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Abstract

This study presents an AI-enhanced pedestrian simulation model for subway stations,
combining the Social Force Model (SFM) with LiDAR trajectory data from Samseong Station
in Seoul. To reflect time-dependent behavioral differences, RMSProp-based optimization is
performed separately for the morning peak, leisure hours, and evening peak, yielding time-
specific parameter sets. Compared to baseline models with static parameters, the proposed
method reduces prediction errors (MSE) by 50.1% to 84.7%. The model integrates adaptive
learning rates, mini-batch training, and L2 regularization, enabling robust convergence and
generalization across varied pedestrian densities. Its accuracy and modular design support
real-world applications such as pre-construction design testing, post-opening monitoring,
and capacity planning. The framework also contributes to Sustainable Urban Mobility
Plans (SUMPs) by enabling predictive, data-driven evaluation of pedestrian flow dynamics
in complex station environments.

Keywords: pedestrian traffic flow; social force model; rmsprop optimization; pedestrian
trajectory analysis; crowd simulation

1. Introduction
In recent years, subways have gained renewed attention as a key component of sus-

tainable urban transportation systems due to their environmental benefits and operational
reliability. Enhancing the service quality of subway systems requires a balanced approach
that encompasses both network-level expansions—such as new lines and transfer hub—and
improvements to the physical environment within subway stations themselves. However,
most prior research has predominantly focused on the former, addressing line extensions
and intermodal connectivity, while studies examining the internal dynamics of pedestrian
flow and operational efficiency within subway stations remain relatively scarce.

This research gap is increasingly problematic in the context of current urban trans-
portation trends, which emphasize the complexification and upscaling of transit nodes.
Modern subway stations are evolving into multi-functional complexes that integrate com-
mercial, business, and cultural spaces, forming highly intricate pedestrian environments.
A prominent example is the study site of this paper, Samseong Station in Seoul, which is
currently undergoing development into a large-scale intermodal transit center scheduled
for completion in 2028 [1]. Once completed, the station will feature a vertically and hori-
zontally layered spatial structure that connects underground and aboveground facilities.
These structural transformations are expected to generate non-linear and highly variable
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pedestrian flow patterns, necessitating precise modeling and monitoring capabilities to
ensure operational safety and efficiency [2,3].

Moreover, as urban populations age and demand for inclusive mobility increases,
ensuring safe and comfortable access for transportation-disadvantaged groups, such as
older adults and people with disabilities, has become a critical objective. Key infrastructure
components—such as elevators, ramps, and navigational aids—must be continuously
monitored and maintained. This requires a high-fidelity pedestrian flow model capable of
accurately reproducing real-world movement patterns and dynamic crowd interactions
within complex station environments [4].

In sustainability-oriented transportation research, evaluation criteria must extend
beyond environmental considerations such as greenhouse gas emissions or air pollutant
reduction. A comprehensive framework must also account for pedestrian safety, inclusive
accessibility, temporal demand variability, and adaptive service quality [5]. Pedestrian de-
mand in subway stations exhibits substantial temporal variation. During the morning and
evening peaks (07:00–09:00 and 18:00–19:00), stations—particularly those adjacent to major
office and commercial complexes—tend to experience high levels of crowding and con-
gestion due to concentrated commuting activity. In contrast, during midday leisure hours
(14:00–14:30), which represent off-peak periods, pedestrian volumes are relatively lower,
and individual walking behaviors become more pronounced, often reflecting personal
spatial preferences rather than collective movement patterns.

These temporal differences highlight the importance of modeling pedestrian flow
separately by time period, as pedestrian patterns vary significantly across different hours of
the day [6]. Conducting simulations based on distinct time-of-day scenarios allows for more
accurate prediction of crowd dynamics and individual walking behavior [7]. Moreover,
incorporating external factors—such as weather conditions, local events, and infrastructure
malfunctions—can further enhance the realism of the model and improve its applicability
for planning and operational policy development.

