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Abstract

Crop pathogens threaten global agriculture by causing severe yield and economic losses.
Conventional detection methods are often slow and inaccurate, limiting timely interven-
tion. This study introduces a pentagon-shaped terahertz photonic crystal fiber (THz PCF)
biosensor, optimized with the decision cascaded 3D return dilated secretary-bird aligned
convolutional transformer network (DC3D-SBA-CTN). The biosensor is designed to detect
a broad spectrum of pathogens, including fungi (e.g., Fusarium spp.) and bacteria (e.g.,
Xanthomonas spp.), by identifying their unique refractive index signatures. Integrating
advanced neural networks and optimization algorithms, the biosensor achieves a detection
accuracy of 99.87%, precision of 99.65%, sensitivity of 99.77%, and specificity of 99.83%, as
validated by a 5-fold cross-validation protocol. It offers high sensitivity (up to 7340 RIU~1),
low signal loss, and robust performance against morphological variations, making it adapt-
able for diverse agricultural settings. This innovation enables rapid, precise monitoring of
crop pathogens, revolutionizing plant disease management.

Keywords: Pentagon-shaped THz photonic crystal fiber biosensor; early detection of crop
pathogens; cascaded 3D dilated convolutional neural network (CD-Net); return-aligned
decision transformer (RADT); secretary-bird optimization algorithm (SBOA)

1. Introduction

Global food security is critically threatened by crop pathogens, including fungi, bac-
teria, and viruses, which are responsible for substantial annual yield losses exceeding
20-40% [1]. Early and accurate detection is the cornerstone of effective plant disease
management, enabling timely intervention and minimizing economic and agricultural
damage [2]. Khan et al. (2021) [3] reviewed advanced biosensing techniques that integrate
nano-biosensors with machine learning algorithms for early pathogen detection, showing
significant improvements in detection accuracy and paving the way for IoT- and Al-based
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solutions. These limitations frequently lead to delayed diagnoses, allowing pathogens to
spread unchecked and cause irreversible damage to crop.

Terahertz (THz) photonic crystal fiber (PCF) biosensors have emerged as a promising
technological solution, offering non-destructive, label-free detection by probing the unique
vibrational and rotational modes of pathogen biomolecules [4]. However, current THz-
PCF designs often face significant challenges, including high confinement loss, limited
sensitivity to specific pathogen types, and insufficient robustness against the morphological
variations found in real-world agricultural samples [5]. Furthermore, while the integration
of artificial intelligence (Al) for automated feature extraction and decision-making has
been explored in medical diagnostics [6], its application remains nascent for agricultural
biosensing. A critical research gap exists for a highly sensitive, robust, and Al-optimized
THz-PCF biosensor capable of rapid, in-field pathogen detection.

To bridge this gap, this study introduces a novel pentagon-shaped THz-PCF biosen-
sor optimized by a bespoke deep learning architecture, the decision cascaded 3D return
dilated secretary-bird aligned convolutional transformer network (DC3D-SBA-CTN). This
work is motivated by the urgent need to overcome the shortcomings of both traditional
biological assays and existing optical biosensors. The proposed system synergizes ad-
vanced photonic design with state-of-the-art neural networks to achieve unprecedented
detection performance.

While existing THz-based approaches have made progress, they often suffer from
three key limitations that hinder their practical deployment: (1) a focus on optimizing sen-
sor geometry or data analysis algorithms in isolation, leading to suboptimal system-level
performance where the sensor and Al are not perfectly matched; (2) a lack of demonstrated
robustness against the significant morphological and compositional variations found in
real-world agricultural samples, leading to potential false readings; and (3) limited use of
advanced Al co-design and metaheuristic optimization for real-time, precise feature extrac-
tion and decision-making tailored to the specific sensor’s output. Our proposed method
uniquely addresses this gap through a holistic co-design strategy that simultaneously
optimizes the photonic sensor’s parameters and the Al model’s architecture and weights,
creating a synergistic system where each component enhances the other’s performance for
unparalleled detection capabilities.

The contributions of this manuscript are summarized as follows:

e Innovative Biosensor Design: A pentagon-shaped THz-PCF structure engineered for
enhanced light-matter interaction, leading to high sensitivity and low signal loss for
detecting biochemical changes induced by pathogens.

e Advanced Al Integration: The novel DC3D-SBA-CTN framework, which integrates
a cascaded 3D dilated convolutional neural network (CD-Net) for robust multi-
scale feature extraction and a Return-Aligned Decision Transformer (RADT) for
precise classification.

e  Metaheuristic Optimization: Employing the secretary-bird optimization algorithm
(SBOA) to fine-tune the network parameters, significantly enhancing detection accu-
racy and model efficiency.

e  Superior Performance: Demonstration of a detection accuracy of 99.9%, alongside high
precision, sensitivity, and specificity, outperforming existing state-of-the-art methods.

e  Practical Robustness: The biosensor exhibits strong performance against morphologi-
cal variations and is adaptable for diverse agricultural environments, paving the way
for real-time, precision plant disease management.

To contextualize these contributions, Section 2 critically reviews the existing literature
on THz-PCF biosensors and deep learning for pathogen detection, identifying the specific
research gaps that this work aims to address. The suggested methodologies are explained
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in detail in Section 3, the results and discussions are presented in Section 4, and future
research directions are concluded in Section 5.

2. Related Works

The pursuit of early and accurate crop pathogen detection has led to significant
exploration of both novel sensing modalities and advanced data analysis techniques. This
section critically reviews recent advancements (2020-2024) in terahertz photonic crystal
fiber (THz-PCF) biosensors and the application of deep learning in plant disease diagnostics,
synthesizing their strengths and limitations to clearly define the research gap addressed by
our proposed method.

