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Abstract: The cybernetic interface within an upper-limb prosthesis facilitates a Human–Machine
interaction and ultimately control of the prosthesis limb. A coherent flow between the phantom
motion and subsequent actuation of the prosthesis limb to produce the desired gesture hinges heavily
upon the physiological sensing source and its ability to acquire quality signals, alongside appropriate
decoding of these intent signals with the aid of appropriate signal processing algorithms. In this paper,
we discuss the sensing and signal processing aspects of the overall prosthesis control cybernetics,
with emphasis on transradial, transhumeral, and shoulder disarticulate amputations, which represent
considerable upper-limb amputees typically encountered within the population.

Keywords: cybernetics; brain–machine interface; upper-limb prosthesis; signal processing; pattern
recognition; control; transstadial; transhumeral; shoulder disarticulation

1. Introduction

An amputation involves the surgical removal of a candidate limb from the body of
a human being. This can be for a variety of reasons such as accidents, vascular diseases,
leprosy, tumours, and snakebites [1]. In some developing countries, causes for amputations
also include the effects of war, such as fighting injuries and landmines [1]. These effects have
made for a considerably heightened level of amputation statistics over the past 20 years, as
reported by Staats [1], which includes the following: 200,000—Vietnam, 36,000—Cambodia,
15,000—Angola, 8000—Mozambique and 5000—Uganda.

It is unanimously acknowledged that the loss of an upper limb can drastically affect
the quality of life led by an individual, their level of independence, and, in extreme cases, it
has led to suicide [2].

Means of compensation for the loss of an upper limb involve the use of an upper-limb
prosthesis, of which the most advanced is the bionic upper-limb prosthesis, also known as
a myoelectric prosthesis [2]. The efficient operability of the prosthesis arm hinges on the
effective signal acquisition and accompanying decoding of the acquired signal. This refers
to the sensing and signal processing as part of the cybernetic interface of the prosthesis of
the bionic limb to facilitate effective collaboration between an amputee and an augmented
body part [3]. This will be discussed in greater depth in the manuscript with respect to the
challenge faced with specific kinds of amputations.

Although comprehensive statistics on amputations have been challenging to acquire
and collate, combined statistics presented by Cordella et al. [4] have provided insights to
suggest that transhumeral and transradial amputees account for the largest cohort of am-
putees (with considerable amputations in the UK and Italy), thereby necessitating emphasis
in terms of research and technological innovations. From the viewpoint of a technological
challenge, background surveys appear to suggest that there exists very sparse work done on
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the design of bionic upper-limb prosthesis for shoulder disarticulation amputees [5]. With
this in mind, the discussion in this paper will be centered around the sensing and signal
processing as part of the cybernetic interface within a bionic limb, applied to (i) transradial
prosthesis, (ii) transhumeral prosthesis and (iii) shoulder disarticulate prosthesis. This is
followed by suggestions on future work which, when tackled effectively, can make for
enhanced prosthesis control interfaces with the potential to be accessible at a lower cost.

2. Prosthesis Cybernetic Interface

The pattern recognition-based control system is the favoured prosthesis control ap-
proach used in the cybernetic interface for the purpose of control of bionic prosthesis
limbs [6]. The review work by Nsugbe et al. [3] described the various components as-
sociated with the pattern recognition-based control system. Breaking this down into a
forward and feedback path, the forward path comprises the signal acquisition primarily
from the residual anatomy of the amputees, feature extraction and machine learning as
part of the phantom motion intent decoding stage, and cues in the actuation function
selection and motor driving of the prosthesis limb [3]. As soon as the motion intent signal is
acquired, the forward stage of the control process can be said to be a fully automated stage,
which is facilitated by machinery intelligence [3]. The feedback path is the stage where
the human intervention comes into the loop, first by playing the role of a visual observer,
while the autonomic nervous system serves as the intelligent controller, which orchestrates
the adjustment of the contraction dynamics and phantom motions, etc., in a desired and
iterative manner until a satisfactory outcome has been reached [7]. The joint contribution
of both the amputee and machine intelligence showcase that the bionic prosthesis control
problem is one that can be viewed as a Human–Machine collaboration in order to achieve
the desired functionality. Work on gesture recognition by Nsugbe et al. [2] highlighted this
with a diagrammatic flow displayed in Figure 1, which shows the interface between the
sensing, signal processing and classifier (denoted as dark blue blocks) and the mechanical
components, such as the actuators and servos (denoted as transparent blocks). In this
scenario, the Human contribution has been denoted as a biofeedback element.
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Analysis, MLPNN-Multilayer perceptron Neural Network, SVM-Support Vector Machine).

