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Abstract: Robot manipulators have played an enormous role in the industry during the twenty-first
century. Due to the advances in materials science, lightweight manipulators have emerged with low
energy consumption and positive economic aspect regardless of their complex mechanical model
and control techniques problems. This paper presents a dynamic model of a single link flexible robot
manipulator with a payload at its free end based on the Euler–Bernoulli beam theory with a complete
second-order deformation field that generates a complete second-order elastic rotation matrix. The
beam experiences an axial stretching, horizontal and vertical deflections, and a torsional deformation
ignoring the shear due to bending, warping due to torsion, and viscous air friction. The deformation
and its derivatives are assumed to be small. The application of the extended Hamilton principle while
taking into account the viscoelastic internal damping based on the Kelvin–Voigt model expressed
by the Rayleigh dissipation function yields both the boundary conditions and the coupled partial
differential equations of motion that can be decoupled when the manipulator rotates with a constant
angular velocity. Equations of motion solutions are still under research, as it is required to study
the behavior of flexible manipulators and develop novel ways and methods for controlling their
complex movements.

Keywords: flexible manipulator; Euler-Bernoulli beam; Viscoelasticity; Kelvin-Voigt model; Rayleigh
dissipation function; extended Hamilton principle; partial differential equations

1. Introduction

The focus of robotics research in the last decade has been on building lightweight ma-
nipulators due to their low energy consumption despite their complex mechanical models
and control systems. Lightweight manipulators are considered flexible manipulators that
suffer from flexural effects, which leads to growing interest toward modeling and control
architecture of such systems. In general, the research is restricted to single-link flexible
manipulator [1] due to the intricacy of serial link flexible manipulators. In the literature, the
single link is usually modeled by one deformation parameter [2], and the kinematics of the
Euler–Bernoulli beam is usually approached by the assumed traditional deformation field
that cannot allow having an orthogonal elastic rotation matrix to the second-order. For this
article, the deformations and their partial derivatives are assumed to be small. The kine-
matic model described in Section 2.1 is based on the complete second-order deformation
field [3]. Section 2.2 presents the dynamics model that includes the kinetic energy and po-
tential energy of the system that is composed of gravitational and strain potential energies
due to gravity and elasticity. Section 2.3 takes into account the Rayleigh dissipation function
due to motor friction and the viscoelastic internal damping based on the Kelvin–Voigt
model. Section 2.4 gives the motion equations using the extended Hamilton principle that
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yields four partial differential equations satisfied by the deformation variables and seven
boundary conditions. Lastly, Section 3 deals with the decoupling of partial differential
equations in a particular case which allows small simplifications of the equations.

2. Mechanical Modeling

The system consists of a base subjected to an applied torque Tmot by a motor, a flexible
link modeled as an Euler–Bernoulli beam with a circular cross-section with radius R and
length L, and a payload with mass mp and inertia matrix Ip at the free end of the link. The
beam is subjected to an axial stretching u(x, t), a horizontal deflection v(x, t), a vertical
deflection w(x, t) and a torsional deformation φ(x, t), as shown in (Figure 1a,b) where the
axis Z1 is perpendicular to the ground. The beam deformations and their partial derivatives
are assumed to be small, and shear due to bending, warping due to torsion, and air viscous
friction are neglected. To simplify the notation, u(x, t), v(x, t), w(x, t), φ(x, t), d

dt (.),
d

dx (.)
are denoted by u, v, w, φ, ˙(.) and (.)′ respectively.

(a) Front view (b) Top view

Figure 1. Flexible beam with payload.

2.1. Kinematics

Let R0 be an inertial frame with origin O0, R1 a frame attached to the motor with
origin O1 that coincides with O0, and Rdm a frame attached to the cross-section of mass
dm whose axes are parallel to those of R1 before deformation and whose origin Odm is
the center of the cross-section that is at a distance x from O1 along the neutral axis of the
link before deformation. The rotation matrix ofR1 relative toR0 [4] is 0R1 = RZ0,θ which
means the frame R1 rotates by an angle θ of about Z0.