Terahertz biosensing has gained traction for agricultural applications due to its non-
ionizing nature and ability to probe biomolecular vibrations [4]. Photonic crystal fibers
provide an excellent platform for enhancing THz wave-analyte interaction. Similarly, other
designs often prioritize a single performance metric, such as sensitivity, potentially at
the cost of overall robustness and practical adaptability to the complex dielectric prop-
erties of plant tissues [7]. Recent studies have focused on optimizing PCF geometry for
improved performance. For instance, Vaijayanthimala et al. (2024) [8] evaluated various
PCF structures for clinical biosensing in the THz regime, demonstrating the critical impact
of core design and air-hole arrangement on sensitivity and confinement loss. Their work
underscores the potential of geometric innovation in PCFs but remains focused on human
health applications, leaving a gap in optimized designs for agricultural pathogens.

Concurrently, deep learning models have revolutionized the analysis of complex bio-
logical data. In plant pathology, convolutional neural networks (CNNs) have been widely
adopted for image-based disease classification. Zhang et al. (2024) [9] proposed a cascaded
3D dilated CNN (CD-Net) for precise pneumonia lesion segmentation in medical imaging,
demonstrating the efficacy of multi-scale feature extraction and cascaded architectures for
handling class imbalance—a challenge directly applicable to pathogen detection in plant
imagery. However, its application remains untested in an agricultural biosensing context.
For sequential decision-making and feature alignment, transformer architectures have
shown promise. Tanaka et al. (2024) [10] introduced a return-aligned decision transformer
(RADT) that conditions actions on desired returns, improving goal-oriented behavior in
tasks. This principle of alignment is highly relevant to optimizing sensor output for a
specific detection goal, yet its integration with biosensor data is novel.

The integration of these two fields—advanced biosensors and sophisticated Al—is still
in its infancy, particularly for agriculture. Some studies have begun to explore this fusion.
Fu et al. (2024) [11] applied metaheuristic algorithms like the secretary bird optimization
algorithm (SBOA) to global optimization problems, showcasing their potential for fine-
tuning complex systems. Rahmani et al. (2023) [12] proposed using nano biosensors with
neural networks for early pathogen prediction, highlighting the trend towards IoT and
Al-driven solutions. However, their work often relies on indirect sensing parameters rather
than direct optical biosensing. Nevertheless, a review of the literature reveals that a holistic
approach that co-designs a specialized THz-PCF biosensor with a tailored deep learning
architecture, optimized end-to-end by a metaheuristic algorithm, is lacking.

In summary, while existing research has made progress in silos, key limitations persist:

e Isolated Development: THz-PCF designs are often optimized without consideration
for the Al models that will interpret their data, and vice versa.

e Limited Robustness: Many Al models for plant disease are trained on ideal im-
ages and lack robustness against the noise and variability inherent in real-world
biosensor signals.
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e  Suboptimal Performance: Without co-design and global optimization, systems operate
below their potential peak performance in terms of accuracy, sensitivity, and speed.

This work directly addresses these gaps by proposing a tightly integrated system: a
pentagon-shaped THz-PCF biosensor whose operation is fundamentally enhanced by the
DC3D-SBA-CTN—a network that synergizes CD-Net’s multi-scale feature extraction [9]
with RADT’s decision-alignment [10], all globally optimized by SBOA [11]. This approach
moves beyond simply connecting a sensor to an Al model; it represents a cohesive co-design
strategy for superior agricultural pathogen detection.

In summary, while existing research has made progress in silos, key limitations per-
sist. The overarching problem remains that crop pathogens continue to threaten global
agricultural output, causing significant yield and financial losses. Traditional detection
methods are slow, imprecise, and unable to facilitate quick intervention, making effective
pathogen mitigation difficult. The current state-of-the-art, as reviewed, often presents
isolated solutions that fail to address the need for a rapid, precise, and robust integrated
system. This work is therefore proposed to directly address these issues by introducing
a cohesive co-design strategy that synergizes an optimized pentagon-shaped THz-PCF
biosensor with a tailored deep learning architecture, the DC3D-SBA-CTN, for superior
agricultural pathogen detection.

3. Suggested Methodologies

Building on the identified need for an integrated sensor-Al system, the proposed
methodology involves the co-design of a pentagon-shaped THz-PCF biosensor and its op-
timization through a novel deep learning framework, the DC3D-SBA-CTN. The overall
workflow of this framework is illustrated in Figure 1. The proposed DC3D-SBA-CTN
framework operates through an integrated workflow, illustrated in Figure 1, which syn-
ergizes photonic sensing with deep learning optimization. The process begins with the
generation of simulated THz transmission data from the pentagon-shaped PCF biosensor.
These data are then fed into the cascaded 3D dilated CNN (CD-Net) block for multi-scale
feature extraction, identifying pathogen-specific signatures from the complex sensor output.
These features are subsequently processed by the return-aligned decision transformer (RADT)
to make a precise classification decision. Crucially, the secretary bird optimization algorithm
(SBOA) iteratively tunes the weight parameters of the entire CD-Net-RADT model, maxi-
mizing detection accuracy and forming a closed-loop optimization system that also informs
the ideal biosensor design parameters.

3.1. Pentagon-Shaped THz-PCF Biosensor: Design and Simulation

The pentagon-shaped THz biosensor using photonic crystal fiber (PCF) electromagnet-
ically models THz wave interactions with the sample to determine the analyte’s refractive
index to detect agricultural diseases early [8]. Electromagnetic equations for refractive in-
dex extraction include the electric field distribution and the system’s transfer function—the
reference electric field, real part, and sample-induced modifications. Fresnel transmission,
reflection, propagation, and material-dependent phase change factors control the sam-
ple’s effect on the incident electric field. The biosensor’s THz transmission and reflection
depend on Fresnel coefficients, which are the complex refractive index and extinction
coefficient. Sensor precision and detection improve with experimental-theoretical transfer
function minimization.

3.1.1. Geometric Design and Material Properties

The proposed biosensor is based on a pentagon-shaped photonic crystal fiber (PCF)
design. The core is comprised of a single central air hole, chosen to enhance the evanes-
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cent field overlap with the target analyte. The cladding is formed by five elliptical air
holes arranged in a pentagonal lattice structure to achieve high birefringence and tunable
dispersion properties. The fiber is designed to operate efficiently within the 1.0-3.0 THz
frequency range.

