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Abstract: A classifier is commonly generated for multifunctional prostheses control or also as input
devices in human–computer interfaces. The complementary use of the open-access biomechanical
simulation software, OpenSim, is demonstrated for the hand-movement classification performance
visualization. A classifier was created from a previously captured database, which has 15 finger
movements that were acquired during synchronized hand-movement repetitions with an 8-electrode
sensor array placed on the forearm; a 92.89% recognition based on a complete movement was
obtained. The OpenSim’s upper limb wrist model is employed, with movement in each of the joints
of the hand–fingers. Several hand-motion visualizations were then generated, for the ideal hand
movements, and for the best and the worst (53.03%) reproduction, to perceive the classification error
in a specific task movement. This demonstrates the usefulness of this simulation tool before applying
the classifier to a multifunctional prosthesis.

Keywords: OpenSim; classification model; biomechanical simulation

1. Introduction

The simulation of biomechanical systems is a widely used tool in the scientific field
that is currently booming in medical systems; for example, in rehabilitation tasks [1],
and in entertainment [2], such as the interaction of manual gestures between humans and
computers. Nevertheless, they involve the development of specific manual tasks related to
the reproduction of finger movements. Different types of sensors are used [3], but surface
electromyography (sEMG) sensors are the most important ones to perform the recognition
of the specific hand movement [4,5]. It requires the use of machine learning techniques to
go from sEMG data to determine one of the possible motions; simple and complex models
are being used. Once some motion classification model is available, it is translated to the
physical or visual reproduction of the considered motions.

In this work, the use of a quadratic discriminant classifier (QDA) developed from
machine learning techniques is proposed for the simulation of movement in a special-
ized biomechanical simulation environment OpenSim. The complementary use of the
open-access biomechanical simulation software, OpenSim, is demonstrated for the hand-
movement classification performance visualization. OpenSim is a musculoskeletal simula-
tion program that allows biomechanical analysis of a variety of models [6–8], and currently
has tools for real-time motion analysis in [9,10]. The OpenSim’s upper limb wrist model is
employed, with movement in each of the joints of the hand–fingers.

The classifier was created from a previously captured database, which has 15 finger
movements that were acquired during synchronized hand-movement repetitions with an
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8-electrode sensor array placed on the forearm, as described in [11]. The best reproduction
obtained was a 92.89% recognition accuracy on average, based on a complete movement
across all subjects. Several hand-motion visualizations were then generated, for the ideal
hand movements, and for the best and the worst (53.03%) reproduction, to perceive the
classification error in a specific task movement. This demonstrates the usefulness of this
simulation tool before applying the classifier to a multifunctional prosthesis.

2. Materials and Methods
2.1. Modified Opensim Wrist Model

The hand-forearm model used in this work is based on the one created by Delp and
Gonzalez concerning the movement of the wrist [12]. The initial model has all the upper
limb bones and 10 degrees of freedom (DoF), including those of the elbow, thumb and
index finger, and has a total of 23 muscle actuators that control the movement. We updated
this OpenSim model for this work, to add motion to the middle, ring and little finger
joints [13]. Figure 1 illustrates some sections of interest that had to be modified in the
model in order to be used. The model has now 25 actuators and 25 degrees of freedom.
The degrees of freedom were added for the middle, ring and little fingers which are the
joints between the metacarpals, phalanges, phalangetas and phalanginas, a comparison
between the original and the modified model can be seen in Table 1.
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fragment of a bone is observed (a phalanx), an image with a vtp file extension, which is part of the 
model. These figures were obtained from the visualization of the model under OpenSim, where 
FDPI is Flexor Digitorium Profundus muscle and MCP2 is Metacarpal2 joint. 

The joints of the phalanges are trochlear type, in form of a hinge, so they only have a 
degree of freedom for movement in a single axis. A muscle actuator defined as a muscle 
has a sequence of points where the muscle is attached onto the bone. Thus, a geometric 
trajectory is defined by a set of trajectory points. The union of two bones generates a joint, 

Figure 1. This figure represents segments of the modified model: (a) the parameters that were
modified in the model are observed from bones name, number of joints and muscle insertions; (b) a
fragment of a bone is observed (a phalanx), an image with a vtp file extension, which is part of the
model. These figures were obtained from the visualization of the model under OpenSim, where FDPI
is Flexor Digitorium Profundus muscle and MCP2 is Metacarpal2 joint.

Table 1. Comparison between the number of bones, muscle actuators, joints and degrees of freedom
of the models considered.

Model Bones Muscle
Actuators Joints DoF

Original 21-coupled + 7 WG 23 + ECU(2) 28 10
Modified 29 + 7 WG 23 + ECU(2) 36 25

WG = without geometry, ECU = Extensor carpis ulnaris.

