Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors †
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Synthetic Procedures
4.2. Spectroscopic Measurements and Quantum Mechanic Calculations
Author Contributions
Funding
Conflicts of Interest
References and Notes
- Martin, S.R.; Schilstra, M.J. Circular Dichroism and Its Application to the Study of Biomolecules. In Methods in Cell Biology; Academic Press: Cambridge, MA, USA, 2008; Volume 84, pp. 263–293. [Google Scholar]
- Maupin, C.L.; Riehl, J.P. Circularly Polarized Luminescence and Fluorescence Detected Circular Dichroism. In Encyclopedia of Spectroscopy and Spectrometry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 305–311. [Google Scholar]
- Mori, T. (Ed.) Circularly Polarized Luminescence of Isolated Small Organic Molecules; Springer: Singapore, 2020. [Google Scholar]
- Sang, Y.; Han, J.; Zhao, T.; Duan, P.; Liu, M. Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. Adv. Mater. 2020, 32, 1900110. [Google Scholar] [CrossRef] [PubMed]
- Zinna, F.; Giovanella, U.; Bari, L.D. Highly Circularly Polarized Electroluminescence from a Chiral Europium Complex. Adv. Mater. 2015, 27, 1791–1795. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, L.E.; Pal, R. Circularly Polarized Lanthanide Luminescence for Advanced Security Inks. Nat. Rev. Chem. 2021, 5, 109–124. [Google Scholar] [CrossRef]
- Amako, T.; Nakabayashi, K.; Suzuki, N.; Guo, S.; Rahim, N.A.A.; Harada, T.; Fujiki, M.; Imai, Y. Pyrene Magic: Chiroptical Enciphering and Deciphering 1,3-Dioxolane Bearing Two Wirepullings to Drive Two Remote Pyrenes. Chem. Commun. 2015, 51, 8237–8240. [Google Scholar] [CrossRef] [PubMed]
- Andres, J.; Hersch, R.D.; Moser, J.-E.; Chauvin, A.-S. A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks. Adv. Funct. Mater. 2014, 24, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Koike, H.; Nozaki, K.; Iwamura, M. Microscopic Imaging of Chiral Amino Acids in Agar Gel through Circularly Polarized Luminescence of EuIII Complex. Chem. Asian J. 2020, 15, 85–90. [Google Scholar] [CrossRef]
- Ozcelik, A.; Pereira-Cameselle, R.; Poklar Ulrih, N.; Petrovic, A.G.; Alonso-Gómez, J.L. Chiroptical Sensing: A Conceptual Introduction. Sensors 2020, 20, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hache, F.; Changenet, P. Multiscale Conformational Dynamics Probed by Time-resolved Circular Dichroism from Seconds to Picoseconds. Chirality 2021, 33, 747–757. [Google Scholar] [CrossRef]
- Ma, J.-L.; Peng, Q.; Zhao, C.-H. Circularly Polarized Luminescence Switching in Small Organic Molecules. Chem. Eur. J. 2019, 25, 15441–15454. [Google Scholar] [CrossRef]
- Bentley, K.W.; Wolf, C. Comprehensive Chirality Sensing: Development of Stereodynamic Probes with a Dual (Chir)optical Response. J. Org. Chem. 2014, 79, 6517–6531. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, M.; Zhuang, Y.; Liu, S.; Huang, W.; Zhao, Q. Circularly Polarized Luminescence from Organic Micro-/Nano-Structures. Light Sci. Appl. 2021, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Carnerero, E.M.; Moreno, F.; Maroto, B.L.; Agarrabeitia, A.R.; Bañuelos, J.; Arbeloa, T.; López-Arbeloa, I.; Ortiz, M.J.; de la Moya, S. Unprecedented Induced Axial Chirality in a Molecular BODIPY Dye: Strongly Bisignated Electronic Circular Dichroism in the Visible Region. Chem. Commun. 2013, 49, 11641–11643. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.; Sánchez-Carnerero, E.M.; Moreno, F.; Maroto, B.L.; Agarrabeitia, A.R.; Ortiz, M.J.; López-Arbeloa, Í.; Bañuelos, J.; Cohovi, K.D.; Lunkley, J.L.; et al. Bis(HaloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence. Chem. Eur. J. 2016, 22, 8805–8808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The degree of CPL is given by the luminescence dissymmetry ratio, glum(λ)=2ΔI/I = 2(IL − IR)/(IL + IR), where IL and IR refer, respectively, to the intensity of left and right circularly polarized emissions.
