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Abstract: In this work, we present a template-based preparation of iron oxide-containing hydrogels
(ferrogels) with ionic sensitive and superparamagnetic properties. The influence of the cross-linked
template polyacrylamide and the concentration of the iron salts and sodium hydroxide on the
precipitation of the iron oxide particles is investigated with respect to the stability of the ferrogels.
Scanning electron microscope images show cubic particles, which can be semiquantitatively classified
in three groups of particle size with respect to the dilution level. Magnetic hysteresis curves reveal a
sigmoidal shape without remanence and coercivity for all samples. The higher cross-linked ferrogels,
in comparison with the lower cross-linked ferrogels, possess a steady-state degree of swelling in
ultrapure water and a stimuli-sensitive deswelling over a wide range of varying ionic strengths.
Thus, they are suitable candidates for applications in sensing and microfluidics.

Keywords: stimuli-responsive hydrogel; superparamagnetic; iron oxide; coprecipitation; ferrogel

1. Introduction

Hydrogels are cross-linked, usually hydrophilic polymers, which are suitable candi-
dates for applications in sensor [1] and actuator technology [2] due to their stimuli-sensitive
swelling and viscoelastic properties. The incorporation of iron oxide particles into hydro-
gels results in novel composite materials with enhanced chemical and physical properties.
Various approaches have demonstrated the sensitive and adsorptive properties of iron
oxide particles with respect to heavy metal ions [3–5], pH [6], and biomolecules [7,8], as
well as photocatalytic activity [9,10].

The aim of this work is the investigation of how the mechanical stability of the template
structure and the concentration of the synthesis solutions influence the properties of in situ
precipitated iron oxide particles. Understanding the structure–property relations of such
novel composite materials relates to ongoing topics of scientific applications and research
in engineering [11] and biomedicine [12] as well as in the treatment of contaminated
water [13].

In this study, the wet chemical precipitation of iron oxides from iron salts with sodium
hydroxide in the stoichiometric ratio of magnetite (FeII(FeIII)2O4) is investigated in two
various cross-linked hydrogels: a higher cross-linked hydrogel, which has already been
used in piezoresistive sensors [14], named sensor hydrogel/ferrogel, and a lower cross-
linked hydrogel, which is used in actuator setups [15], named actuator hydrogel/ferrogel
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(Figure 1A). It is expected that in template-based precipitation the differently crosslinked
hydrogels will affect the particle shape and size and in turn the swelling properties as well
as the magnetic properties of the resulting ferrogels. On the other hand, different dilution
levels of iron salts and sodium hydroxide will be used to investigate a suitable synthesis
concentration with respect to the sensitivity and stability of the ferrogels (Figure 1B).
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Figure 1. Scheme of the precipitation of iron oxide in hydrogel using iron chloride and sodium
hydroxide solutions (A). Overview of the transformation of a sensor hydrogel to a ferrogel by soaking
the samples in iron salt solution with orange-yellow coloring and forming black-brown-colored
ferrogels in sodium hydroxide at different dilution levels (B).

2. Materials and Methods
2.1. Synthesis of Iron Oxide in Hydrogels

The monomer acrylamide (AAm), crosslinker N,N′-methylene-bis-acrylamide (BIS),
ammonium peroxodisulfate (APS), ferric chloride hexahydrate (FeCl3·6H2O), ferrous chlo-
ride tetrahydrate (FeCl2·4H2O), and sodium chloride (NaCl) were purchased from Sigma-
Aldrich, Saint Louis, MO, USA. N,N,N′,N′-tetramethylethylenediamine (TEMED) was
purchased from Carl Roth, Karlsruher, Germany.

2.1.1. Sensor Hydrogels

For the synthesis of sensor hydrogel, 1.6 M (8 mmol, 0.5686 g) AAm and 1.5 mol%
(0.12 mmol, 0.0185 g) BIS were dissolved in 4.156 mL ultrapure water and placed in an
ice bath to cool. Polymerization was initiated by adding 300 µL of 0.072 M APS solution
(0.022 mmol APS) and 2.1 mol% (0.168 mmol, 25.4 µL) TEMED. The cooled solution was
placed in glass tubes with a diameter of about 6 mm, sealed, and left overnight at room
temperature for polymerization. The polymerized polyacrylamide (PAAm) hydrogels were
removed from the glass tubes and washed in ultrapure water for 5 days. Discs of about
2 mm thickness were cut from each of the cylindrical samples for in situ precipitation of
the iron oxides in hydrogel.

2.1.2. Actuator Hydrogels

The actuator hydrogel was synthesized and handled in the same procedure as the
sensor hydrogel, but with the following composition: 2.8 M (14 mmol, 1.0 g) AAm and
0.03 mol% (4.2 µmol, 0.7 mg) BIS were dissolved in 3.8 mL ultrapure water. Polymerization
was initiated by adding 300 µL of 0.15 M APS solution (0.045 mmol APS) and 0.48 mol%
(0.1 mmol, 10.2 µL) TEMED.
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2.1.3. Coprecipitation of Iron Oxide in Hydrogels

In order to prepare for precipitation, the sliced native hydrogel discs were rinsed with
nitrogen in ultrapure water free of oxygen.

The first step was to disperse the iron chloride solution into the hydrogel. Thus,
12 mL of a 3 M mixture of iron (III) chloride hexahydrate (24 mmol, 6.4870 g) and iron (II)
chloride tetrahydrate (12 mmol, 2.3860 g) was prepared in a 2:1 molar ratio. After that, a
1:10 dilution and a 1:100 dilution, each in 10 mL, were made from the 3 M iron salt solution.
Each sensor and actuator hydrogel was placed in 5 mL of the appropriate iron chloride
concentration for 24 h.