To address these challenges, this study employs the Social Force Model (SFM) to
develop a calibrated, data-driven simulation of pedestrian flow within Samseong Station.
By leveraging real-world pedestrian trajectory data, the study conducts time-of-day-specific
parameter optimization to reproduce observed patterns of interaction and congestion.
Through this process, the model aims to evaluate and improve pedestrian safety, walking
comfort, and operational resilience within complex subway station environments. The
objective of this study aligns with the promotion of sustainable urban transport strategies in
accordance with the guidelines of Sustainable Urban Mobility Plans (SUMPs), particularly
in the context of the growing adoption of Intelligent Info-mobility Systems. Ultimately,
this research contributes to the development of sustainable, inclusive, and intelligently
managed urban transportation systems. Unlike conventional studies that focus primarily
on transit network expansions, this work emphasizes in-station pedestrian dynamics as a
vital dimension of sustainability, offering practical insights into efficient facility operation
and user-centered design in large-scale, multifunctional transit hubs.

2. Literature Review
2.1. Social Force Model: Structure and Extensions

Originally proposed by Helbing and Molnár (1995), the Social Force Model (SFM)
remains a foundational framework in pedestrian dynamics research [8]. The model de-
scribes pedestrian motion as the result of three core forces: a driving force, which reflects
the pedestrian’s intention to reach a destination at a desired speed; a repulsive force, which
accounts for collision avoidance with other pedestrians and obstacles; and an attractive
force, which models tendencies to approach companions, shops, or other points of interest.
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Owing to its intuitive formulation and interpretability grounded in physical analogies,
the SFM has been widely adopted in both academic studies and commercial simulation
platforms such as VISSIM.

However, the original SFM adopts a deterministic approach, applying uniform pa-
rameter values across all pedestrians regardless of individual differences. As a result, the
model fails to account for heterogeneity in physical capacity, psychological preferences,
or contextual behavior, limiting its predictive accuracy in real-world environments. To
address this limitation, Han et al. (2022) proposed an extended version of the SFM that
incorporates fuzzy inference, enabling the model to simulate individual decision-making
under uncertainty [7]. This enhancement allows the model to capture more realistic in-
terpersonal interactions by incorporating linguistic variables and fuzzy logic into the
force-based framework.

Recent advancements have further expanded the scope of SFM by applying it to
shared spaces involving vehicle–pedestrian interactions. In particular, Yang et al. (2020)
introduced a force component framework that differentiates interaction effects based
on direction (e.g., front, rear, lateral) [9]. Their model, calibrated and validated using
empirical trajectory data, demonstrated credible performance in replicating various types
of interactions. However, it relied on the assumption of homogeneous parameters across
all pedestrians, which limited its ability to accurately represent individual-level behavioral
responses to vehicle interactions.

These findings underscore the importance of adapting model parameters based on
contextual factors such as time-of-day congestion levels or travel purposes. Yang et al. rec-
ommended several improvements, including individual parameter calibration, customized
loss functions, and interaction-type-specific formulations. These directions highlight the
growing recognition that pedestrians should no longer be treated as reactive particles
governed by uniform rules, but rather as adaptive agents interacting with heterogeneous
and dynamic environments.

Consequently, advancing the SFM requires embedding behavioral heterogeneity, con-
textual sensitivity, and task-specific optimization strategies into the modeling process. Such
enhancements will improve the realism, generalizability, and applicability of pedestrian
simulations in complex urban scenarios.

2.2. Data-Driven Approaches: Machine Learning and Deep Learning

While rule-based pedestrian models such as the Social Force Model (SFM) provide
interpretability and a clear physical foundation, they are limited in their ability to capture
the full complexity and variability of pedestrian behavior—particularly in dynamic and non-
standard environments. To address these limitations, data-driven approaches leveraging
machine learning (ML) and deep learning (DL) have emerged as powerful alternatives
capable of learning pedestrian patterns directly from trajectory data.