Pent: Shaped THz Ph ic Crystal Fiber
Biosensor for Early Detection of Crop Pathogens
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Figure 1. Workflow of the proposed decision cascaded 3D return dilated secretary-bird aligned
convolutional transformer network (DC3D-SBA-CTN) for optimizing the pentagon-shaped THz-
PCF biosensor. The process begins with (1) generating simulated THz transmission data from
the biosensor for various analyte Rls. (2) These data are processed by the cascaded 3D dilated
CNN (CD-Net) for robust, multi-scale feature extraction and segmentation of pathogen-specific
signals. (3) The extracted features are then passed to the return-aligned decision transformer
(RADT) for precise classification and alignment of the detection outcome with the target sensitivity.
(4) The secretary bird optimization algorithm (SBOA) iteratively tunes the weight parameters of the
entire CD-Net-RADT model to maximize detection accuracy and minimize loss. This optimized
model then informs the design refinement of the biosensor itself, creating a closed-loop, co-design
optimization system.

The geometric parameters were optimized through parametric sweeps:
Lattice Pitch (A): 450 um

Diameter of Cladding Air Holes (d_clad): 220 pm

Diameter of Central Core Air Hole (d_core): 120 um

Core Diameter: 310 um

The background material is Topas, a cyclic olefin copolymer, selected for its low
absorption loss (~0.2 cm~!) and nearly constant refractive index (n ~ 1.53) in the THz
regime [13]. The air holes are filled with the analyte (e.g., infected plant tissue suspension),
whose refractive index change is the target for detection.
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3.1.2. Numerical Simulation Setup

The electromagnetic properties of the designed PCF were analyzed using the finite
element method (FEM) in COMSOL Multiphysics V5.6®. A perfectly matched layer (PML)
boundary condition was applied to absorb radiating waves and simulate an open boundary.
The computational domain was discretized with an extremely fine mesh consisting of
~125,000 triangular elements to ensure solution accuracy. Mesh independence was verified
by refining the mesh until the change in effective mode index was less than 1 x 107°. The
solver computed the fundamental modal properties, including the effective refractive index,
confinement loss, and electric field distribution for each analyte RI value.

3.1.3. Refractive Index Extraction and Minimization Constraints

Minimization constraints control refractive index variations, core sizes, and air gap
sizes to optimize biosensor performance. This study accurately detects pathogens using
optimized refractive index values from 1.5 (biological tissue or water) to 3.0 (Gallium
Phosphide or diamond). Air gap spacing between lattice constituents is optimized in
0.5 mm to 1.0 mm to improve THz wave confinement and reduce transmission loss for
sensitive and efficient agricultural pathogen detection.

Minimization Constraints:

To detect crop pathogens early, the pentagon-shaped THz photonic crystal fiber (PCF)
biosensor optimization procedure has constraints. The refractive index, core dimensions,
and air gap sizes can vary within a mathematical model given in Equation (1):

min p(B), subject to 1)

n € [1.5;3], with An = 1.1072
n(B).g(B)

g € [0;1], with Ag = 1.1073

The biosensor detects pathogen-induced biochemical changes in crops accurately and
sensitively. Biological fluids, plant tissues, and high-refractive-index materials like Gallium
Phosphide and diamond have 1.5-3.0 refractive indices for pathogen biomarker interaction.
Additionally, air gaps between lattice elements are carefully adjusted between 0.5 mm and
1.0 mm to maximize THz wave confinement and reduce transmission loss. For reliable and
robust pathogen sensing in agriculture, strict minimization requirements ensure real-world
feasibility and sensor performance.

The DC3D-SBA-CTN optimizes the THz-PCF biosensor for reliable pathogen detection
in agriculture. The electromagnetic performance of this designed biosensor generates
complex data patterns. To accurately interpret these patterns and extract meaningful
pathogen signatures, a sophisticated deep learning model is required, as described in the
following subsection.

3.2. DC3D-SBA-CTN Enhances the Sensitivity of Biosensors for Robust and Reliable Pathogen
Detection in Agricultural Applications

The sensitivity and reliability of the biosensor are significantly enhanced by the deci-
sion cascaded 3D return dilated secretary-bird aligned convolutional transformer network
(DC3D-SBA-CTN). This network is designed specifically to process the multi-dimensional
data output from the THz-PCF sensor. Dilated decision cascaded 3D return the secretary-
bird aligned convolutional transformer network (DC3D-SBA-CTN) enhances biosensor
sensitivity for accurate agricultural pathogen detection. Feature extraction and classifica-
tion are improved by a 3D dilated convolutional neural network with cascade (CD-Net) [9]
and RADT [10]. Secretary-bird optimization algorithm [11] optimizes model parameters
for better decision-making and adaptability. Dilated convolutions for multi-scale spatial
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feature capture and transformer-based decision alignment help DC3D-SBA-CTN detect
pathogen-induced biochemical changes with high precision in agricultural biosensing.

3.2.1. Cascaded 3D Dilated Convolutional Neural Network (CD-Net) for Robust and
Reliable Pathogen Detection in Agricultural Applications

Precision segmentation models for high-resolution data are needed for agricultural
plant pathogen detection. A cascaded model called 3D dilated convolutional neural net-
work with cascade (CD-Net) uses coarseNet and fineNet to improve segmentation precision.
CD-Net pathogen segmentation is robust thanks to MPDC blocks and cascade-wise atten-
tion mechanisms.

Architectural Design of CD-Net

CD-Net consists of two primary components:

1. CoarseNet: A down-sampled, low-resolution segmentation network.
FineNet: A high-resolution segmentation network utilizing cascade-wise attention.

Let {Py, P, ..., Py} represent a set of normalized high-resolution plant pathology
images. Initially, each high-resolution image P; is down-sampled to one-eighth of its

original resolution, resulting in a set {131, 132, ., ﬁm } CoarseNet uses these down-sampled
photos as training data, which follows the classical 3D U-Net architecture.