The position of Odm relative toR1 expressed inR1 after deformation [3] expressed by:

1−−−−→O1Odm = [x + u− 1
2

∫ x

0
(v′2 + w′2)ds, v, w]T (1)

The rotation matrix ofRdm relative toR1 after deformation [3] is:

1Rdm =


1− 1

2 (v
′2 + w′2) −v′ + u′v′ − w′φ −w′ + u′w′ + v′φ

v′ − u′v′ 1− 1
2 (v
′2 + φ2) −φ− 1

2 v′w′

w′ − u′w′ φ− 1
2 v′w′ 1− 1

2 (w
′2 + φ2)

 (2)



Eng. Proc. 2021, 11, 40 3 of 9

1Rdm is verified to be orthogonal to the second-order of Taylor expansion in the deformation
variables. Let P be a point of the cross-section with (x, y, z) its coordinates relative toR1 before
deformation. The position of P relative toR1 expressed inR1 after deformation [4] is

1−−→O1P =1 −−−−→O1Odm + 1Rdm
dm−−−→OdmP

where dm−−−→OdmP = [0, y, z]T and 0−−→O0P = 0R1
1−−→O1P.

LetR2 be a frame attached to the free end of the link whose origin is O2 and obtained
from Rdm by replacing x by L (for example v(x,t) at x=L becomes v(L, t), shortened vL).
If the position of the center of mass C of the payload relative to R2 expressed in R2 is
2−−→O2C = [c, 0, 0]T , then the position of C relative toR1 expressed inR1 is given by:

1−−→O1C = [L + uL −
1
2

∫ L

0
(v′2 + w′2)ds + c

(
1− 1

2
(v′2L + w′2L )

)
, vL + c(v′L − u′Lv′L), wL + c(w′L − u′Lw′L)]

T (3)

Since 1−−→O1C = 1−−−→O1O2 +
1R2

2−−→O2C, and 1R2 is deduced from 1Rdm by replacing x by
L; hence, 0−−→O0C = 0R1

1−−→O1C. The angular velocity ofR1 relative toR0 expressed inR0 is
0−−→Ω1/0 = [0, 0, θ̇]T . The angular velocity ofRdm relative toR1 expressed inR1 [4] is found
from the following matrix

S = 1Ṙdm
1RT

dm =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


Hence,

1−−−→Ωdm/1 = [ωx, ωy, ωz]
T

The Taylor expansion of 1−−−→Ωdm/1 to the second-order in the deformation variables
and after simplification gives:

ωx ≈ φ̇ +
1
2
(v′ẇ′ − v̇′w′) ωy ≈ −ẇ′ + u̇′w′ + u′ẇ′ + v′φ̇ ωz ≈ v̇′ − u̇′v′ − u′v̇′ + φ̇w′ (4)

Hence, the angular velocity ofRdm relative toR0 expressed inR0 is given by:

0−−−→Ωdm/0 = 0−−→Ω1/0 +
0R1

1−−−→Ωdm/1

The gravity vector is represented inR0 by: 0−→g = [0, 0,−g]T .

2.2. Dynamics
2.2.1. Kinetic Energy

The kinetic energy T of the system is the sum of kinetic energies: TB of the base, Tl of
the flexible link and Tp of the payload. Where TB = 1

2 IB θ̇2, with IB is the base inertia about
the Z0 axis. The kinetic energy of the link [5] is given by:

Tl =
1
2

∫∫∫
V

v(P/0)2dm =
1
2

∫ R

z=−R

∫ √R2−z2

y=−
√

R2−z2

∫ L

x=0
ρ v(P/0)2dxdydz (5)

Since the beam cross-section is circular, y2 + z2 = r2, r ∈ [0, R] and the last triple
integral is written [6] as:
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Tl =
1
2

∫ R

r=0

∫ 2π

γ=0

∫ L

x=0
ρv(P/0)2rdrdγdx (6)

where y = rcos(γ) , z = rsin(γ). Therefore, the kinetic energy of the link linearized to the
second-order and after simplifications is given by:

