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Abstract: In this paper, the fabrication and characterization of CH3NH3PbI3 perovskite solar cells us-
ing decaphenylpentacyclosilane, copper phthalocyanine complex (CuPc) doped with tetracyanoquin-
odimethane (TCNQ), was performed. The effects of a carboxylic acid, amino, or sulfonic acid sodium
salt group, substituted with CuPc doped with TCNQ, on photovoltaic properties was investigated to
improve carrier generation and diffusion related to short-circuit current density. The incorporation
of carboxylic acid or amino, substituted with CuPc doped with TCNQ, would optimize the tuning
energy levels of the valence band, promoting charge transfer and diffusion with a suppressing trap
near the interface in the hole-transporting layer.

Keywords: perovskite solar cell; phthalocyanine; tetracyanoquinodimethane; photovoltaic properties;
morphology

1. Introduction

Perovskite solar cells have high potential for practical use as next-generation solar cells
with characteristics such as high-power conversion efficiency related to photovoltaic per-
formance, and an easy manufacturing process [1–4]. Perovskite solar cells are constructed
with a photo-active layer on the hole-transporting layers [5]. The photovoltaic properties
are based on the perovskite crystal and chemical elements such as an organic cation; methyl
ammonium (MA) [6], ethyl ammonium (EA) [7,8], formamidinium (FA) [9,10], guanidinium
(GA) [11–13], phenyl ethyl ammonium (PEA) [14], p-phenylenediaminium [15], alkali met-
als (sodium, potassium, rubidium and cesium) [16] at the A-site; lead [17], tin, transition
metals [18,19], lanthanide or rare earth ions [20,21] at the B-site; and a halogen anion at the
X-site in the perovskite crystal. The photovoltaic characteristics of perovskite crystals with
a tuning composition mole-ratio of chemical elements have been determined for improving
conversion efficiency, morphologies, and crystal orientation. Photovoltaic performance
is based on carrier diffusion, with the suppression of recombination and trapping near
the defect, and interfaces between the crystal grains in the perovskite layer. The stability
of photovoltaic performance is performed to suppress desorption of the organic cation
and halogen anion. Control of composition ratio such as the organic cation, transition and
alkali metals, and halogen atoms, and the development of alternative hole-transporting
materials [22–25] have been performed for the application of photovoltaic devices.
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Alternative hole-transporting materials using silane derivatives such as decaphenylcy-
clopentasilane (DPPS), in terms of a conventional hole-transporting material such as 2,2′,7,7′-
tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD), have been
developed for improving the stability of conversion efficiency while suppressing decompo-
sition [26–29]. In addition, metal phthalocyanines, as organic semi-conductive materials,
have an advantage in electronic devices such as organic solar cells and perovskite solar
cells [30–42]. The photovoltaic properties of the metal phthalocyanine complex are based
on electron structure and molecular modification. The addition of metal phthalocyanines
into the perovskite layer promotes photo-induced carrier generation and charge diffusion
related to mobility, with optimization of the surface morphology on the perovskite layer. Op-
timization by tuning the microstructure and morphologies in the perovskite layer is an im-
portant factor for improving the stability of the conversion efficiency. Metal phthalocyanine
complex derivatives (MPc, M = Cu2+, Zn2+) doped with 7,7,8,8-tetracyanoquinodimethane
(TCNQ) [43] have been used as an efficient hole-transporting material for improving carrier
mobility related to short-circuit current density and conversion efficiency.

The purpose of this study is to fabricate and characterize perovskite solar cells using
DPPS, with the addition of copper phthalocyanine complex derivatives (CuPcX4) doped
with TCNQ, as hole-transporting materials. In particular, the influence of a carboxylic acid,
amino, or sulfonic acid sodium salt group substituted with CuPc doped with TCNQ on
the photovoltaic properties was investigated. The photovoltaic properties were measured
by current–voltage (J-V) curves under light irradiation. The photovoltaic properties are
discussed using the experimental results.

