
Proceeding Paper

Optimization of Focused Ion Beam Patterning Parameters for
Direct Integration of Plasmonic Nanostructures on
Silicon Photodiodes †

Elia Scattolo 1,2,*, Alessandro Cian 1 , Damiano Giubertoni 1, Giovanni Paternoster 1, Luisa Petti 2

and Paolo Lugli 2

����������
�������

Citation: Scattolo, E.; Cian, A.;

Giubertoni, D.; Paternoster, G.; Petti,

L.; Lugli, P. Optimization of Focused

Ion Beam Patterning Parameters for

Direct Integration of Plasmonic

Nanostructures on Silicon

Photodiodes. Eng. Proc. 2021, 10, 2.

https://doi.org/10.3390/ecsa-8-

11259

Academic Editor: Stefano Mariani

Published: 1 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Sensors and Devices Center, Bruno Kessler Foundation, 38123 Trento, Italy; acian@fbk.eu (A.C.);
giuberto@fbk.eu (D.G.); paternoster@fbk.eu (G.P.)

2 Sensing Technology Lab, Faculty of Science and Technology, Free University of Bozen, 39100 Bozen, Italy;
luisa.petti@unibz.it (L.P.); paolo.lugli@unibz.it (P.L.)

* Correspondence: escattolo@fbk.eu
† Presented at the 8th International Electronic Conference on Sensors and Applications, 1–15 November 2021;

Available online: https://ecsa-8.sciforum.net.

Abstract: The possibility of integrating plasmonic nanostructures directly on an active device, such
as a silicon photodetector, is a challenging task of interest in many applications. Among the available
nanofabrication techniques to realize plasmonic nanostructures, Focused Ion Beam (FIB) is surely
the most promising, even if it is characterized by certain limitations, such as ion implantation in the
substrate. In this work, we demonstrate the direct integration of plasmonic nanostructures directly
on an active Si-photodetector by patterning a silver film with FIB. To avoid ion implantation and to
therefore guarantee unaltered device behavior, both the patterning parameters and the geometry of
the nanostructures were implemented by Montecarlo and Finite-Difference Time-Domain simulations.

Keywords: silicon photodiode; plasmonic nanostructures; focused ion beam

1. Introduction

In the last twenty years, many theoretical studies have shown that plasmonic struc-
tures have astonishing, unique, and interesting optical characteristics [1–4]. As a direct
consequence, many scientific and industrial applications have tried to take advantages
of plasmonics, resulting in substantial innovation in nanofabrication methods. As an
example, the combination of plasmonic nanostructures with complementary metal-oxide-
semiconductor (CMOS) optical sensors that are capable of converting photons into electrical
signals have generated great interest due to their potentiality of extending the spectral
responsivity of silicon in a wider spectral region from the ultra-violet (UV) region up to
the near infra-red (NIR) region [5]. Unlike the fabrication of plasmonic nanostructures on
an inert substrate, the production of plasmonic nanostructures on active sensors requires
the consideration of not only the surface topography but also the active behaviors of the
sensors. Therefore, the choice of the production technique requires special considerations.
Focused Ion Beam (FIB), which does not require a mask or a photoresist (as the ion beam is
focused directly on the material of interest), is one of the methods that can be used for the
fabrication of CMOS technology-compatible nanostructures [6–9]. The main advantage of
direct nano-patterning by FIB is the total flexibility that it provides in terms of the shape
and aspect ratio. Nevertheless, direct patterning can cause ion implantation in the substrate,
causing flaws and modifying the electrical behavior of the sensors [10]. Thus, to fabricate
plasmonic nanostructures that are directly on the top of a CMOS sensors is pivotal to tune
the FIB process parameters, such as beam energy and current and dose and ions species. In
this contribution, we demonstrate the integration of metallic plasmonic nanoarrays that
have been developed directly on top of an active silicon photodetector by means of FIB
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patterning, showing no damage to the active behavior of the device. Both the structures
and the patterning parameters were optimized by Finite-Difference Time-Domain (FTDT)
and Montecarlo simulations, while the unaltered Si-detector behavior was evaluated by
current–voltage (I–V) measurements.