Tl =
ρ

2

{
πR2

∫ L

0
(u̇2 + v̇2 + ẇ2)dx +

1
4

πR4
∫ L

0
(v̇′2 + ẇ′2 + 2φ̇2)dx + θ̇2

[
1
3

πR2L3 +
1
4

πR4L + πR2
∫ L

0
(u2 + v2)dx+

1
4

πR4
∫ L

0
w′2dx + 2πR2

∫ L

0
xudx− 1

2
πR2

∫ L

0
(L2 − x2)(v′2 + w′2)dx

]
+ 2θ̇

[
πR2

∫ L

0
xv̇dx−

1
4

πR4
∫ L

0
(−v̇′ + u̇′v′ + u′v̇′ − 2w′φ̇)dx + πR2

∫ L

0
(uv̇− u̇v)dx

]} (7)

The kinetic energy of the payload [7] is expressed by :

Tp =
1
2
−−→
Ωp/0.Ip

−−→
Ωp/0 +

1
2

mpv(C/0)2 (8)

where Ip =

I1 I4 I5
I4 I2 I6
I5 I6 I3

 and
−−→
Ωp/0 is obtained from

−−−→
Ωdm/0 by replacing x by L; hence, the

expression of Tp linearized to the second-order in the deformation variables is given by:

Tp =
1
2

[
I1

(
φ̇2

Lcos(θ)2 + ẇ′2L sin(θ)2 + 2φ̇Lẇ′Lcos(θ)sin(θ)
)
+ I2

(
φ̇2

Lsin(θ)2 + ẇ′2L cos(θ)2 − 2φ̇Lẇ′Lcos(θ)sin(θ)
)

+ I3

(
θ̇2 + v̇′2L + 2θ̇(v̇′L − u̇′Lv′L − u′Lv̇′L + φ̇Lw′L)

)
+ 2I4

(
(φ̇2

L − ẇ′2L )cos(θ)sin(θ)− φ̇Lẇ′L
(
2cos(θ)2 − 1

))
+

2I5

(
θ̇

((
φ̇L +

1
2
(v′Lẇ′L − v̇′Lw′L)

)
cos(θ)− (−ẇ′L + u̇′Lw′L + u′Lẇ′L + v′Lφ̇L) sin(θ)

)
+ v̇′Lφ̇Lcos(θ) + v̇′Lẇ′Lsin(θ)

)
+ 2I6

(
θ̇

((
φ̇L +

1
2
(v′Lẇ′L − v̇′Lw′L)

)
sin(θ) + (−ẇ′L + u̇′Lw′L + u′Lẇ′L + v′Lφ̇L) cos(θ)

)
+ v̇′Lφ̇Lsin(θ)− v̇′Lẇ′Lcos(θ)

)]
+

1
2

mp

[
u̇2

L + v̇2
L + ẇ2

L + c2(v̇′2L + ẇ′2L ) + 2c(v̇Lv̇′L + ẇLẇ′L) + θ̇2
(

L2 + u2
L + v2

L + c2(1− w′2L ) + 2L
[
uL −

1
2

∫ L

0
(v′2 + w′2)ds+

c
(
1− 1

2
(v′2L + w′2L )

)]
+ 2c(uL + vLv′L)− c

∫ L

0
(v′2 + w′2)ds

)
+ 2θ̇

((
L + c

)(
v̇L + c(v̇′L − u̇′Lv′L − u′Lv̇′L)

)
+ uL(v̇L + cv̇′L)−

u̇L(vL + cv′L)
)]

(9)

2.2.2. Potential Energy

The potential energy V of the system is the sum of potential energies:VB of the base ,
Vl of the flexible link and Vp of the payload. The potential energy VB of the base which is
its gravitational potential energy equals a constant CB because its mass center is fixed in
the inertial frameR0 whose origin level is taken as reference VB = CB.The potential energy
of the link is the sum of its gravitational potential energy and its strain energy:

Vl = Vgravit + Vstr (10)

Vgravit is the gravitational potential energy of the link [7] that equals:

Vgravit = −
∫ R

r=0

∫ 2π

γ=0

∫ L

x=0

−→g −−→O0Pρrdrdγdx = ρgπR2
∫ L

x=0
wdx (11)
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Vstr is the strain energy of the link [8] and it is the sum of strain energies due to
different strains:

Vstr = Vu + Vv + Vw + Vφ (12)

The expressions of different strain energies [9] are:

Vu =
1
2

∫∫∫
V

Eu′2dV =
1
2

πR2E
∫ L

0
u′2dx Vv =

1
2

∫∫∫
V

Ev′′2y2dV =
1
8

πR4E
∫ L

0
v′′2dx Vw =

1
2

∫∫∫
V

Ew′′2z2dV =
1
8

πR4E
∫ L

0
w′′2dx

Vφ =
1
2

∫∫∫
V

Gr2φ′2dV =
1
4

πR4G
∫ L

0
φ′2dx

where E and G are the young modulus and the shear modulus of the beam material respec-
tively. The potential energy of the payload is its gravitational potential energy that equals:

Vp = −mp
−→g −−→O0C = mpg

(
wL + c(w′L − u′Lw′L)

)
(13)

2.3. Rayleigh Dissipation Function

Rayleigh dissipation function R expresses the energy dissipated due to motor friction
and internal damping effect of each deformation (u, v, w, φ), the dissipation is based on the
Kelvin–Voigt model [10], and can be expressed [11] as follows:

R = Rmot +Ru +Rv +Rw +Rφ (14)

where

Ru =
1
2

∫∫∫
V

σd
u ε̇udV =

1
2

πR2CX

∫ L

x=0
u̇′2dx Rv =

1
2

∫∫∫
V

σd
v ε̇vdV =

1
8

πR4CY

∫ L

x=0
v̇′′2dx Rw =

1
2

∫∫∫
V

σd
w ε̇wdV =

1
8

πR4CZ

∫ L

x=0
ẇ′′2dx

Rφ =
1
2

∫∫∫
V

τd
φ γ̇φdV =

1
4

πR4CΦ

∫ L

x=0
φ̇′2dx Rmot =

1
2

bm θ̇2

Since

|εu|= |u′| , σd
u = CX ε̇u, |εv|= |yv′′|= |rcos(γ)v′′| , σd

v = CY ε̇v,

|εw|= |zw′′|= |rsin(γ)w′′| , σd
w = CZ ε̇w, |γφ|= |rφ′| and τd

φ = CΦγ̇φ.

2.4. Motion Equations

The extended Hamilton principle [12] is used to get motion equations and bound-
ary conditions: 0 =

∫ t2
t1
(δT − δV + Tmot δθ + δζ)dt where δζ is the variation of work

done by the dissipative forces, its expression is derived from Rayleigh dissipation func-
tion as follows: If the expression of Rayleigh dissipation function is given by: R =
1
2

∫∫∫
V σd ε̇ dV, then the expression of work variation δζ done by dissipative forces is:

δζ = −
∫∫∫

V σd δε dV . Hence, using the fact that the beam is clamped at the joint i.e.,
u(0, t) = v(0, t) = w(0, t) = φ(0, t) = 0, v′(0, t) = w′(0, t) = 0

The dynamic equation associated with θ is given by:
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Tmot = bm θ̇ +
1
2

IB θ̈ −
[

I1

(
cos(θ)sin(θ)(ẇ′2L − φ̇2

L) + φ̇Lẇ′L(2cos(θ)2 − 1)
)
+ I2

(
cos(θ)sin(θ)(φ̇2

L − ẇ′2L )− φ̇Lẇ′L(2cos(θ)2 − 1)
)

+ I4

(
(φ̇2

L − ẇ′2L )(2cos(θ)2 − 1) + 4φ̇Lẇ′Lcos(θ)sin(θ)
)
+ θ̇
[
(φ̇L +

1
2
(v′Lẇ′L − v̇′Lw′L))(−I5sin(θ) + I6cos(θ))+

(−ẇ′L + u̇′Lw′L + u′Lẇ′L + v′Lφ̇L)(−I5cos(θ)− I6sin(θ))
]
+ v̇′L

[
φ̇L
(
− I5sin(θ) + I6cos(θ)