2. Materials and Methods

The CH3NH3PbI3 (MAPbI3) perovskite solar cell, using DPPS and MPc doped with
TCNQ, was fabricated using the following process: For the preparation of the solar cell
substrate, F-doped tin oxide (FTO) substrates were cleaned using an ultrasonic bath with
acetone and methanol, and dried under nitrogen gas. The 0.15 and 0.30 M TiOx precur-
sor solution was prepared from titanium diisopropoxide bis(acetylacetonate) (0.055 and
0.11 mL, Sigma-Aldrich, Tokyo, Japan) with 1-butanol (1 mL, Nacalai Tesque, Kyoto, Japan).
The 0.15 M TiOx precursor solution was spin-coated on the FTO substrate at 3000 rpm for
30 s and annealed at 125 ◦C for 5 min. Then, the 0.30 M TiOx precursor solution was spin-
coated on the TiOx layer at 3000 rpm for 30 s and annealed at 125 ◦C for 5 min. This process
using the 0.30 M solution was performed two times, and the FTO substrate was sintered at
500 ◦C for 30 min to form the compact TiO2 layer. After that, TiO2 paste was coated on the
substrate by spin-coating at 5000 rpm for 30 s. For the formation of the mesoporous TiO2
layer, the TiO2 paste was prepared using TiO2 powder (P-25, Aerosil, Tokyo, Japan) with
polyethylene glycol (PEG #20000, Naalai Tesque, Kyoto, Japan) in ultrapure water. The
solution was mixed with acetylacetone (10 µL, Fujifilm Wako Pure Chemical Corporation,
Osaka, Japan) and triton X-100 (5 µL, Sigama-Aldrich, Tokyo, Japan) for 30 min, and was
left for 12 h to suppress the bubbles in the solution. The cells were annealed at 120 ◦C for
5 min and at 500 ◦C for 30 min to form the mesoporous TiO2 layer.

For the preparation of the perovskite compounds, a solution of CH3NH3I (MAI, 2.4 M,
Tokyo Chemical Industry, Tokyo, Japan), and PbI2 (0.8 M, Sigma-Aldrich, Tokyo, Japan)
with a desired mole ratio in N, N-dimethylformanide (0.5 mL, Sigma-Aldrich, Tokyo, Japan)
was mixed at 60 ◦C. The solution of perovskite compound was then introduced into the
TiO2 mesoporous using a spin-coating method. In the last stage of the spin coating, DPPS
(OGSOL SI-30-15, Osaka Gas Chemicals, Osaka, Japan) as a hole-transport layer (HTL) was
prepared using chlorobenzene (0.5 mL, Fujifilm Wako Pure Chemical Corporation, Osaka,
Japan). The DPPS solutions were dropped on the perovskite layer during the last 15 s of
spin-coating of the perovskite precursor solutions. The perovskite cells coated with the
DPPS layer were annealed at 190 ◦C for 10 min.

As shown in Figure 1, copper (II) phthalocyanine complexes were used for preparation
of the hole-transporting layer. A solution of copper (II) phthalocyanine tetracarboxylic
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acid (CuPc(COOH)4, Orient Chemical Industries Co., Ltd. Osaka, Japan)), copper (II)
tetra(amino)phthalocyanine (CuPc(NH2)4, Orient Chemical Industries Co., Ltd. Osaka,
Japan)), and copper (II) phthalocyanine-tetra sulfonic acid tetrasodium salt (CuPc(SO3Na)4,
18 mg, Sigma-Aldrich, Japan)) mixed with TCNQ (2 mg, Sigma-Aldrich, Japan) in ethanol
(1.0 mL, Nacalai Tesque, Kyoto, Japan) was prepared using spin-coating annealing at
110 ◦C for 10 min. As preparation of the standard hole-transporting layer took place,
a solution of 2,2′,7,7′-tetrakis[N,N-di(methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-
OMeTAD, 36.1 mg, Sigma-Aldrich, Tokyo, Japan) in chlorobenzene (0.5 mL, Fujifilm
Wako Pure Chemical Corporation, Osaka, Japan) was mixed with a solution of lithium
bis(trifluoromethylsulfonyl)imide (Li-TFSI, 260 mg, Tokyo Chemical Industry, Tokyo, Japan)
in acetonitrile (0.5 mL, Sigma-Aldrich, Tokyo, Japan) for 24 h. The former solution, with
4-tert-butylpyridine (14.4 µL, Sigma-Aldrich, Tokyo, Japan), was mixed with the Li-TFSI
solution (8.8 µL) for 30 min at 70 ◦C. All procedures were carried out in ordinary air.
Finally, gold (Au) metal contacts were evaporated as top electrodes. The photovoltaic cells
were fabricated with the layered structures of FTO/TiO2/perovskite/DPPS/ CuPc-doped
TCNQ/Au.

The J-V characteristics (Keysight B2901A, Keysight Technologies, Santa Rosa, CA,
USA) of the photovoltaic cells were measured under illumination at 100 mW cm−2 by
using an AM 1.5 solar simulator (San-ei Electric XES-301S, Osaka, Japan). One substrate
was fabricated and characterized for photovoltaic performance. The best and average
conversion efficiencies, and standard deviations of the solar cells with the three electrodes
prepared in this study, were measured in the reverse scan of the J-V curves. The solar cells
were illuminated through the side of the FTO substrates, and the illuminated area was
0.090 cm2.
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Figure 1. Molecular structures of copper (II) phthalocyanine complexes: (a) CuPc(NH2)4;
(b) CuPc(COOH)4; and (c) CuPc(SO3Na)4.