Multi-Pathway Dilated Convolution (MPDC) Block

The MPDC block enhances the encoding capability by incorporating multi-scale con-
volutions while reducing computational cost. The encoder consists of four MPDC blocks
are included in the decoder and three groups of standard 3D convolutions.

Each MPDC block contains:

e Astandard 3 x 3 x 3 convolution layer.
e A max-pooling layer thatis 3 x 3 x 3.
e Two convolutional layers that are dilated at rates of four and eight.

The four MPDC blocks generate feature maps with 64, 128, 256, and 512 channels,
respectively. The outputs from all parallel layers within an MPDC block are concate-
nated along the channel dimension, followed by a 1 x 1 x 1 convolutional layer to
reduce dimensionality.

Cascade-Wise Attention Mechanism

The cascade-wise attention mechanism integrates coarse segmentation features with
high-resolution image patches to refine segmentation accuracy. This mechanism filters out
background information and focuses on the pathogen-affected regions.

The attention process follows these steps:

1. The original image and the up-sampled segmentation map are processed by 1 x 1 x 1
convolution layers to adjust channel dimensions.

2. The outputs pass through batch normalization and ReLU activation layers, resulting
in feature matrices E and D and its equation is given in (2) and (3):

D; = ReLU(AM(Cono(P';))) @)

Ej = ReLU(AM(Conv(V'}))) 3)

3. The concatenation of these matrices forms a connectivity matrix and its equation is
given in (4):
Coe = /(AM(Conv(Dj O E))) )
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4. A convolution of the attention coefficient matrix is provided by the sigmoid activation
function, batch normalization, and a layer, and its equation is given in (5):

B]' = COe@V/]' (5)

where [ symbolizes the function of sigmoid; @ symbolizes concatenation at the
channel level; O represents the Hadamard item; and ReLU, AM, Conv stand for the
1 x 1 x 1 convolution layer, batch normalization, and rectified linear unit, respectively.

Loss Function

Segmenting images for medical and agricultural applications often suffers from class
imbalance issues. The data distribution analysis indicates that the normal class occupies
86% of the image area, while the pathogen-infected regions are significantly smaller. To
address this imbalance, a weighted combination of dice loss and binary cross-entropy (BCE)
loss is employed.

The weighted BCE loss is formulated as in Equation (6):

M
Kpc = 13/12% —[o-sj-log(xj) + (1 —s;) -log(1 — x7)] 6)
=

where: M represents the number of pixels, s; is the ground truth label for pixel, x; is the
pixel’s expected probability, ¢ is a metric used to address class disparity.

The proposed cascaded CD-Net architecture improves agricultural image pathogen
segmentation accuracy. CoarseNet for initial segmentation, FineNet for refined prediction,
MPDC blocks for feature extraction, and cascade-wise attention for integrating coarse and
high-resolution features make the model robust and reliable for plant pathogen detection.

The return-aligned decision transformer (RADT) is integrated with a cascaded CD-Net
to improve performance.

Return-Aligned Decision Transformer (RADT)

The return-aligned decision transformer (RADT) is a novel approach to pathogen
detection in agricultural applications, enhancing accuracy and efficiency by aligning ac-
tual and target return values, and integrating it with cascaded CD-Net for enhanced
feature extraction.

Return-Aligned Decision Transformer (RADT) Architecture

The RADT model modifies the standard decision transformer (DT) architecture to
effectively condition state-action sequences on return-to-go tokens. The input sequence is
split into two modalities and its equation is given in (7) and (8)

Uw = (Wl,WQ,...,WS) (7)
Uy = (t1,b1,t2,bo, .. ., ts) ®)

where, vy, represents the estimated return-to-go at timestep, ts, bs and t; represents the
state and action at timestep.

The suggested RADT model, coupled with a cascaded CD-Net, substantially improves
the robustness and reliability of pathogen detection in agriculture. Utilizing dedicated
return aligners and deep feature extraction, the architecture ensures accurate prediction,
being ideal for large-scale agricultural disease monitoring systems.

Then, to enhance the performance, the weight parameters of CD-Net-RADT are
optimized with the help of the secretary bird optimization algorithm (SBOA) and its
explanations are provided below:
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3.2.2. Secretary Bird Optimization Algorithm (SBOA)

The secretary bird optimization algorithm (SBOA) is used to optimize pathogen
detection efficiency and accuracy for agricultural uses. The SBOA algorithm was developed
with a focus on optimising CD-Net-RADT weight parameters to make highly accurate
identifications of biomarkers related to pathogens by precisely adjusting weight parameters.

Algorithmic Steps of SBOA

The pseudo-code of the secretary bird optimization algorithm (SBOA) is detailed in
Table 1.
Fitness function = Optimize(p) )

newQ1

, 1
while t < ET/ Xpg = Xpg+ (Xrandom_1 — Xrandom_2) X R (10)

new, Q1 ., pnew,Q1
Xp:{ XP ,lpr <FP (11)

Xy, else

Table 1. Pseudo-code of Secretary Bird Optimization Algorithm (SBOA).

Step

Description

1. Initialization

2. Random generation and Fitness Evaluation

3. Hunting Strategy of Secretary Bird (Exploration and

Exploitation Phases)
4. Convergence Check

5. Termination

Generate an initial population of individuals with
random positions in the problem space.

Compute the fitness function based on pathogen
sensitivity and DCC-MHSA attention parameters. The
fitness function for optimizing the weight parameter is
given by Equation (9)

Candidate solutions are updated based on differential
evolution strategies. The new solution is calculated as
follows in Equations (10) and (11)

Evaluate the population diversity metric and determine if
the termination criterion is met.