In the realm of machine learning, a wide range of supervised algorithms has been
applied to enhance the realism of pedestrian simulations. Decision Trees and Random
Forests have also been utilized to infer decision-making logic in complex environments [10].
These models typically convert features such as speed, direction, and local density into
structured inputs for learning, and they often demonstrate high predictive accuracy even
with relatively small datasets.

Deep learning further advances pedestrian modeling by enabling the capture of high-
dimensional, nonlinear relationships in large-scale data. Convolutional Neural Networks
(CNNs) are frequently employed to extract spatial features and predict pedestrian flow
fields [11], whereas Long Short-Term Memory (LSTM) networks excel in learning temporal
patterns and forecasting future trajectories [12]. Generative Adversarial Networks (GANs)
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have also been used to augment trajectory datasets by synthesizing realistic movements [13],
and Reinforcement Learning (RL) has been applied to simulate adaptive decision-making
under dynamic conditions, such as emergency evacuations [14].

Collectively, ML and DL approaches offer an expanded modeling capacity by sup-
porting adaptive, probabilistic, and individualized representations of pedestrian behavior.
However, these approaches come with trade-offs. DL-based models often require substan-
tial computational resources and large annotated datasets. Therefore, balancing model
fidelity with deployment efficiency remains a key concern when applying such methods in
real-world contexts.

Given the deterministic limitations of the classical SFM and its sensitivity to uniform
parameter settings, the integration of ML and DL into pedestrian modeling is not only
promising but necessary. These data-driven methods can complement the interpretable
structure of physics-based models like SFM, enhancing their behavioral realism and predictive
accuracy. In complex urban environments where pedestrian movement is influenced by
diverse contextual factors, a hybrid framework that combines SFM with ML/DL-based
components—such as parameter calibration, trajectory prediction, or decision modeling—can
provide a more flexible and scalable solution for pedestrian simulation.

3. Analysis of Pedestrian Behavior in Subway Stations
3.1. Study Area

Samseong Station, located at the intersection of Teheran-ro and Yeongdong-daero
in Gangnam-gu, Seoul, is a major subway hub characterized by a multi-level structure
that integrates both underground and above-ground facilities. Its strong connectivity to
surrounding commercial zones, including COEX, has made it a critical node for pedestrian
activity in the city’s transit network. The focus area of this study is the passenger concourse
adjacent to the turnstiles leading to Seolleung-bound trains—recognized as a high-density
pedestrian zone due to its proximity to transfer points and commercial accessways. As
such, this area is expected to exhibit diverse and dynamic pedestrian behaviors.

According to public smart card transaction data released by the Seoul Open Data
Plaza in 2024, Samseong Station ranks as the seventh most heavily used subway station
in South Korea among 338 stations analyzed [15]. With over 100,000 daily boarding
and alighting events, the station consistently handles substantial pedestrian volumes.
Given the presence of extensive underground corridors that connect the station directly
to COEX and other major commercial complexes, the actual pedestrian flow through
the underground space is likely even higher. These conditions make Samseong Station
particularly suitable for studying time-sensitive and spatially complex pedestrian dynamics
in an urban transit setting

To further contextualize the study, pedestrian traffic on Wednesday, 12 July 2017—a
typical weekday during the high-travel summer vacation period—was analyzed using
public data from the Seoul Open Data Portal. As shown in Table 1, the station recorded
64,847 boardings and 67,206 alightings on that day. During the morning peak (07:00–09:00),
90.4% of trips were alightings, reflecting intense inbound commuter flows. In contrast,
during the midday leisure hours (14:00–15:00), boarding and alighting were nearly balanced,
suggesting movement patterns shaped by shopping and tourism. In the evening peak
(17:00–19:00), 78.5% of transactions were boardings, indicating high outbound demand.
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Table 1. Pedestrian traffic at Samseong Station on 12 July 2017.