Plasmonic Enhancement Optical Sensors

Among photon detecting systems, single photon avalanche diodes (SPADs) have
been studied consistently in recent years, with the purpose of achieving higher detection
efficiency and a high timing resolution. Specifically, many applications are interested in
having a high time resolution device, such as LiDAR (at 850–950 nm wavelengths), NIR
spectroscopy, quantum computation, to exploit near infrared (NIR) and to detect light from
NIR-emitting scintillators [11–14]. Differently from silicon photodiodes (PDs), which have
a thicker active region that can be employed to achieve higher efficiency in the NIR region,
SPADs need thinner active regions for the more technological aspects as well as to those
aspects that are related to the time resolution that is required [15]. Hence, the integration
of plasmonic metallic nanostructures supporting highly superficial confined light in a thin
SPAD is a breakthrough solution to overcome this limitation. Recently, some interesting
nanostructures have been investigating (i) 1- and 2-dimensional gratings [16]; (ii) bullseye
structures [17]; and (iii) nano-pillars and nano-holes arrays [18]. Among those, in this work,
1-D and 2-D metallic nanogratings are investigated by considering their feasibility and
possible integration with a Si-based photodetector and CMOS technologies.

2. Methods

The plasmonic nanoarrays were directly integrated on a silicon-based photodiode, i.e.,
a device that is able to transduce incident light (photons) in measurable currents (electrons).
The proposed structure is composed of three parts (excluding the photodetector [5]):
dielectric material, metallic grating, and a passivation layer on top, Figure 1b. The dielectric
material has two fundamental aims: (i) the passivation of the surface of the detector
and (ii) the guarantee of the excitation of the surface plasmon polaritons (SPPs). Silicon
nitride (Si3N4) and silicon oxide (SiO2) are perfect candidates for use as dielectric materials
because of their process compatibility with CMOS technology and because of their chemical
compatibility with Si-based devices. The optimal thickness for the dielectric layer (which
maximizes the enhancement) depends on the material selected, and from the theoretical
simulations, for both materials, this was determined to be in the range of 5–20 nm. To
fabricate the metal grating, a direct pattern can be employed by FIB after the evaporation
of silver by physical vapor deposition (PVD), [19]. After the patterning, a passivation layer
(usually PMMA) is spin coated on top of the grating to guarantee performance stability
and to avoid metal oxide formation.

The enhancement of the Si-photodetector efficiency coupled with metallic grating is
achievable due to the confinement of photons (by the nanostructure) at the interface by the
excitation of the SPPs, [20–22]. The wavelength at which the SPPs is excited is a function
of grating geometry, dielectric thickness, and passivation thickness, and, therefore, the
confinement of the photons is achieved. Moreover, the direct integration of the different
metallic plasmonic structures on top of an active device without damaging its behavior
is a challenging task. Therefore, before starting the fabrication, both the Montecarlo
simulations [23,24] and FDTD [25] simulations were run to tune the ion beam parameters
and to optimize the grating geometry, respectively.



Eng. Proc. 2021, 10, 2 3 of 7
Eng. Proc. 2021, 10, 2 3 of 7 
  

 

 

Figure 1. (a) Collision cascade from Montecarlo simulations inside silver layer; (b) schematic cross 
section of the proposed device, from top: silver nanograting, silicon nitride dielectric and silicon 
photodetector; (c) finite-difference time-domain [25] of simulated absorption at a wavelength of 950 
nm normalized to the absorption of silicon covered with perfect anti-reflective coating (PARC). 
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parameters. The aim of the simulations is to find the correct parameters to mill the silver 
layer without inducing damage inside the active region of the device. The ion–solid 
interaction is theoretically simulated by a static interaction simulative software called 
SRIM, which considers the Stopping and Range of Ions in Matter (SRIM), [23,24]. In Figure 
1a, the theoretical collision cascade of the gold double-charged ions at 35 keV in a silver 
layer is shown. The collision cascade exhibits a box shape (blue dotted line) that is close 
to the ideal configuration, with a sputter yield of 15.6 atoms per incident ion. The sputter 
yield is a fundamental parameter for FIB patterning because it indicates the number of 
sputtered atoms per each incident ion; hence, the higher it is, the higher the number of 
removed atoms is, and therefore, the faster the patterning process is. The sputter yield is 
also necessary to calculate the dose, i.e., the charge left on the sample by the ion beam per 
centimeters square, which is usually expressed by μC/cm2. The dose not only depends on 
the target material and the ion beam species but also on the thickness of the material to be 
milled [22]. To calculate the dose that is required, the following formula is used: 𝜙 𝜌 𝑧
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Figure 1. (a) Collision cascade from Montecarlo simulations inside silver layer; (b) schematic cross
section of the proposed device, from top: silver nanograting, silicon nitride dielectric and silicon
photodetector; (c) finite-difference time-domain [25] of simulated absorption at a wavelength of
950 nm normalized to the absorption of silicon covered with perfect anti-reflective coating (PARC).