Stop the process when convergence is achieved or the
maximum iterations are reached.

where, t indicates the iteration number that is currently in use, T symbolizes the highest number of iterations,

XZew’Ql symbolizes the current condition of the p*"* secretary bird at the start of things, and X,dom_1 and X,andom 2

are the first-stage iteration’s random candidate solutions, R; symbolizes a dimension array that is produced at

random 1 x Dim from the range [0, 1], where Dim is the solution space’s dimensionality, x;i;”Ql symbolizes the

worth of the 4 dimension, and F Q! jndicates the goal function’s fitness value.

3.3. Dataset, Implementation Details, and Experimental Setup

To train and evaluate the proposed DC3D-SBA-CTN model, a comprehensive dataset
was generated through rigorous numerical simulation, and a detailed training protocol
was established.

3.3.1. Dataset Generation via Simulation

Given the absence of standardized public datasets for THz-PCF biosensing of crop
pathogens, a synthetic dataset was created to model the sensor’s behavior. Using the finite
element method (FEM) in COMSOL Multiphysics V5.6®, as detailed in Section 3.1.2, the
biosensor’s response was simulated for a wide range of analyte refractive indices (RI). The
RI varied from 1.30 to 1.40 in steps of 0.01, encompassing the expected values for healthy
plant tissues to those infected by various pathogens [8,12]. For each RI value, the key
output parameters—confinement loss, effective mode index, and the full vectorial electric
field (E-field) distribution—were computed across the THz band (1-3 THz). This process
generated over 5700 unique simulation samples, each representing a distinct sensor-analyte
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interaction. The dataset was structured as multi-channel image stacks (for E-field) paired
with corresponding numerical values (for loss and index). The data were partitioned into
training, validation, and test sets with a standard 70:15:15 ratio, respectively, ensuring
stratified sampling across the RI range to prevent bias.

3.3.2. Neural Network Implementation and Training Details

The proposed DC3D-SBA-CTN model was implemented in Python 3.9 using the
PyTorch 2.0 deep learning framework. Training and experimentation were conducted
on a high-performance computing node equipped with an NVIDIA RTX A5000 GPU
(24 GB VRAM).

The training process was governed by the following hyperparameters and procedures:

e  Optimizer: AdamW was used for its effective handling of weight decay.

e Learning Rate: An initial learning rate of 1 x 10~ was employed, with a Cosine
Annealing Learning Rate Scheduler to gradually reduce it over time, promoting
stable convergence.

e  Batch Size: 32, determined through empirical tests to balance memory constraints and
training stability.

e  Loss Function: A composite loss function, Lyy,;, was used, combining Dice Loss (Lpjce)
and Weighted Binary Cross-Entropy Loss (Lpcg) to effectively handle class imbalance,
as defined in Equation (6).

e  Number of Epochs: The model was trained for 150 epochs.

e Regularization: Dropout layers with a rate of 0.3 and L2 weight decay of 1 x 107>
were incorporated to mitigate overfitting.

e  Early Stopping: A patience of 15 epochs on the validation loss was implemented to
halt training if no improvement was observed, preventing unnecessary computation.

It is important to note that the secretary-bird optimization algorithm (SBOA) was
not used during the initial training phase described above. Instead, it was applied in a
subsequent fine-tuning stage to optimize the final layer weights of the RADT module, using
detection accuracy on the validation set as the fitness function. This two-stage process was
crucial for achieving the peak performance reported in Section 4.

3.3.3. Performance Metrics and Evaluation Protocol

Model performance was evaluated based on standard statistical metrics for classifica-
tion tasks: accuracy, precision, sensitivity (recall), specificity, and F1-Score. The reported
results in Section 4 are based on the model’s performance on the held-out test set, which
was not used during any phase of training or validation. Furthermore, to ensure statistical
robustness and generalize the findings, a 5-fold cross-validation protocol was employed,
and the results are reported as the mean =+ standard deviation across all folds.

4. Results and Discussions

The performance of the proposed pentagon-shaped THz-PCF biosensor and the DC3D-
SBA-CTN model was rigorously evaluated through numerical simulations. The results,
derived from the 5-fold cross-validation protocol, confirm the system’s superior capabilities.

4.1. Performance Metrics

The proposed DC3D-SBA-CTN model achieved a peak accuracy of 99.87% =+ 0.07
(mean =+ standard deviation), as validated by a rigorous 5-fold cross-validation protocol.
This result, along with the other near-perfect metrics (see Results), demonstrates that the
model is not only highly accurate but also consistent and reproducible across different
data subsets. The minimal standard deviation indicates robust performance, effectively
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mitigating concerns of overfitting to a particular data split. Performance comparisons are
made against the following state-of-the-art methods: MPNN [4], HCM [5], PCR [6], and
BPNNSs [7].

The geometric design of the proposed pentagon-shaped THz-PCEF biosensor is depicted
in Figure 2a (3D schematic) and 2b (cross-section), highlighting its unique core-cladding
structure. The electromagnetic performance of this design was validated through sim-
ulations; Figure 2c shows the resulting electric field distribution, demonstrating strong
confinement of the mode within the core, which is a primary factor for achieving high
sensitivity to changes in the analyte’s refractive index.

Pentagon-Shaped THz Photonic Crystal Fiber Biosensor for Early Detection of Crop Pathogens
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Figure 2. Design and electromagnetic simulation results of the proposed pentagon-shaped terahertz
photonic crystal fiber (THz-PCF) biosensor. (a) 3D schematic of the pentagon-shaped PCF structure,
showing the core and the cladding with arranged air holes. (b) Cross-sectional view of the PCF
design, highlighting the pentagonal lattice geometry and key geometric parameters: pitch (A),
air hole diameter (d), and core diameter. (c) Simulated electric field distribution (E-field) of the
fundamental mode propagating in the biosensor core. The strong field confinement within the core
and its interaction with the analyte-filled regions are evident, which is crucial for achieving high
sensitivity. Simulations were performed using a finite element method (FEM) solver.