Time Morning Peak
(07:00–09:00)

Leasure Hours
(14:00–15:00)

Evening Peak
(17:00–19:00)

Direction Boarding Alighting Boarding Alighting Boarding Alighting

Pedestrian
traffic 2171 21,545 2630 2759 19,761 6168

These temporal asymmetries in boarding–alighting patterns emphasize the importance
of time-sensitive pedestrian management strategies, particularly near major exits. The
observed midday movement toward COEX also underscores the potential for coordination
between transit infrastructure and adjacent commercial entities. By incorporating such
time-dependent behavioral variations into simulation models, this study aims to improve
the predictive accuracy and operational relevance of pedestrian flow modeling in complex
subway environments.

3.2. LiDAR Data Collection and Preprocessing

In combination with the passenger flow data, this paper also utilizes pedestrian
trajectory data collected via LiDAR (Light Detection and Ranging, Model: L-T1103-MRS57B,
Manufacturer: SICK Ltd., Waldkirch, Germany) sensors on the same day (12 July 2017). The
pedestrian trajectory data used in this study were collected inside a subway station in Seoul,
as part of a prior study by Jo et al. (2018), which aimed to analyze pedestrian trajectory
patterns based on LiDAR-based pedestrian tracking [16]. LiDAR technology enables
high-resolution capture of pedestrian positions, velocities, accelerations, and movement
directions. LiDAR data were collected near the turnstiles leading to Seolleung-bound trains.
Figure 1a illustrates the trajectory data collected via LiDAR, while Figure 1b presents the
detailed station layout of Samseong Station. The dataset includes Unix time, trajectory
ID, x, y, and z coordinates, velocity, acceleration, direction, and angular velocity. Kalman
filtering was applied to refine trajectory data and correct occlusions near the flap gate.

 
 

 
(a) LiDAR Trajectory Data (b) Samseong Station Layout 

Figure 1. Trajectory data collected via LiDAR and the station layout of Samseong Station.

In Figure 1b, the numbers within green circles indicate the subway exits at Sam-
seong Station, and the gray-colored text represents various facilities located within the
underground station area.

From the LiDAR trajectory data, the characteristics of subway passengers at Samseong
Station can be analyzed in relation to their connectivity with surrounding facilities. Pedes-
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trians choosing specific exits tend to reflect the characteristics of the destinations connected
to those exits. For example, exits 3 and 4 of Samseong Station are directly connected to the
COEX shopping complex, suggesting that passengers using these exits are likely traveling
for shopping and leisure activities. In contrast, exits 5 and 6 are connected to major office
buildings, indicating that passengers using these exits are predominantly commuting to
and from work.

Trajectory analysis revealed that during the morning peak hours, approximately 51%
of pedestrian flow was directed toward exits 3 and 4. During leisure hours, pedestrian
movement to exits 3 and 4 accounted for only 22%. In the evening peak hours, approx-
imately 25% of passengers used exits 3 and 4. These findings highlight the correlation
between exit selection and travel purpose, demonstrating how subway passenger behavior
is influenced by the surrounding environment.

The fundamental flow–density relationship was used to analyze pedestrian traffic flow
with the equation q = u·k, where Q represents the pedestrian flow rate (person/min/m),
u is the average pedestrian velocity (m/s), and k is the pedestrian density (person/m2).
The pedestrian density was estimated based on a total walkable area of 133 m2, while
velocity values were derived from LiDAR trajectory data. Figure 2 illustrates the flow–
density relationship.

  
(a) Morning Peak (b) Leisure Hours (c) Evening Peak 

Figure 2. Fundamental flow–density diagram for pedestrian traffic flow (by time of day).

The results show that during the morning peak hours (07:00–09:00), the Level of Ser-
vice (LOS) ranged from C to D, indicating moderate to high congestion. During leisure
hours (14:00–15:00), the LOS ranged from A to B, suggesting relatively smooth pedes-
trian movement. In the evening peak hours (17:00–19:00), the LOS ranged from B to C,
highlighting increasing congestion due to high boarding rates.