2.1. Montecarlo Simulations

As discussed before, Montecarlo simulations are fundamental to tune the ion beam
parameters. The aim of the simulations is to find the correct parameters to mill the silver
layer without inducing damage inside the active region of the device. The ion–solid
interaction is theoretically simulated by a static interaction simulative software called
SRIM, which considers the Stopping and Range of Ions in Matter (SRIM), [23,24]. In
Figure 1a, the theoretical collision cascade of the gold double-charged ions at 35 keV in a
silver layer is shown. The collision cascade exhibits a box shape (blue dotted line) that is
close to the ideal configuration, with a sputter yield of 15.6 atoms per incident ion. The
sputter yield is a fundamental parameter for FIB patterning because it indicates the number
of sputtered atoms per each incident ion; hence, the higher it is, the higher the number of
removed atoms is, and therefore, the faster the patterning process is. The sputter yield is
also necessary to calculate the dose, i.e., the charge left on the sample by the ion beam per
centimeters square, which is usually expressed by µC/cm2. The dose not only depends on
the target material and the ion beam species but also on the thickness of the material to be
milled [22]. To calculate the dose that is required, the following formula is used:

φ =
ρ z
Υ

(1)
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where φ (µC/cm3) is the dose that is necessary to mill the thickness z (nm), Υ is the sputter
yield (atoms/ions), and ρ is the volumetric density of the target material in (atoms/cm3).

2.2. Finite-Difference Time-Domain Simulations

A schematic cross section of the proposed structures is shown in Figure 1b; the silver
nanoarrays were selected because they allow the hybrid opto-plasmonic resonances in
the NIR to be exploited as a result of the spectral matching between the surface plasmon
polaritons at the metal–dielectric interface and the Rayleigh anomaly [26].

Therefore, the optimization of the geometrical parameters of the nanoarrays to enhance
absorption in the NIR range inside of the photodetector are run by FDTD simulations [25].
In Figure 1c, an overview of the simulations run to the optimization of the nanoarray
structure is shown. The aim of the simulations in Figure 1c is to determine the best metal
thickness values (dot height, x-axis) and periodicity (pitch, y-axis) to have the highest
quantum efficiency (QE) at 950 nm, i.e., the highest number of collected electrons over the
number of incident ions.

In Figure 1c, the QE that is shown is normalized with respect to the maximum QE
value that was obtained by coupling the same Si photodetector to a perfect anti reflective
coating (PARC), i.e., a stack of different material layers with a tuned refractive index that is
able to almost null the fraction of the reflected light incident on the device. The simulations
highlight four metal thickness couples and pitch values:

The values that are reported in Table 1 are referred to for both 1-dimensional (1D) and
2-dimensional (2D) arrays and have the following nomenclature: “p-xyz,h-abc”, where p
stands for pitch and xyz are the values of the pitch in nm, and where h stands for height
and abc are the values of the metal thickness in nm. The fabrication of the silver nanoarrays
with the specific values reported in Table 1 presents some challenging features. For the
nanoarrays with p-535,h-110 are the most replicable in both the 1D and 2D configurations 1.
By contrary, the p-535,h-300 cannot be fabricated by FIB patterning, but the long dwell time
(time spent by the ion beam on each point to mill the material) that is necessary to mill a
300 nm silver thickness would lead to a (i) low lateral definition of the structures and to a
(ii) patterning time that is too long. Hence, the configuration p-535,h-300 is not considered,
and for the same reasons, the configuration p-260,h-300 is also not considered. Similar to
this is the fabrication of p-260,h-110, which presents some tricky features because of the
high aspect ratio and the low beam spot size that is required. For the above-cited reasons,
only the configuration with the lower metal thickness (p-535,h-110 and p-260,h-110) are
considered for both the 1-D and 2-D configurations in this work. To characterize the
electrical behavior of the enhanced detector, the device was electrically connected by gold
wire bonding to a printed circuit board (PCB) presenting 24 pins: 20 for photodiode metal
contact and 4 for reference.