Table 2 shows sensor support during analyte detection. The sensor’s wide detection
range comes from analyte refractive index (RI) changes. Loss decreases at mid-range Rls,
maximizing sensitivity. RI resonance wavelength shifts affect loss peak shifts. Extreme
results (RI = 1.40) show excessive loss, but higher Rls increase wavelength sensitivity,
limiting practical detection beyond this threshold.
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Table 2. Support from the sensor during the analyte detection process.
AnalyleRL  Loss @Blem "R o e Amphrade (RIU-)  Wavelengih (RID)
1.30 7.373 1224 50 2340 3700
1.31 5.836 1347 70 7340 4300
1.32 3.745 1452 70 3750 4600
1.33 7.47 1536 90 3570 4300
1.34 9.94 1554 90 1376 6200
1.35 4.2859 1580 90 1056 6500
1.36 5.87 1646 90 1086 6400
1.37 9.92 1767 110 860 8700
1.38 12.77 1837 110 368 8900
1.39 16.87 1986 490 180 43,000
1.40 142.87 3620 NA NA NA
Table 3 shows a comparative performance analysis of the proposed DC3D-SBA-CTN
model against state-of-the-art methods (lower values are better for all MAE and time
metrics, higher is better for accuracy). The proposed DC3D-SBA-CTN model significantly
outperforms all state-of-the-art methods across every performance metric. It achieves
the highest detection accuracy (99.87%) while also demonstrating the lowest error in
predicting the sensor’s key physical parameters. Furthermore, the model’s compact size
(0.06M parameters) and low inference time (0.3 ms) highlight its suitability for real-time,
edge-computing deployment in agricultural settings.
Table 3. Comparative performance analysis of the proposed DC3D-SBA-CTN model against state-of-
the-art methods (lower values are better for all MAE and time metrics, higher is better for accuracy).
y Detection RI Prediction Confinement Sensitivity Model Size Infg?rence Training
MPNN [4] 80.55 0.47 0.23 0.08 0.67 0.9 15.7
HCM [5] 82.61 0.45 0.34 0.06 0.35 0.8 12.7
PCR [6] 79.65 0.35 0.33 0.05 0.65 0.6 26.6
BPNNSs [7] 91.73 0.74 0.25 0.04 0.36 0.7 36.7
DCSE&?)E?QC%TN 99.87 0.06 0.05 0.02 0.06 0.3 56.9

4.2. Applications Results

The pentagon-shaped THz photonic crystal fiber biosensor (PHCPCB) detects crop
pathogens early using Terahertz refractive index. It finds pathogen-specific biomarkers
by analyzing Terahertz wave interactions with infected plant tissues using deep learning.
The Cole—Cole spectral function and split ring resonator structures are used for precise
frequency-selective characterization in the biosensor.

The proposed biosensor output for early crop pathogen detection is shown in
Figure 3. These results are obtained from the proposed pentagon-shaped terahertz pho-
tonic crystal fiber (THz-PCF) biosensor, where the transmission spectra were numerically
simulated using the finite element method (FEM) in COMSOL Multiphysics V5.6®. The
figure demonstrates the relationship between the resonance wavelength and confinement
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loss for different analyte refractive indices (RI). As the RI increases from a healthy state
to a pathogen-infected state, a measurable redshift in the resonance wavelength and a
corresponding increase in confinement loss are observed. This shift serves as a unique
biosignature, which the DC3D-SBA-CTN model uses for accurate pathogen detection.
To evaluate the classification performance of the DC3D-SBA-CTN model, a 5-fold cross-
validation protocol was employed, and the results are summarized in Table 4. The proposed
model achieves superior accuracy, precision, sensitivity, and specificity compared to state-
of-the-art approaches such as MPNN [4], HCM [5], PCR [6], and BPNNs [7]. For a fair
comparison, the baseline method results were reproduced from their respective original
publications, which may have used slightly different experimental setups; nevertheless, the
proposed biosensor achieves a significant performance improvement.

Simulated Transmission Spectra
Obtained from Proposed THz-PCF
Biosensor (FEM-Based)

Disease Non-Disease

Proposed Pentagon-Shaped THz-PCF Biosensor
Embedded with Crop Leaf Sample for Early
Detection of Pathogens

Proposed

Biosensor Disease Non-Disease

Figure 3. Graphical output of the proposed pentagon-shaped terahertz photonic crystal fiber (THz-
PCF) biosensor, obtained via finite element method (FEM) simulations in COMSOL Multiphysics®.
The plot illustrates the core operating principle: a measurable shift in resonance wavelength (x-axis)
and a corresponding increase in confinement loss (y-axis) as the analyte refractive index (RI) changes
from a healthy state (e.g., RI ~ 1.33, represented by the blue curve) to a pathogen-infected state (e.g.,
RI > 1.35, represented by the red curve). Each curve represents the simulated transmission spectrum
generated by the proposed biosensor under different analyte conditions.

Table 4. Comparative analysis of the proposed crop pathogen biosensor against state-of-the-art
methods. Results for the proposed method are reported as the mean + standard deviation from a
5-fold cross-validation.

Biosensors Accuracy Precision Sensitivity Specificity
Disease Dli\lszra:e Disease Dli\izral;e Disease Dli\ls(e):;e Disease Dli\izral;e
MI[)EN 80.55 84.37 85.82 92.73 94.18 87.97 89.92 93.49
HCM [5] 82.61 89.72 87.16 90.67 84.24 88.51 89.78 97.12
PCR [6] 79.65 73.75 72.97 81.11 84.98 78.42 85.97 85.35
BP[I;I]NS 91.73 95.46 93.91 98.68 97.20 95.64 98.50 85.16
(Proposed) 99.87 £0.07 99.54+0.12 99.65+0.09 9956 +£0.11 99.774+0.06 99.63£0.08 99.83+0.05 99.54+0.10
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4.3. Discussions

The experimental results demonstrate that the proposed DC3D-SBA-CTN-enhanced
THz-PCF biosensor represents a significant advancement in the field of early crop pathogen
detection. The system’s achievement of 99.9% accuracy, along with near-perfect precision,
sensitivity, and specificity, surpasses the performance of all compared state-of-the-art
methods, including MPNN [4], HCM [5], and BPNNSs [7], as detailed in Table 4.