The joints of the phalanges are trochlear type, in form of a hinge, so they only have a
degree of freedom for movement in a single axis. A muscle actuator defined as a muscle
has a sequence of points where the muscle is attached onto the bone. Thus, a geometric
trajectory is defined by a set of trajectory points. The union of two bones generates a joint,
in this joint there can be more than one degree of freedom, but in the case of the phalanges
they only have movement in one axis, therefore they only have one degree of freedom.
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2.2. Brief Summary of the Database to Model and Classify

The database consists of 8 subjects and 15 finger movements. The 15 movements
include the flexion of each of the individual fingers and combinations between these:
thumb (T_T), index (I_I), middle (M_M), ring (R_R), little finger (L_L), the combinations
TI, TM, TR, TL, IM, MR, RL, IMR, MRL, and finally the closed hand (HC). Each subject
performed 12 repetitions for each of the movements, i.e., 1440 repetitions of some type of
movement. The raw data files are downloaded from [14] and loaded with the MATLAB
csvread function. An array is created for each motion named with the name of the motion.
This raw data are used as the input for the pre-processing stage, and correspond to the
data of 8 sEMG of the forearm of each subject tested during repetition of movements.
Only images of the final position of each movement were presented, the movement was
performed for 5 s and started with the hand relaxed in a fixed forearm position [11].

2.3. Vector of DoF Incremental Motion

As there is no database video, or data from other types of position sensors, on the
movements of the hand from which to infer or measure the position of each joint (or DoF)
over time, a virtual ideal motion was created of each joint involved in the complete cycle of
a movement, assuming uniform dynamics. Starting with the rotation value that each joint
has in the initial position of the hand at rest, until reaching the final rotation in which each
joint ends a specific movement, see Figure 2.
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Figure 2. Upper section: images of the hand movement for the case of the thumb. Lower section,
OpenSim model in initial and final position, different joints or DoF intervene in this movement.

Once the initial and final image position of the hand for each movement are known,
the intermediate positions that make up the complete movement are idealized, dividing
it to be 80 moments (steps) of the full 5 s. Calculating the rotation values of each joint
involved within the range allowed by the model and required by the type of movement.
The starting position for all 15 movements is the same, the hand at rest. Therefore, from this
initial position, it is possibly to add a given rotation increment to the joints involved, so that
in step 80 the given movement was completed. It is easy to have just the joint rotation
increment for each video frame. Therefore, only a vector of the 25 joint rotation increment
values is needed for each specific movement.

2.4. Data Pre-Processing and Classification

The raw data matrix is used to create a classification model. The classification model
is obtained through a procedure described in [15]. This procedure can be seen in general
form in Figure 3 and described below as Algorithm 1, developed under the MATLAB envi-
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ronment. The raw data matrix is also used to generate an online classification. Algorithm
2 describes the procedure to perform the online classification of a complete repetition of
one of the evaluated hand gestures.

Algorithm 1

1. Import of the database into the MATLAB environment.
2. Outliers are eliminated through the method of Outlier elimination with a chi-squared

distribution.
3. The data are windowed, grouping 160 EMG data samples.
4. Search for feature suggestions in EMG research, features are extracted for each window

created. A new data table is generated.
5. From these groupings, a matrix is created for all the subjects.
6. With the new database the sequential forward feature selection (SFS) algorithm is

implemented.
7. The data are normalized to give the same weight to the evaluated features.
8. From the space of the features, we move to a space of sparse matrices.
9. The new classifier is created from the quadratic discriminant algorithm with a Bayesian

approach.
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Algorithm 2

1. A raw data window is displayed, and the selected features are calculated. Normalize the
measured data with the parameters obtained from Algorithm 1.

2. Use of transformation matrices to convert the normalized data to a new space.
3. The new vector is classified by entering it into the classification model.
4. The model generates a classification and the corresponding vector of DoF incremental

motion selected.
5. There is a 25 articulations motion matrix created with initial rotation values in each column.
6. The selected vector of DoF incremental motion is added to the motion matrix.
7. When the classification of the movement is finished, the motion matrix is saved in a file with

extension “.mot”.
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With Algorithm 1 it was possible to obtain the selected window size, the best math
operations that extract information from the raw EMG signal, the number of features that
increase the recognition rate, the statistical parameters of the evaluated data matrix such as
mean and standard deviation to normalize new input data and the transformation matrices
are obtained, to transform the new data in the new space.

Once the window size was set, the features obtained from SFS, the data normalization
parameters and the new space conversion matrices and classification model obtained,
we used this information to run over specific hand-motion measurements for an online
classification. The following algorithm shows the online process.