)
+ ẇ′L

(
I5cos(θ) + I6sin(θ)

)]
−

∂

∂t

(
I3
(
θ̇ + v̇′L − u̇′Lv′L − u′Lv̇′L + φ̇Lw′L

)
+ (φ̇L +

1
2
(v′Lẇ′L − v̇′Lw′L))(I5cos(θ) + I6sin(θ))+

(−ẇ′L + u̇′Lw′L + u′Lẇ′L + v′Lφ̇L)(−I5sin(θ) + I6cos(θ)) + mp

{
θ̇

(
L2 + u2

L + v2
L + c2(1− w′2L ) + 2L

[
uL −

1
2

∫ L

0
(v′2 + w′2)ds+

c
(
1− 1

2
(v′2L + w′2L )

)]
+ 2c(uL + vLv′L)− c

∫ L

0
(v′2 + w′2)ds

)
+
(

L + c
)(

v̇L + c(v̇′L − u̇′Lv′L − u′Lv̇′L)
)
+ uL(v̇L + cv̇′L)−

u̇L(vL + cv′L)
})]

+
ρ

2

{
∂

∂t

(
2θ̇

[
1
3

πR2L3 +
1
4

πR4L + πR2
∫ L

0
(u2 + v2)dx +

1
4

πR4
∫ L

0
w′2dx + 2πR2

∫ L

0
xudx−

1
2

πR2
∫ L

0
(L2 − x2)(v′2 + w′2)dx

])
+

2
∂

∂t

(
πR2

∫ L

0
xv̇dx− 1

4
πR4

∫ L

0
(−v̇′ + u̇′v′ + u′v̇′ − 2w′φ̇)dx + πR2

∫ L

0
(uv̇− u̇v)dx

)}

(15)

? The equation satisfied by u:

0 =
ρ

2

(
− 2πR2ü + 2πR2θ̇2u + 2πR2θ̇2x + πR2(4θ̇v̇ + 2θ̈v)− 1

2
πR4θ̈v′′

)
+ πR2CX u̇′′ + πR2Eu′′ (16)

? The equation satisfied by v:

0 =
ρ

2

(
− 2πR2v̈ +

1
2

πR4v̈′′ + 2πR2θ̇2v− πR2θ̇2(2xv′ + (x2 − L2)v′′)− πR2(4θ̇u̇ + 2θ̈u + 2xθ̈)− 1
2

πR4θ̈u′′
)

− 1
4

πR4CY v̇′′′′ − 1
4

πR4Ev′′′′ + mp θ̇2(L + c)v′′
(17)

? The equation satisfied by w:

0 =
ρ

2

(
− 2πR2ẅ +

1
2

πR4ẅ′′ − 1
2

πR4θ̇2w′′ − πR2θ̇2(2xw′ + (x2 − L2)w′′)− πR4θ̇φ̇′
)
− 1

4
πR4CZẇ′′′′ + mp θ̇2(L + c)w′′

− 1
4

πR4Ew′′′′ − ρgπR2
(18)

? The equation satisfied by φ:

0 =
ρ

2

(
− πR4φ̈− πR4(θ̈w′ + θ̇ẇ′)

)
+

1
2

πR4CΦφ̇′′ +
1
2

πR4Gφ′′ (19)

? Since the free end of the beam is at x = L, the following quantities δuL, δu′L, δvL, δv′L,
δwL, δw′L, and δφL are arbitrary, therefore the final equations of boundary conditions are:

0 = −πR2CX u̇′L +
ρ

4
πRθ̈v′L − πR2Eu′L −

∂

∂t

[
mp

(
u̇L − θ̇(vL + cv′L)

)]
+ mp

[
θ̇2(uL + L + c) + θ̇(v̇L + cv̇′L)

]
(20)

0 = − ∂

∂t

[
− I3θ̇v′L + w′L

(
− I5θ̇sin(θ) + I6θ̇cos(θ)