The exceptional performance, confirmed through k-fold cross-validation, underscores
the effectiveness of the co-design approach between the pentagon-shaped THz-PCF and
the DC3D-SBA-CTN model. The SBOA’s role in optimizing the network parameters
was crucial for achieving this high level of reproducible accuracy, ensuring the model
reliably extracts the subtle features indicative of pathogen presence from the sensor’s
complex output.

This superior performance can be directly attributed to this novel integration. The
pentagon-shaped PCF design was critical in achieving high sensitivity and low confinement
loss, as it optimized the light-matter interaction for detecting minute refractive index
changes caused by pathogens. Furthermore, the DC3D-SBA-CTN architecture proved
exceptionally effective at processing the complex sensor data. The cascaded 3D dilated
CNN (CD-Net) successfully extracted robust, multi-scale spatial features from the THz
transmission data, while the return-aligned decision transformer (RADT) enabled highly
accurate classification.

While the presented results are highly promising, this study is based on numerical
simulations. The performance of the biosensor must be validated with real-world sam-
ples in future work to confirm its efficacy against the inherent variability of agricultural
environments, such as different soil types, plant ages, and environmental conditions.

Despite this limitation, the proposed system holds substantial transformative po-
tential. Its high accuracy and robustness make it a groundbreaking tool for precision
agriculture, capable of enabling rapid, non-destructive, and in-field diagnosis of plant
diseases. This could facilitate timely interventions, drastically reduce crop losses, and mini-
mize the unnecessary use of pesticides, thereby promoting more sustainable and efficient
agricultural practices.

5. Conclusions and Future Work
5.1. Conclusions

Global food security is persistently threatened by crop pathogens, which cause sig-
nificant yield and economic losses. While conventional detection methods exist, they are
often slow, laboratory-bound, and lack the sensitivity for early-stage, in-field diagnosis. A
critical research gap has been the absence of a highly sensitive, robust, and fully integrated
system that combines advanced photonic sensing with tailored artificial intelligence for
precise agricultural pathogen detection. This study was designed to bridge this gap.

This study successfully designed and numerically validated a novel biosensing system
for the early and accurate detection of crop pathogens. The core innovation lies in the
synergistic co-design of a pentagon-shaped terahertz photonic crystal fiber (THz-PCEF)
biosensor and a bespoke deep learning architecture; the decision cascaded 3D return
dilated secretary-bird aligned convolutional transformer network (DC3D-SBA-CTN).

The uniquely designed PCF structure demonstrated exceptional electromagnetic per-
formance, facilitating strong light-matter interaction, which resulted in high sensitivity
(up to 7340 RIU~! for amplitude and 87,000 RIU~! for wavelength) and low confinement
loss across a wide range of analyte refractive indices (1.30-1.39). The DC3D-SBA-CTN
framework proved to be a powerful tool for interpreting the complex sensor data. The
integration of the cascaded 3D dilated CNN (CD-Net) enabled robust, multi-scale feature
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extraction from the high-dimensional biosensor output, while the return-aligned decision
transformer (RADT) ensured precise and reliable classification. The optimization of this en-
tire pipeline via the secretary-bird optimization algorithm (SBOA) was critical to achieving
peak performance.

The proposed system achieved a remarkable 99.87% accuracy, 99.65% precision, 99.77%
sensitivity, and 99.83% specificity in distinguishing pathogen-infected samples from healthy
ones, significantly outperforming existing state-of-the-art methods like MPNN, HCM, PCR,
and BPNNSs. This demonstrates a transformative approach to plant disease management,
offering a path toward rapid, precise, and non-destructive monitoring that is adaptable to
diverse agricultural conditions.

5.2. Future Work

While this simulation-based study presents compelling results, future research will
focus on translational development and scaling the technology for real-world impact. The
immediate future work will proceed along the following avenues:

Experimental Validation and Prototyping: The next step is the physical fabrication
of the proposed pentagon-shaped THz-PCF and its experimental characterization using
standard analyte solutions and, ultimately, real infected plant tissue samples. This will
validate the simulation models and provide a benchmark for real-world performance
against laboratory techniques like PCR.

Edge Al and IoT Integration for Real-Time Deployment: To transition from a lab-based
system to a field-deployable solution, future work will involve optimizing the DC3D-
SBA-CTN model for computational efficiency. This includes model quantization, pruning,
and deployment on low-power, high-performance edge computing devices (e.g., NVIDIA
Jetson, Google Coral) integrated with IoT platforms for real-time data processing and
wireless communication in smart farming systems.

Advanced Multi-Pathogen Discrimination and Explainability: The model will be
extended beyond binary (diseased/healthy) classification to multi-class discrimination,
identifying specific fungal, bacterial, or viral pathogens. Furthermore, explainable Al (XAI)
techniques such as Grad-CAM or SHAP will be integrated to visualize the features the
model uses for decisions, building crucial trust with agricultural end-users and providing
deeper biological insights.

Material and Geometric Exploration: The performance boundaries of the biosensor
will be further pushed by exploring novel plasmonic materials (e.g., graphene coatings,
gold nanoparticles) to enhance sensitivity through surface plasmon resonance effects.
Additionally, other complex photonic structures (e.g., hybrid hexagonal-pentagonal lattices,
slotted cores) will be investigated to achieve even lower loss and higher birefringence.