- Wolf, C.; Bentley, K.W. Chirality Sensing Using Stereodynamic Probes with Distinct Electronic Circular Dichroism Output. Chem. Soc. Rev. 2013, 42, 5408–5424. [Google Scholar] [CrossRef]
- Zardi, P.; Wurst, K.; Licini, G.; Zonta, C. Concentration-Independent Stereodynamic g-Probe for Chiroptical Enantiomeric Excess Determination. J. Am. Chem. Soc. 2017, 139, 15616–15619. [Google Scholar] [CrossRef]
- Zhao, N.; Gao, W.; Zhang, M.; Yang, J.; Zheng, X.; Li, Y.; Cui, R.; Yin, W.; Li, N. Regulation of Circular Dichroism Behavior and Construction of Tunable Solid-State Circularly Polarized Luminescence Based on BINOL Derivatives. Mater. Chem. Front. 2019, 3, 1613–1618. [Google Scholar] [CrossRef]
- Tafesh, A.M.; Weiguny, J. A Review of the Selective Catalytic Reduction of Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, and Ureas Using CO. Chem. Rev. 1996, 96, 2035–2052. [Google Scholar] [CrossRef]
- Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent Developments in the Reduction of Aromatic and Aliphatic Nitro Compounds to Amines. Org. Process Res. Dev. 2018, 22, 430–445. [Google Scholar] [CrossRef]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent Indicators Based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K. Recent Advances in the Application of BODIPY in Bioimaging and Chemosensing. J. Mater. Chem. C 2019, 7, 11361–11405. [Google Scholar] [CrossRef]
- Baruah, M.; Qin, W.; Basaric, N.; De Borggraeve, W.M.; Boens, N.L. BODIPY-Based Hydroxyaryl Derivatives as Fluorescent pH Probes. J. Org. Chem. 2005, 70, 4152–4157. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.; Bañuelos, J.; Arbeloa, T.; Maroto, B.L.; Moreno, F.; Agarrabeitia, A.R.; Ortiz, M.J.; Lopez-Arbeloa, I.; de la Moya, S. Push-pull flexibly-bridged bis(haloBODIPYs): Solvent and spacer switchable red emission. Dalton Trans. 2016, 45, 11839–11848. [Google Scholar] [CrossRef] [PubMed]
- The degree of CD is given by the absorbance dissymmetry ratio (Kuhn’s dissymmetry ratio), gabs(λ) = 2Δε/ε = 2(εL − εR)/(εL + εR), where εL and εR refer, respectively, to the molar absorptivity of left and right circularly polarized absorptions.
Dye | Solvent | λaba (nm) | εmaxb (104 M−1cm−1) | λflc (nm) | ϕd | τe (ns) |
---|---|---|---|---|---|---|
1f | c-hexane | 529.0 | 12.4 | 544.0 | 0.17 | 1.15 (97%) 4.70 (3%) |
chloroform | 525.5 | 8.3 | 544.5 | 0.14 | 0.23 (32%) 1.15 (68%) | |
acetone | 508.5 469.5 | 5.5 5.8 | 537.5 | 0.005 | -- | |
methanol | 511.0 469.5 | 5.4 5.5 | 535.5 | 0.001 | -- | |
2a | c-hexane | 534.0 495.0 | 8.0 4.2 | 546.5 | 0.23 | 1.50 (96%) 5.03 (4%) |
chloroform | 532.5 492.5 | 8.4 5.1 | 548.0 | 0.07 | 0.18 (42%) 0.75 (58%) | |
acetone | 512.0 473.5 | 5.0 5.4 | 537.5 | 0.003 | -- | |
methanol | 514.5 474.0 | 4.9 5.2 | 539.5 | 0.003 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray, C.; Díaz-Norambuena, C.; Schad, C.; Moreno, F.; Agarrabeitia, A.R.; Ortiz, M.J.; Arbeloa, T.; Bañuelos, J.; Maroto, B.L.; Moya, S.d.l. Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors. Chem. Proc. 2022, 8, 3. https://doi.org/10.3390/ecsoc-25-11701
Ray C, Díaz-Norambuena C, Schad C, Moreno F, Agarrabeitia AR, Ortiz MJ, Arbeloa T, Bañuelos J, Maroto BL, Moya Sdl. Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors. Chemistry Proceedings. 2022; 8(1):3. https://doi.org/10.3390/ecsoc-25-11701
Chicago/Turabian StyleRay, César, Carolina Díaz-Norambuena, Christopher Schad, Florencio Moreno, Antonia R. Agarrabeitia, María J. Ortiz, Teresa Arbeloa, Jorge Bañuelos, Beatriz L. Maroto, and Santiago de la Moya. 2022. "Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors" Chemistry Proceedings 8, no. 1: 3. https://doi.org/10.3390/ecsoc-25-11701
APA StyleRay, C., Díaz-Norambuena, C., Schad, C., Moreno, F., Agarrabeitia, A. R., Ortiz, M. J., Arbeloa, T., Bañuelos, J., Maroto, B. L., & Moya, S. d. l. (2022). Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors. Chemistry Proceedings, 8(1), 3. https://doi.org/10.3390/ecsoc-25-11701