It should be noted that the discussed prosthesis architecture is in relation to phantom
motion sensing and gesture recognition and does not take into account continuous contrac-
tion force estimation methods, which would typically be expected to work in parallel with
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the pattern recognition control scheme, and can be done using regression methods as seen
in other areas [8–11].

As part of the control process, sensors are used in the acquisition of anatomical signals,
which tend to be from a bioelectrical source, since the established means of anatomical
signal acquisition is via the use of electromyography (EMG) sensing [12]. A discrete
representation of an EMG signal can be seen as follows:

x(n) =
N

∑
r=1

h(r)e(n − r) + w(n)

where x(n) is an EMG signal, e(n) is a discrete point being processed, h(r) is the firing
impulse of an action potential, w(n) is an additive white noise, and N represents the
number of firing motor neurons.

A host of other sensing modalities have been investigated for the use of prosthesis,
such as electroencephalography (EEG), near-infrared (NIR), as shown in Figure 1, and
mechanomyography, to name a few. EMG continues to be the most widely used sensing
modality for prosthesis control, where studies discussed as part of Section 2.2 involve cases
where EMG has been used independently or in combination with an auxiliary sensing
modality [3,13,14].

The feature extraction stage involves the extraction of a range of features that can
be used to succinctly characterise an acquired neuromuscular time-series. The kinds of
features that need to be extracted largely depend on the extent of the amputation, as
will be discussed subsequently [3]. This is followed by a classification stage using a
trained classifier, where it can be noted that due to regulations around computational
time allowable for prosthesis, the predominantly deployed classifier was the discriminant
analysis. Nonetheless, other classifiers have been researched and include neural networks
and support vector machines, to name a few [3].

2.1. Transradial Pattern Recognition Control Interface

Transradial amputations are relatively minor in terms of major upper-limb amputa-
tions. This fact is echoed regarding feature extraction, where linear time-domain features,
such as mean absolute value (MAV), slope sign change (SSC), zero crossings (ZC) and root
mean squared (RMS), have been seen to be sufficient in effective modelling differentiation
and recognition of phantom hand motions [15]. The nature of the acquired physiological
signals, and the associated linear modelling methods, has led to this area of amputations
receiving a high degree of research emphasis, as evidenced by the pool of literature relating
to transradial amputee bionic prosthesis [3,13,15]. As with all amputations, neurological
rewiring of the motor cortex begins to occur as time passes since the amputation, without
the use of a prosthesis limb [7]. This effect serves as a source of non-linearity as it begins to
result in faint contractions emanating from phantom motions, which produce a weak elec-
trophysiological output, and a more stochastic physiological time-series signal. Potential
means towards dealing with this could include non-linear and complex features that can
capture underlying patterns in stochastic signals.