)
−mp θ̇c(L + c)v′L

]
− I3θ̇v̇′L − I5θ̇ẇ′Lsin(θ) + I6θ̇cos(θ)ẇ′L −mp θ̇c(L + c)v̇′L

+ mpgcw′L

(21)
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0 =
1
4

πR4CY v̇′′′L −
ρ

4
πR4v̈′L +

ρ

4
πR4θ̈(u′L − 1) +

1
4

πR4Ev′′′L −
∂

∂t

[
mp

(
v̇L + cv̇′L + θ̇(L + c + uL)

)]
+

mp

(
θ̇2(vL + cv′L)− θ̇u̇L − θ̇2(L + c)v′L

) (22)

0 = −1
4

πR4CY v̇′′L −
1
4

πR4Ev′′L −
∂

∂t

[
I3

(
v̇′L + θ̇(1− u′L)

)
+ I5

(
− 1

2
θ̇w′Lcos(θ) + φ̇Lcos(θ) + ẇ′Lsin(θ)

)
+

I6

(
− 1

2
θ̇w′Lsin(θ) + φ̇Lsin(θ)− ẇ′Lcos(θ)

)
+ mp

(
c2v̇′L + cv̇L + θ̇c(L + c)(1− u′L) + θ̇cuL

)]
− I3θ̇u̇′L+

I5

(
1
2

θ̇ẇ′Lcos(θ)− θ̇φ̇Lsin(θ)
)
+ I6

(
1
2

θ̇ẇ′Lsin(θ) + θ̇φ̇Lcos(θ)
)
+ mp

(
θ̇2(−Lcv′L + cvL)− θ̇c(L + c)u̇′L − θ̇cu̇L

) (23)

0 =
1
4

πR4CZẇ′′′L +
1
4

πR4Ew′′′L −mpg− ρ

4
πR4ẅ′L +

ρ

4
πR4θ̇2w′L +

ρ

2
πR4θ̇φ̇L −mp(ẅL + cẅ′L)−mp θ̇2(L + c)w′L (24)

0 = −1
4

πR4CZẇ′′L −
1
4

πR4Ew′′L −mpgc(1− u′L)−
∂

∂t

[
I1

(
sin(θ)2ẇ′L + cos(θ)sin(θ)φ̇L

)
+ I2

(
cos(θ)2ẇ′L − cos(θ)sin(θ)φ̇L

)
+

I4

(
− 2ẇ′Lcos(θ)sin(θ)− φ̇L(2cos(θ)2 − 1)

)
+ I5

(
1
2

θ̇v′Lcos(θ) + sin(θ)
(
v̇′L − θ̇(u′L − 1)

))
+

I6

(
1
2

θ̇v′Lsin(θ) + cos(θ)
(
− v̇′L + θ̇(u′L − 1)

))
+ mp

(
c2ẇ′L + cẇL

)]
+ I3θ̇φ̇L + I5

(
− 1

2
θ̇v̇′Lcos(θ)− θ̇u̇′Lsin(θ)

)
+

I6

(
− 1

2
θ̇v̇′Lsin(θ) + θ̇u̇′Lcos(θ)

)
−mp θ̇2c(L + c)w′L

(25)

0 = −1
2

πR4CΦφ̇′L −
1
2

πR4Gφ′L −
∂

∂t

[
I1

(
cos(θ)2φ̇L + cos(θ)sin(θ)ẇ′L

)
+ I2

(
sin(θ)2φ̇L − cos(θ)sin(θ)ẇ′L

)
+

I4

(
2cos(θ)sin(θ)φ̇L − ẇ′L(2cos(θ)2 − 1)

)
+ I5

(
(θ̇ + v̇′L)cos(θ)− θ̇v′Lsin(θ)

)
+ I6

(
(θ̇ + v̇′L)sin(θ) + θ̇v′Lcos(θ)

)] (26)

u, v, φ must also satisfy these conditions: u(x, 0) = limt→∞ u(x, t) = 0, v(x, 0) =
limt→∞ v(x, t) = 0, φ(x, 0) = limt→∞ φ(x, t) = 0 and w must satisfy w(x, 0) = limt→∞ w(x, t)