4. Model Development
4.1. Mathematical Formulation of the Social Force Model

Pedestrian movement in complex environments is influenced by various factors,
including individual intention, interactions with other pedestrians, and environmental con-
straints. The Social Force Model (SFM) provides a force-based approach to simulate these
dynamics, capturing both self-propulsion and repulsive interactions [8]. By formulating
pedestrian motion as a function of social forces, the model effectively represents realistic
walking behaviors in high-density areas [17,18].

In this model, the total force f i acting on pedestrian i is given by:

→
fi = mi

d
→
vi

dt
= mi

→v0
i (t)−

→
vi(t)

τi

+ ∑
j ̸=i

→
fij + ∑

w

→
fiw (1)

where:

-
→
fi denotes the total force acting on pedestrian i

- mi is the pedestrian’s mass
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-
→
v0

i (t) is the current velocity at time t

-
→
v0

i (t) is the desired velocity at time t
- τi represents the relaxation time (i.e., how quickly a pedestrian adapts to the desired

velocity)

-
→
fij is the repulsive force from another pedestrian j

-
→
fiw is the repulsive force from a wall or obstacle W

The repulsive interaction force with other pedestrians is modeled as:

→
fij =

{
Aiexp

( rij − dij

Bi

)
→
n ij + φg

(
rij − dij

)→
n ij

}
nij + ωg

(
rij − dij

)
∆
→
v

t
ji
→
t ij (2)

Similarly, the repulsive interaction with walls or obstacles, modeled as a psychological
avoidance behavior, is given by:

→
fiw =

{
Aiexp

(
ri − diw

Bi

)
→
n iw + φg(ri − diw)

→
n iw

}
→
n iw + ωg(ri − diw)

(→
v i·
→
t iw

)→
t iw (3)

where:

- dij and diw are distances from pedestrian i to pedestrian j or wall W, respectively
- rij = ri + rj the sum of their radii

-
→
n ij,

→
n iw are unit normal vectors (pointing from j or W toward i)

-
→
t ij,

→
t iw are tangential direction vectors

-
→
∆vji =

(→
v j −

→
v i

)
·
→
t ij, the tangential component of the relative velocity

- g(x) is a ramp function defined as:

g(x) = x i f x > 0

This formulation captures both intentional and reactive components of pedestrian
behavior, making the SFM particularly suitable for simulating complex environments such
as subway stations. To enhance model fidelity, six parameters are calibrated using empirical

trajectory data: reaction time (τi), desired velocity (
→
v0

i (t)), social force constant (Ai), distance
scale (Bi), body force (φ), and sliding friction force (ω). A dedicated optimization strategy
is introduced in the following section to estimate these parameters effectively based on
real-world trajectory data.

Since the Social Force Model generates different pedestrian trajectories depending on
the parameter settings, accurate calibration of these parameters is essential for achieving
high simulation accuracy [19]. Improper parameter configurations can lead to unrealistic
behaviors, such as unnatural acceleration or collision patterns, especially in dense and
dynamic environments. Therefore, the optimization process plays a critical role in ensuring
that the model faithfully replicates the nuanced variations in pedestrian flow observed in
actual subway station contexts.

4.2. RMSProp-Based Optimization Strategy

To calibrate the SFM parameters, this study proposes an integrated optimization
framework that combines adaptive learning rates (RMSProp), mini-batch training, and
L2 regularization.

RMSProp dynamically adjusts the learning rate for each parameter based on the
variance of recent gradients, making it particularly well-suited for problems involving a
large number of parameters, as is the case in the current study [20]. The algorithm provides
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stable convergence in regions with dense pedestrian interactions while enabling rapid
optimization in sparse data environments, making it an effective calibration method for
large-scale pedestrian dynamics simulations [17].