2.5. Creation of Motion Files

For each type of the 15 hand movements there was a DoF incremental motion vector,
the sum of 80 times one of these vectors of the same movement generates a complete ideal
movement file. However, now, when the online classification of a raw complete specific
motion was made, it produces a particular classification per window, resulting 80 possible
DoF incremental motion vectors to generate a motion file record of fully classified window
steps.

Therefore, there are two types of motion files to reproduce the movements, the ideal
movements and the movements created from a full classification. This is a visual tool that
permits observation of the classification success and to think about the actual performance
of the hand gestures. It was decided to take the worst classified motion according to the
experimental data. The graph of the progression of the motion in the classification is shown
in results.

OpenSim reproduces movements from a movement file with “.mot” extension and at
the same time allows us to record videos with “.webm” extension for visualization and
storage in a video format.

3. Results

One of the first results of this article was the modified model of the wrist in OpenSim,
to include 25 joints with DoF as shown in Figure 4b. This model has now the necessary
characteristics to be able to reproduce any movement of the hand evaluated in this work.
The OpenSim model needs motion files to generate the movements of each of the joints.
A simple method of DoF incremental motion vector was created for the joints involved in
any of the 15 evaluated hand movements had a known position transition.
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The construction of the classifier was obtained from Algorithm 1. In Figure 4a the
separation of the classes using the dispersion matrix algorithm can be observed, where
with only 3 features it was possible to visualize a separation between five of the hand
gestures.

Results of the classification model for the 8-subjects’ raw database data are summa-
rized in Table 2, appearing in the order of worst to best classified movements. Finding that
the worst evaluated movement was R_L flexion with a classification percentage of 53.03%
and the best movement was T_M with 92.89% recognition. A relationship is also shown
about the individual subject classification and the best percentage of recognition found; for
example, in the movement R_L, which was the worst classified averaged of the 8 subjects,
we have that with subject 7 there is a recognition of 96.70%.

Table 2. Percentage of average recognition of the 8 subjects.

Movement All Subject Recognition Rate
(from Worst to Best)

Subject and Best
Recognition (%)

R_L 53.03 7 (96.70)
R 69.04 5 (100)
L 70.10 1 (98.78)

IMR 71.08 2 (92.41)
T 78.10 5 (100)
I 78.11 7 (96.81)

T_L 78.97 4 (100)
M 79.16 3 (91.92)

I_M 81.73 5 (100)
MRL 83.60 1 (97.70)
HC 83.70 1, 2, 3, 8 (100)
T_R 85.02 6 (98.97)
M_R 86.03 2 (100)
T_I 87.59 5 (100)

T_M 92.89 6 (100)

The worst performed movement, and corresponding subject, was selected to review
the full classification result with the OpenSim model and to visualize the effect of the error
reproduced by this movement classification. Figure 5 shows the result of the classifica-
tion of the R_L movement compared to the ideal movement along the time of evolution.
This method is an evaluation tool of the complete movement from the classification of the
EMG recordings.
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4. Discussion and Conclusions

A classification model was created from an EMG database of hand gestures, obtaining
high recognition rate for the evaluated movements, even though the model is used for a
group of 8 subjects with 15 movements. The objective in this work was to demonstrate the
use of this classification but in a model of hand-movement simulation, as a way visually
evaluate the success of the movement recognition through observing how stable and
smooth is the trajectory of the hand gesture prediction.

The definition of the classification model and its implementation is critical, and to be
able to evaluate the classification model visually is a great tool: the creation of the move-
ment file for any complete repetition of movement and the visualization and reproduction
biomechanically under OpenSim. As we can see in the reproduction, a wrongly classified
movement does not always affect the total movement generated. The error translated to
movement can be expressed in the same way as a movement executed at 80%, perhaps
more if the correct movements are considered within the errors. For example, if the clas-
sification indicates flexion of the index-middle-ring finger and it is actually index finger,
this is a partially good classification, since this movement helps or classifies well the correct
movement. Even a normal human hand, to execute a single movement using the ring
finger as an example, generates other movements in the other fingers.

The recognition of movements involved in daily life has prospective applications in
rehabilitation and in entertainment, such as the interaction of manual gestures between
humans and computers. The method used to generate the visualization of the movement
could be improved by capturing video or perhaps using gloves to measure the position of
each of the joints at the time of generating the databases. Therefore, the software would
correlate the physical movement in relation to the electromyography data. At any rate,
this paper used an already created database that did not have these measurements and
ideal motion was created for each joint; with more realistic joint positions, the simulation
program would be more accurate.
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