An image showing a transradial amputee during a data collection process can be seen
in Figure 2.
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2.2. Transhumeral Pattern Recognition Control Interface

The transhumeral amputation represents a major upper limb, ‘above-elbow’ amputa-
tion [2]. The electrophysiological signals acquired from phantom motions of these amputees
are mostly from the bicep and triceps, thus limiting the ability to infer finger and fine motor
movements from these kinds of amputations [17,18]. Hence, the phantom motions used
in the design of the pattern recognition interfaces for these kinds of amputees involve
bulk muscular recruitment which—considering the nature of the amputation—make for
a stochastic and highly non-linear time-series signal. As a means of feature extraction
and signal processing, it has been seen that common linear time-domain features have
been proven to be insufficient, and instead require a concatenation of linear, frequency
(i.e., cepstrum) and non-linear/complexity features (i.e., sample entropy, fractal features,
etc.) [18]. This, in turn, brought a challenge in terms of computation time as the ensemble
of features caused a scale-up of the electronic implementation demands. Although Nsugbe
et al. [17] implemented a novel and computationally effective time-domain decomposition
algorithm, which in a sense ‘linearises’ the signal and allows for reduced feature extraction,
the algorithm requires a broader sample set for further validation.

Thus, as a step towards a suitable real-time optimisation, feature selection exercises
need to be conducted with a broad set of features to identify the optimal combination
for implementation in a prosthesis bionic interface. This feature, coupled with the use of
wearable sensors, can potentially allow for highly effective transhumeral bionic prosthesis
that would potentially be in an affordable range.

Figure 3 shows an image of a data collection session from a transhumeral amputee
comprising EMG and electroencephalography/brainwaves.
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Figure 3. A transhumeral amputee performing simultaneous motor imagery and phantom move-
ments [17].

2.3. Shoulder Disarticulate Pattern Recognition Control Interface

These amputees represent a combination of ergonomic and technical signal processing
challenges in the design of control interfaces for their candidate bionic, due to the extreme
nature of their amputations [5]. For example, due to the nature of their amputations it is
not possible to track phantom motions; thus, anatomical tissues from other sites along the
dorsal are used as surrogate sites to acquire electrophysiological signals from shoulder
girdle motions, which in turn are used to actuate various hand gesture motions in a bionic



Eng. Proc. 2021, 10, 48 5 of 7

prosthesis limb. In the case of the signal processing, candidate sites used for physiological
signal acquisition include the trapezius, pectoral and the latissimus dorsal muscle, which
facilitate the compound movement of the shoulder girdle and, in turn, produce a stochastic
time-series signal [5,19].

The literature is sparse in the area of prosthesis control interface for shoulder disar-
ticulate amputees. Key work, which included the simultaneous acquisition of EMG and
vibration signals from amputees (as shown in in Figure 4), also involved the application
of an extended set of features to accurately recognise different variants of shoulder girdle
motions across a number of amputees [5,19]. Due to the unnatural association between
shoulder girdles and potential hand gestures in a prosthesis limb, cognitive loading is
likely to be an issue for the prosthesis users and threatens a potential abandonment of
the prosthesis limb, as has been noted previously. Thus, neuromuscular reprogramming
therapy, as proposed by Nsugbe and Al-Timemy [5], can be included as part of the process
of familiarising the amputee with the use of the technology in order to boost intuitiveness
and control of the prosthesis limb, and ultimately minimise cognitive loading [20]. In terms
of the ergonomics of sensor placements and the associated electrodes, electrode selection
exercises can be conducted via a forward selection algorithm which can help boost parsi-
mony and trim down the number of electrode sites, while increasing classification accuracy.
Furthermore, in order to boost sensor robustness, wearable embroidery electrodes can be
considered for use as part of the prosthesis control system, which would also contribute
towards further affordability of the prosthesis limb [21].

Eng. Proc. 2021, 3, x FOR PEER REVIEW 5 of 4 
 

 

shoulder girdle motions, which in turn are used to actuate various hand gesture motions 
in a bionic prosthesis limb. In the case of the signal processing, candidate sites used for 
physiological signal acquisition include the trapezius, pectoral and the latissimus dorsal 
muscle, which facilitate the compound movement of the shoulder girdle and, in turn, pro-
duce a stochastic time-series signal [5,19]. 