Unlike conventional optimization techniques such as Genetic Algorithms (GA) or Dif-
ferential Evolution (DE), which are often computationally intensive and slow to converge,
RMSProp has been widely recognized in deep learning for its efficiency and robustness.
Leveraging these strengths, the algorithm is used in this study to calibrate the key parame-
ters of the Social Force Model (SFM) using empirical pedestrian trajectory data.

To further improve optimization efficiency and generalization performance, several
complementary strategies are incorporated, including mini-batch training, L2 regulariza-
tion, and early stopping. Mini-batch training allows for stable and scalable handling of large
trajectory datasets, while L2 regularization suppresses excessive parameter magnitudes
and mitigates overfitting. In addition, the early stopping technique automatically termi-
nates training when the validation loss fails to improve over a fixed number of iterations,
reducing redundant computation and enhancing the model’s generalizability.

The loss function is defined as the mean squared error (MSE) between the predicted
and observed pedestrian velocity vectors, serving as a quantitative measure of how accu-
rately the model replicates real-world movement patterns. The complete RMSProp-based
optimization procedure is summarized as a pseudo-code in Table 2.

Table 2. Pseudo-code for RMSProp-based parameter optimization of the Social Force Model.

Input: α (RMSProp decay rate), γ (learning rate), θ0 (initial parameter set), LOSS (mean
squared error),
Initialize: vo ← 0 (Set moving average of squared gradients to zero)
best_params← θ0 (Set the best parameters to the initial values)
best_loss← ∞ (Initialize the best loss to infinity)
Main Loop:
For each mini-batch:
Step 1. Predict velocities with Social Force Model:
Step 2. Loss Calculation: LOSS = 1

N ∑N
i=1(vi − v̂i)

2

Step 3. Gradient Computation: gt = ∇θ LOSS
Step 4: RMSProp Gradient Update: vt = αvt−1 + (1− α)g2

t
Step 5: Parameter Update θt = θt−1 − γ

gt√
vt+∈

Step 6: Update best_params← θt and best_loss← LOSS if conditions met
Step 7: Early Stopping Check
If no improvements:
Terminate
Output: Return optimal parameter set θ

4.3. Simulation Setup

The simulation environment was constructed to replicate the physical layout of the
observed pedestrian space. Four rectangular exits were placed along the domain bound-
aries, corresponding to real-world egress points at Samseong Station. To represent physical
constraints, two vertical and two horizontal static walls were added. Each pedestrian was
assigned a mass of 80 kg, and the simulation time step (∆t) was set to 0.2 s.

Initial values for the six SFM parameters—reaction time (τi), desired speed (vi
0), social

force constant (Ai), distance scale (Bi), body force (φ), and sliding friction force (ω)—were set
based on prior literature (0.5, 1.3, 2000, 0.08, 1.2 × 105, 2.4 × 105) and randomly perturbed
within predefined bounds informed by domain expertise. The RMSProp-based optimization
was conducted separately for three time segments—morning peak (07:00–09:00), leisure
hours (14:00–15:00), and evening peak (17:00–19:00)—using trajectory data collected via
LiDAR sensors.
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To ensure efficiency and generalization, a mini-batch size of 1024 was used. RMSProp
parameters included a learning rate of 1 × 10−4, decay rate (β) of 0.9, and ε = 1 × 10−8.
Parameter updates were bounded within plausible ranges, and L2 regularization (λ = 1× 10−4)
was applied to prevent overfitting.

5. Simulation Results
5.1. Training and Validation Loss Analysis

Model performance was evaluated by computing the mean squared error (MSE)
between predicted and observed pedestrian velocity vectors in both the x and y directions.
The training and validation loss curves for each time segment are presented in Figure 3,
illustrating stable convergence under varying pedestrian flow conditions. These results
indicate that the RMSProp-based calibration effectively reduced prediction errors without
overfitting, thereby supporting the reliability of the simulation results.