Table 1. Reported couples of metal thickness and periodicity values at absorption peaks from
Figure 1c.

p-535,h-110 p-535,h-300 p-260,h-110 p-260,h-300

Metal thickness (nm) 110 300 100 300
Periodicity (nm) 535 535 260 260

3. Results and Discussion

In the previous section, the results of the Montecarlo and FDTD simulations are
reported and discussed. Hence, both the patterning parameters and geometry features
are optimized to guarantee a working integrated Si-detector with a higher efficiency in
the NIR region. The two configurations p-535,h-100—p-260,h-110 in both the 1-D and 2-D
geometry were nanofabricated by means of the FIB technique with gold doubled-charged
ions with an energy of 35 keV, a beam current of 19 pA, and a dose value that could be
calculated by Equation (1). The SEM images of the patterned nanostructures are shown
in Figure 2; the 1-D and 2-D nanoarrays that are at higher periodicity (p-535) and the 1-D
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nanoarray at smaller periodicity (p-260) present better reproducibility and conformity. On
the other hand, the 2-D nanoarrays at smaller pitch (p-260) show a very low conformity in
terms of the shape and dimension of the dots, which is probably the result of spot beam
that was too big.
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Figure 2. SEM images of the configuration (a) 1D p-535, (b) 2D p-535, (c) 1D p-260 and, (d) 2D p-260.

As discussed before, the main limitation of patterning nanostructures directly on an
active device by means of FIB is the possibility of damaging the surface of the device,
which is needed for ion implantation. Moreover, using gold ions as a beam species is a
challenging choice because gold has been always considered to be a “silicon killer” ever
since the early development of the silicon-based technologies, ref. [27]; therefore, even just a
low concentration of gold ions inside could make the device could completely useless. The
evaluation of the unaltered state of the device was assessed by dark current measurements,
which refers to the current flowing inside the device under the conditions where there
is no illumination. In a working silicon detector, the dark current, which is also called
noise, should be at least three orders of magnitude less than the currents that are generated
under illumination. The current that was generated under illumination had an intensity of
hundreds of µA on average in the silicon photodetector produced in the Fondazione Bruno
Kessler’s facilities. In Table 2, the values of the dark current that were measured at the
reverse applied voltage of 2 V for the four configurations shown in Figure 2 are reported.
All four of the noise values are reported in the order of tens of pA and are comparable
with the noise value of the reference diode (a not nanostructured diode). The dark currents
reported in Table 2 are at least 5 orders of magnitude lower than the currents that are
generated under illumination (hundreds of µA). Therefore, gold ion-patterning silver
directly on Si-photodiode does not damage the active behavior of the device, resulting in
the integration being successful.

Table 2. Reported values of dark current of reference diodes (naked) and photodiodes patterned by
FIB at 2V in reverse mode.

Reference FIB 1D FIB 2D

p-535,h-110 p-535,h-110
21 pA 41 pA 25 pA

p-260,h-110 p-260,h-110
10 pA 37 pA

4. Conclusions

The ability to integrate plasmonic nanostructures directly on silicon photodiodes is of
interest in many scientific and industrial domains, the reason for which is largely because
of the unique optical properties that plasmonic structures can offer. Nevertheless, the
characteristic size and the geometry of plasmonic structures are typically not of easy to
fabricate. In this work, we demonstrated that the FIB technique is a solid solution that can
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be used for the nanopatterning of the plasmonic structures while they are directly on an
active device through the optimization of the patterning parameters and the geometrical
parameters by Montecarlo and FDTD simulations, respectively. In this contribution, we
reported the successful integration of metallic plasmonic structures on a silicon photodiode
without inducing any irreversible damage in the active region of the device. The results
were demonstrated through the unaltered values of the dark current of the patterned
diodes. This paves the way for further applications where plasmonic nanostructures can
be integrated with photodetectors, such as all-in-one plasmonic biosensors.
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