= w̃(x) whose expression [13] is given by: w̃′(x) = tan
(

x(2a−x)
2b

)
, since w̃(0) = 0, then

w̃(x) =
∫ x

0 tan
(

l(2a−l)
2b

)
dl, where a = L− δ, b = EI

F , the expression of the foreshortening

δ term due to beam bending [14] is given by: δ = − 1
2

∫ L
0 w̃′2(x)dx, where payload weight F

equals mpg, and beam area second moment I equals:I =
∫∫

y2dydz = πR4

4 .

3. Discussion

Considering the reference of angle θ is zero when the manipulator is at rest (t = 0) and
the angular velocity is constant (θ̇ = Ω), then θ and θ̇ are replaced by Ωt and Ω respectively
in the equations of the previous section. Equation (16) yields u̇ = L1(v), taking the time
derivative of Equation (15) and using the last expression yields L2(v) = 0. Equation (17)
yields φ̇

′
= L3(w) + c, taking both time and spatial derivatives of Equation (18) and using

the last expression yields L4(w) = 0, where c is a constant and L1, L2, L3, L4 are linear
operators. Hence, the motions equations are decoupled but the boundary conditions are
still coupled. The goal of future work is to develop a numerical method for solving previous
partial differential equations with coupled boundary conditions while ensuring the stability
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of the solutions. Once the solutions are found, the mechanical modeling will be generalized
to flexible manipulators with serial links where the payload attached to each link is the rest
of the chain.

4. Conclusions

Modeling the single-link flexible manipulator as an Euler–Bernoulli beam with a pay-
load at its free end subjected to small deformations, and using a rotation matrix orthogonal
to the second-order of Taylor expansion in the deformations variables, the extended Hamil-
ton principle is applied to get both the motion equations and boundary conditions. The
motion partial differential equations are decoupled when the angular velocity is constant.
Once the solutions are available, it will help to study more accurately the movements of
flexible manipulators and to find new techniques for robust control of such systems.
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Nomenclature

Tmot Torque applied by the motor
R Beam cross section radius
L Beam length
mp Payload mass
Ip Payload inertia matrix
u(x, t) Axial stretching
v(x, t) Horizontal deflection
w(x, t) Vertical deflection
φ(x, t) Torsional deformation
R0 Inertial frame
R1 Motor frame
Rdm Cross section frame
R2 Beam free end frame
O0,O1,Odm,O2 Origins of frames R0,R1,Rdm,R2 respectively
C Payload center of mass
i−→v Vector v expressed in frame Ri
0−−→Ω1/0 Rotation vector of frame R1 relative to R0 expressed in R0
0−−−→Ωdm/0 Rotation vector of frame Rdm relative to R0 expressed in R0
1−−−→Ωdm/1 Rotation vector of frame Rdm relative to R1 expressed in R1

wx,wy,wz
1−−−→Ωdm/1 coordinates in frame R1

T,TB,Tl ,Tp Kinetic energy of the system,base,link,payload
I1,I2,I3,I4,I5,I6 Inertia matrix coefficients
ρ Beam mass density
θ Rotation angle of frame R1 relative R0
V,VB,Vl ,Vp Potential energy of the system,base,link,payload
Vgravit,Vstr link gravitational and strain potential energy
Vu,Vv,Vw,Vφ Strain energies due to u, v, w, φ

Rmot,Ru,Rv,Rw,Rφ Rayleigh dissipation function due to motor,u,v,w,φ
E, G Beam young moduls and shear modulus
εu, εv, εw strains due to u, v, w
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σd
u , σd

v , σd
w, τd

φ stress due to internal damping caused by u,v,w and
CX , CY , CZ Internal damping coefficient along x1,y1,z1 axis
γφ,τd

φ Shear strain and shear stress due to torsional damping
ζ, F Work done by dissipative forces and payload weight
δ, bm Foreshortening term,motor viscous friction coefficient
Cφ, I Torsional deformation coefficient, area second moment
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