  
(a) Morning Peak (b) Leisure Hours (c) Evening Peak 

Figure 3. Training validation curves of (a) morning peak, (b) leisure hours, (c) evening peak.

The optimization algorithm was applied to three datasets corresponding to distinct time
periods: the morning peak (07:00–09:00), leisure hours (14:00–14:30), and the evening peak
(18:00–19:00). Each period exhibited different pedestrian dynamics, suggesting the potential
need for time-specific parameter optimization. Nevertheless, a uniform model structure was
applied across all datasets. The learning curves revealed three consistent patterns:

i. rapid convergence in the early phase due to adaptive learning rate adjustment;
ii. stable decline in both training and validation losses during the mid phase;
iii. early stopping in the final phase to prevent overfitting.

Figure 3 illustrates these learning and validation curves for each time of day, high-
lighting the model’s adaptability to various levels of crowd density.

5.2. Time-Specific SFM Parameter Analysis

The optimized parameters of the Social Force Model varied significantly by time
period. During the morning peak, the desired velocity was relatively high at 0.66 m/s,
reflecting the urgency of commuter behavior. In contrast, the leisure period exhibited lower
interaction intensity and more balanced movement patterns. During the evening peak,
the social force coefficients increased, indicating the need to capture complex pedestrian
interactions and congestion patterns during that time. Table 3 presents the optimized
parameter values for different time periods. The parameter optimization results revealed
variations across different time periods. During the morning peak, commuters exhibited
a higher desired velocity (0.66 m/s) due to their urgency to reach their destinations. In
leisure hours, pedestrian interactions were relatively lower, resulting in more balanced
movement patterns. In the evening peak, the social force parameters increased, reflecting
complex pedestrian interactions and congestion management needs.
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Table 3. Parameter optimization results by time periods.

Parameter τi (s) v0
i (t) (m/s) Ai(N) Bi(N) φ

(kg·s−2)
ω

(kg·m−1·s−1)

Morning Peak 1.00 0.66 1990.99 0.05 119,506.60 241,587.90

Leisure Hours 1.00 0.50 2069.95 0.05 126,146.60 226,296.80

Evening Peak 1.00 0.50 2170.85 0.05 117,868.50 245,919.70

5.3. Comparing MSE Between Before and After Optimization

The effectiveness of the optimization was further assessed by comparing MSE values
before and after training. As illustrated in Figure 4, the MSE decreased from 0.1221 to 0.0609
during the morning peak, from 0.3738 to 0.0572 during leisure hours, and from 0.0965 to
0.0381 during the evening peak. This represents a reduction ranging from a minimum of
50.1% to a maximum of 84.7%, demonstrating an enhanced explanatory power in capturing
pedestrian behavior. This result suggests that the MSE before optimization varies by time
of day, indicating that the default SFM’s performance depends on specific pedestrian flow
characteristics. In contrast, the MSE after optimization suggests that similar performance
can be achieved for each time-of-day dataset once the optimization is completed, thereby
enhancing the model’s reliability and credibility.

 

Figure 4. Reduction of mean squared error (MSE) After Optimization (by time-of-day).

The overall accuracy of the model’s prediction performance improved after optimiza-
tion, as further illustrated in Figure 5. A time-series comparative analysis revealed several
key findings: During the morning peak, the optimized model generated predictions that
closely aligned with the observed average speed, accurately capturing the initial low-speed
walking state. During leisure hours, the predicted speed better reflected variations in ob-
served speed and exhibited greater sensitivity to periodic fluctuations in walking velocity.
In the evening peak, the pre-optimization model struggled to represent atypical walking
patterns accurately.
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Figure 5. Velocity over time during morning peak: observed, before optimization, and after optimization.

