Introduction
	Representation and Calculation of Floating Point in IEEE-754 Standard
	Adders for Comparison
	Carry Look Ahead Adder (CLA)
	Carry Skip Adder (CSA/CBA)
	Carry Increment Adder (CIA)

	Results
	Comparison with the Literature
	Device Utilization Summary

	Conclusions and Future Work
	References