3. Results and Discussion

The J-V characteristics of the photovoltaic cells were measured as listed in Table 1.
In the case of CuPc(COOH)4 doped with TCNQ, the photovoltaic parameters such as
short-circuit current density (JSC), fill factor (FF), series resistance (Rs), shunt resistance
(Rsh), and conversion efficiency (η) were 16.8 mA cm−2, 0.655 V, 0.491, 3.14 Ω cm2, 152 Ω
cm2, and 5.49%, as listed in Table 1. The photovoltaic performance was improved through
the incorporation of CuPc(COOH)4 doped with TCNQ, as compared with the photovoltaic
parameters in other cases. In the case of CuPc(NH2)4 doped with TCNQ, the photovoltaic
performance of η decreased to 3.76%. In the case of CuPc(SO3Na)4 doped with TCNQ, the
photovoltaic parameters of Jsc and Voc decreased to 2.66 mA cm−2 and 0.603 V, decreasing
η by 0.75%. The J–V characteristics of the photovoltaic cells were measured after 30 days.
In all cases, after 30 days, the photovoltaic parameters of Jsc, Voc, and FF related to η
were influenced by the incorporation of CuPcX4 doped with TCNQ. In particular, the
incorporation of CuPc(NH2)4 doped with TCNQ improved the photovoltaic parameters of
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Voc, FF, Rs, and Rsh, increasing η in the range of 6.41–6.55% after 30 days. The incorporation
of CuPc(NH2)4 doped with TCNQ had the advantage as the hole-transporting layer with
a remaining stability of η, instead of a conventional hole-transporting material using
spiro-OMeTAD.

Table 1. Photovoltaic parameters of the perovskite solar cells as prepared.

Devices
JSC VOC FF

RS RSh η ηave
(mA cm−2) (V) (Ω cm2) (Ω cm2) (%) (%)

CuPc(NH2)4-TCNQ 8.39 0.716 0.626 6.90 5000 3.76 1.30
CuPc(COOH)4-TCNQ 16.8 0.655 0.491 3.14 152 5.49 4.45
CuPc(SO3Na)4-TCNQ 2.66 0.603 0.465 11.6 1160 0.75 0.54

The photovoltaic properties depend on the carrier diffusion while suppressing recom-
bination near the interface between the crystal grains in the perovskite layer. When the
incorporation of CuPcX4 doped with TCNQ was performed, the carrier generation and
charge transfer promoted the suppression of recombination near the interface in the hole-
transporting layer. The holes in the valence band of the perovskite layer charge-transferred
the valence bands of DPPS, CuPcX4 and TCNQ in the hole-transporting layer on the gold
electrode as the cathode. The valence bands of the hole-transporting layer were tuned
through the incorporation of CuPcX4, with electronic donation and withdrawal substitu-
tion. The carboxyl acid or amino substituted with CuPc doped with TCNQ optimized
the energy levels of the valence band state, promoting charge transfer and diffusion with
suppression of the trap near the interface in the hole-transporting layer. The Voc of the
perovskite solar cells was associated with the energy gap between the valence band of the
perovskite layer and the conduction band of TiO2 layer as an electron-transporting layer.
The incorporation of CuPc(NH2)4 doped with TCNQ improved carrier diffusion while
suppressing decomposition in the perovskite layer, yielding an increase in JSC related to η.
Compared to the conventional fabrication using spiro-OMeTAD, the fabrication method
with the incorporation of CuPcX4 doped with TCNQ has a great advantage for application
in photovoltaic devices with its long-term durability of performance.

4. Conclusions

The fabrication and characterization of perovskite solar cells using DPPS, with the
addition of CuPcX4 doped with TCNQ, were performed to improve the stability of con-
version efficiency. The effects of a carboxylic acid, amino, or sulfonic acid sodium salt
group, substituted with CuPc doped with TCNQ, on photovoltaic properties were in-
vestigated, to improve the parameters of JSC and Voc related to η. The incorporation of
carboxylic acid or amino substituted with CuPc doped with TCNQ optimizes the tuning
of the energy levels of the valence band state, promoting charge transfer and diffusion
while suppressing the trap near the interface in the hole-transporting layer. In particular,
the incorporation of CuPc(NH2)4 doped with TCNQ improved the stability of η while
suppressing decomposition in the perovskite layer.
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