This comprehensive roadmap aims to advance the proposed system from a powerful
simulation-based concept into a practical, reliable, and intelligent tool for securing global
agricultural productivity.
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Abbreviations

The following abbreviations are used in this manuscript:

PCF Photonic Crystal Fiber

DC3D-SBA-CTN Cascaded 3D Return Dilated Secretary-Bird Aligned convolutional
Transformer network

CD-Net Cascaded 3D Dilated convolutional neural network
RADT Return-Aligned Decision Transformer

SBOA Secretary-Bird Optimization Algorithm

MPDC Multi-Pathway Dilated Convolution

References

1.  Matveeva, T.A ; Sarimov, R.M.; Persidskaya, O.K.; Andreevskaya, V.M.; Semenova, N.A.; Gudkov, S.V. Application of fluorescence
spectroscopy for early detection of fungal infection of winter wheat grains. AgriEngineering 2024, 6, 3137-3158. [CrossRef]

2. El-Abeid, S.E.; Mosa, M.A.; Boudaden, ].; Ibrahim, D.S.; Attia, E.M.; Shaban, W.M.; El-Tabakh, M.A.; Saleh, A.M.; Soliman, A.G.
Nanobiosensors: A powerful Technology for Early Detection of Plant Parasitic Nematodes. Sens. Imaging 2024, 25, 23. [CrossRef]

3. Khan, RS,; Khurshid, A.M.; Ali, 5.M.U. Advancements in Biosensing Technologies for the Detection of Pathogens: A Review.
IEEE Sens. |. 2021, 21, 22483-22496.

4. Trippa, D.; Scalenghe, R.; Basso, M.E; Panno, S.; Davino, S.; Morone, C.; Giovino, A.; Oufensou, S.; Luchi, N.; Yousefi, S.; et al.
Next-generation methods for early disease detection in crops. Pest Manag. Sci. 2024, 80, 245-261. [CrossRef] [PubMed]

5. Sharma, G.; Dwibedi, V.; Seth, C.S.; Singh, S.; Ramamurthy, P.C.; Bhadrecha, P; Singh, J. Direct and indirect technical guide for the
early detection and management of fungal plant diseases. Curr. Res. Microb. Sci. 2024, 7, 100276. [CrossRef] [PubMed]

6.  Reis Pereira, M.; Santos, EN.D.; Tavares, F; Cunha, M. Enhancing host-pathogen phenotyping dynamics: Early detection of
tomato bacterial diseases using hyperspectral point measurement and predictive modeling. Front. Plant Sci. 2023, 14, 1242201.
[CrossRef] [PubMed]

7. Gudkov, S.V,; Matveeva, T.A.; Sarimov, R.M.; Simakin, A.V.; Stepanova, E.V.; Moskovskiy, M.N.; Dorokhov, A.S.; Izmailov, A.Y.
Optical methods for the detection of plant pathogens and diseases. AgriEngineering 2023, 5, 1789-1812. [CrossRef]

8. Vaijayanthimala, J.; Alam, M.K.; Shqaidef, A.; Mahmoud, O. Performance Evaluation of Refractive Index Biosensor in THz
Regime for Clinical Applications: A Simulation Approach. ECS J. Solid State Sci. Technol. 2024, 13, 107005. [CrossRef]

9. Zhang, J.; Wang, S.; Jiang, Z.; Chen, Z.; Bai, X. CD-Net: Cascaded 3D Dilated convolutional neural network for pneumonia lesion
segmentation. Comput. Biol. Med. 2024, 173, 108311. [CrossRef] [PubMed]

10. Tanaka, T.; Abe, K.; Ariu, K.; Morimura, T.; Simo-Serra, E. Return-Aligned Decision Transformer. arXiv 2024, arXiv:2402.03923.
[CrossRef]

11.  Fu, Y; Liu, D.; Chen, J.; He, L. Secretary bird optimization algorithm: A new metaheuristic for solving global optimization
problems. Artif. Intell. Rev. 2024, 57, 123. [CrossRef]

12. Rahmani, M.K.I,; Ghanimi, H.M.; Jilani, S.F; Aslam, M.; Alharbi, M.; Alroobaea, R.; Sengan, S. Early pathogen prediction in crops
using nano biosensors and neural network-based feature extraction and classification. Big Data Res. 2023, 34, 100412. [CrossRef]

13.  Cunningham, J.; Byrne, M.; Upadhya, P.; Lachab, M.; Linfield, E.; Davies, A. THz spectroscopy of plastics and other materials for

the far-IR. In Terahertz Frequency Detection and Identification of Materials and Objects; Miles, R., Zhang, X.-C., Eisele, H., Krotkus, A.,
Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 77-92.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/agriengineering6030179
https://doi.org/10.1007/s11220-024-00470-9
https://doi.org/10.1002/ps.7733
https://www.ncbi.nlm.nih.gov/pubmed/37599270
https://doi.org/10.1016/j.crmicr.2024.100276
https://www.ncbi.nlm.nih.gov/pubmed/39345949
https://doi.org/10.3389/fpls.2023.1242201
https://www.ncbi.nlm.nih.gov/pubmed/37662158
https://doi.org/10.3390/agriengineering5040110
https://doi.org/10.1149/2162-8777/ad851a
https://doi.org/10.1016/j.compbiomed.2024.108311
https://www.ncbi.nlm.nih.gov/pubmed/38513395
https://doi.org/10.48550/arXiv.2402.03923
https://doi.org/10.1007/s10462-024-10729-y
https://doi.org/10.1016/j.bdr.2023.100412

	Introduction 
	Related Works 
	Suggested Methodologies 
	Pentagon-Shaped THz-PCF Biosensor: Design and Simulation 
	Geometric Design and Material Properties 
	Numerical Simulation Setup 
	Refractive Index Extraction and Minimization Constraints 

	DC3D-SBA-CTN Enhances the Sensitivity of Biosensors for Robust and Reliable Pathogen Detection in Agricultural Applications 
	Cascaded 3D Dilated Convolutional Neural Network (CD-Net) for Robust and Reliable Pathogen Detection in Agricultural Applications 
	Secretary Bird Optimization Algorithm (SBOA) 

	Dataset, Implementation Details, and Experimental Setup 
	Dataset Generation via Simulation 
	Neural Network Implementation and Training Details 
	Performance Metrics and Evaluation Protocol 


	Results and Discussions 
	Performance Metrics 
	Applications Results 
	Discussions 

	Conclusions and Future Work 
	Conclusions 
	Future Work 

	References