The literature is sparse in the area of prosthesis control interface for shoulder disar-
ticulate amputees. Key work, which included the simultaneous acquisition of EMG and 
vibration signals from amputees (as shown in in Figure 4), also involved the application 
of an extended set of features to accurately recognise different variants of shoulder girdle 
motions across a number of amputees [5,19]. Due to the unnatural association between 
shoulder girdles and potential hand gestures in a prosthesis limb, cognitive loading is 
likely to be an issue for the prosthesis users and threatens a potential abandonment of the 
prosthesis limb, as has been noted previously. Thus, neuromuscular reprogramming ther-
apy, as proposed by Nsugbe and Al-Timemy [5], can be included as part of the process of 
familiarising the amputee with the use of the technology in order to boost intuitiveness 
and control of the prosthesis limb, and ultimately minimise cognitive loading [20]. In 
terms of the ergonomics of sensor placements and the associated electrodes, electrode se-
lection exercises can be conducted via a forward selection algorithm which can help boost 
parsimony and trim down the number of electrode sites, while increasing classification 
accuracy. Furthermore, in order to boost sensor robustness, wearable embroidery elec-
trodes can be considered for use as part of the prosthesis control system, which would 
also contribute towards further affordability of the prosthesis limb [21]. 

 
Figure 4. Shoulder disarticulation amputee with electrodes attached [5]. 

3. Conclusions 
In this paper, the control interface for select kinds of upper-limb prosthesis has been 

discussed. This discussion has been based primarily around the signal processing of the 
acquired physiological signal as a means towards motion intent decoding. The transradial 
prosthesis has been viewed as the most researched bionic prosthesis interface and pro-
duces a time-series signal which lends itself to feature extraction involving a relatively 
small subset of time-domain features. The transhumeral prosthesis, which is an extreme 
above-elbow amputation, produces a stochastic physiological time-series from anatomical 
tissue, including the bicep and triceps along the humerus, thus warranting an extended 
feature extraction approach, which involves a concatenation of signal features. In the case 
of the shoulder disarticulation prosthesis, stochastic time-series signals are acquired from 
muscles involved in shoulder girdle motions in the absence of a stump due to the nature 
of the amputation. A proposed list of future work to be done from a technical perspective 
for the various prosthesis groups, in order to enhance operability and functionality of the 
prosthesis interface includes: the expansion of the feature sets considered as part of a 
transradial prosthesis; research on feature selection and optimisation exercises to find the 

Figure 4. Shoulder disarticulation amputee with electrodes attached [5].

3. Conclusions

In this paper, the control interface for select kinds of upper-limb prosthesis has been
discussed. This discussion has been based primarily around the signal processing of the
acquired physiological signal as a means towards motion intent decoding. The transradial
prosthesis has been viewed as the most researched bionic prosthesis interface and produces
a time-series signal which lends itself to feature extraction involving a relatively small
subset of time-domain features. The transhumeral prosthesis, which is an extreme above-
elbow amputation, produces a stochastic physiological time-series from anatomical tissue,
including the bicep and triceps along the humerus, thus warranting an extended feature
extraction approach, which involves a concatenation of signal features. In the case of the
shoulder disarticulation prosthesis, stochastic time-series signals are acquired from muscles
involved in shoulder girdle motions in the absence of a stump due to the nature of the
amputation. A proposed list of future work to be done from a technical perspective for
the various prosthesis groups, in order to enhance operability and functionality of the
prosthesis interface includes: the expansion of the feature sets considered as part of a
transradial prosthesis; research on feature selection and optimisation exercises to find the
best combination of features that allow for a real-time implementation in a control interface
while maximising the phantom recognition capability; and in the case of the shoulder
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disarticulate prosthesis, the conducting of feature selection and optimisation exercises in
order to reduce the amount of sensor channels used in the recognition of shoulder girdle
motion, alongside potential feature selection and optimisation exercises.
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