5.4. Velocity Prediction Accuracy Analysis

To assess the temporal accuracy of the model, the predicted pedestrian speeds (both
before and after optimization) were compared with the observed speeds for each time of
day. The velocity-over-time plots for each period are presented in Figures 5–7, where each
figure consists of three panels: the left panel shows the observed pedestrian speeds, the
middle panel shows the speeds predicted by the before-optimization model, and the right
panel shows the speeds predicted by the after-optimization model. Specifically, Figure 5
presents results for the morning peak and for the leisure hours, and Figure 7 presents
results for the evening peak period.

  

Figure 6. Velocity over time during leisure hours: observed, before optimization, and after optimization.

  

Figure 7. Velocity over time during evening peak: observed, before optimization, and after optimization.

During the morning peak, the optimized model more accurately captured the ini-
tial low-speed walking state observed in the empirical data. For the leisure period, the
model effectively reproduced periodic fluctuations in walking speed. Notably, the ob-
served trajectory data revealed a recurring pattern in which walking speeds increased at
intervals of approximately 2–3 min. The optimized model successfully predicted this phe-
nomenon, reflecting a realistic response to train arrival schedules in the subway station—an
important feature of pedestrian dynamics during this period. In the evening peak, the
pre-optimization model failed to capture irregular walking behaviors. However, after
optimization, the model was able to reflect such atypical patterns more clearly. Visual
inspection of the velocity curves confirms that the optimized model produced significantly
more accurate predictions under complex evening conditions.
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Overall, the before-optimization model exhibited noticeable errors in segments charac-
terized by periodic speed fluctuations, whereas the after-optimization model substantially
reduced these errors and accurately reproduced time-dependent walking dynamics across
all time periods. These findings confirm that the Social Force Model can effectively capture
pedestrian behavior in diverse subway station environments when its parameters are
rigorously calibrated through an appropriate optimization process.

6. Conclusions
This study developed a pedestrian-flow simulation tailored to the intricacies of Sam-

seong Station in Seoul by fusing high-resolution LiDAR trajectories with a Social Force
Model (SFM) whose parameters were rigorously calibrated via an RMSProp optimiza-
tion scheme. Segmenting the dataset into three distinct time-of-day intervals—morning
peak, leisure hours, and evening peak—enabled the model to reproduce the pronounced
temporal heterogeneity in walking behavior that arises from shifting trip purposes and
fluctuating density levels.

The RMSProp-based calibration markedly enhanced predictive fidelity, most notably
in velocity estimation. The optimized model faithfully replicated gradual acceleration
patterns characteristic of the morning commute, cyclic speed oscillations during midday
leisure activity, and the erratic dynamics associated with evening congestion. Crucially, it
retained high reliability under dense, unstable flow conditions, underscoring its robustness
for real-world deployment.

Beyond its empirical accuracy, the model offers immediate operational value for con-
gestion mitigation and real-time station management, and its computational efficiency
makes it well-suited for integration into digital twin platforms that support dynamic
scenario analysis and emergency-response training. Ultimately, the proposed modeling
approach serves as a foundational tool for the implementation of Sustainable Urban Mo-
bility Plans (SUMPs), particularly as Intelligent Info-mobility Systems gain momentum in
urban infrastructure. By aligning data-driven simulation with policy-oriented objectives,
this research contributes to the creation of mobility strategies that are inclusive, adaptive,
and sustainable.

Nevertheless, this study primarily focused on conventional pedestrian interactions.
Future research should aim to incorporate more complex behavioral mechanisms, includ-
ing responses to environmental cues such as signage, spatial constraints, and real-time
congestion feedback. Furthermore, accounting for individual-level heterogeneity—such as
age, baggage possession, and other personal attributes—along with group-based dynamics
will be essential for enhancing the model’s descriptive richness and applicability. The
establishment of standardized benchmarking frameworks is also crucial for evaluating
model performance across diverse subway station types and structural configurations.
Addressing these research directions will substantially improve the predictive accuracy,
scalability, and generalizability of pedestrian simulation models, thereby advancing the
design of safer, more intelligent, and operationally efficient subway systems.
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