For the precipitation of iron oxide, 12 mL of an 8 M sodium hydroxide solution
(96 mmol, 3.8397 g) was prepared, and a 1:10 dilution and a 1:100 dilution, each in 10 mL,
were made from it. The iron salt-soaked hydrogels were transferred to 5 mL of the appro-
priate concentration of sodium hydroxide and left overnight. Finally, the ferrogels were
washed until the pH of the water was neutral.

In general, the precipitation was performed under nitrogen atmosphere, and all
solutions and the ultrapure water were used in a degassed condition. However, the
following experiments and investigations were carried out to characterize the hydrogels
under ambient conditions so that oxidation of magnetite (Fe3O4) to maghemite (γ-Fe2O3)
is suggested.

2.2. Characterization Methods
2.2.1. Scanning Electron Microscopy (SEM)

A piece of each sample was air-dried and sputtered with a 5 nm thick gold layer for
subsequent secondary electron imaging of the embedded iron oxide particles with a SEM
(Zeiss Supra 40VP; Schottky emitter) at a fixed stage width and 7 keV.

2.2.2. Vibrating Sample Magnetometer (VSM)

The magnetization of the air-dried samples was measured on a Lake Shore VSM 7407
in the magnetic field range of ±17.5 kOe at room temperature.

2.2.3. Swelling Experiments

In order to measure the impact of the changed environmental conditions on the
hydrogels, the respective masses of the samples were weighed before and after addition of
the stimulus. Without stimulus, the sample was in ultrapure water and had a mass m0. The
mass mi of the sample with stimulus was determined after 24 h or after the corresponding
long-term point. The degree of swelling was calculated as follows:

Q =
mi −m0

m0
× 100%. (1)

3. Results and Discussion
3.1. Morphological Properties

The scanning electron microscope images in Figure 2 of the sensor and actuator
ferrogels of each dilution level show cubic particles between 50 and 300 nm and, in some
cases, 1 µm in size. Sensor and actuator ferrogels of undiluted concentrations (Figure 2a,b)
and the actuator ferrogel of dilution level 1:10 (Figure 2e) additionally exhibit particles
smaller than 20 nm distributed in the sample in a lawnlike manner and cannot be resolved
with the currently used equipment. Due to the nonplanar arrangement of the particles,
quantitative evaluation was not performed.
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3.2. Magnetic Properties

Magnetization curves with an S-shaped profile without hysteresis gaining magnetic
saturation characterize superparamagnetic behavior [16,17]. For all prepared ferrogels,
the magnetization curves show a sigmoidal curve shape without coercivity and without
remanence (Figure 3).
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Figure 3. Magnetic hysteresis loop of the sensor ferrogels (a) and the actuator ferrogels (b) of the different dilution levels.
Inset in the diagrams shows the curves at a low magnetic field.

The magnetization curve for the sensor ferrogel of dilution level 1:100 is not plotted in
Figure 3a because the mass of this sample could not be determined due to sample instability
in the dried state, making a quantitative comparison of the curves impossible. Except for
the actuator ferrogel of dilution level 1:1, the saturation magnetization in both ferrogel
types decreases with the dilution level, reflecting the lower content of magnetic particles in
the ferrogel.

3.3. Reversibility of Ferrogel Swelling

Figure 4 depicts the swelling degrees of the ferrogels and native hydrogels alternating
in ultrapure water and 1 M NaCl. Both ferrogels show a deswelling of around 80% in
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solution with increased ionic strength. It can be concluded that in aqueous solution,
the ferrogels are in the swollen state due to electrostatic repulsions of charged surface
groups of the iron oxides. An increased ionic strength in the solution leads to electrostatic
neutralization of the ionized groups of the iron oxide with the dissolved ions.
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Figure 4. Swelling cycles showing the repeatability of the deswelling in 1 M NaCl solution and swelling in ultrapure water
(0 M NaCl) of the sensor ferrogels (a) and actuator ferrogels (b).

Deswelling of the ferrogel occurs due to a reduction in electrostatic repulsions within
the composite material comparable to the swelling behavior of pH or ion-sensitive hy-
drogels with fixed ionic groups in the polymer network [18]. In contrast, the native
hydrogels show minor swelling under increased ionic strength due to osmotically induced
swelling mechanisms.

The sensor ferrogels obtain their initial steady-state degree of swelling in water after
three water/NaCl cycles (Figure 4a).

Due to the increased volume in water after synthesis, it was not possible to remove
the actuator ferrogels from the sample containers so that detecting the mass could just start
in the deswollen state. Furthermore, the actuator ferrogels show an increase in swelling
degree during the second cycle in water and reach a swelling degree up to 50–100% in the
third water cycle (Figure 4b).

3.4. Sensitivity of the Sensor Ferrogel to Ionic Strength

Figure 5 depicts the swelling levels of the sensor ferrogels over a wide range of varying
ionic strengths from nM to 5 M.
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Figure 5. Swelling sensitivity of sensor ferrogels in NaCl solutions versus ionic strength.

A decay of the swelling curves between 1 mM and 1 M NaCl shows the concentration
range of the deswelling that applies to all three dilution levels. Interesting for sensory
applications is the flattened curve starting at 1 nM to 1 mM of the 1:100 sample. For this
ferrogel, there seems to be an optimal balance between the charge density of ionized iron
oxide particles under changing ionic strength and the mechanical stability of the hydrogel,
so it can be used as a stimuli-responsive ferrogel in sensory applications.
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4. Conclusions

The use of different cross-linked hydrogels as templates for the wet chemical pre-
cipitation of iron oxide producing fairly homogeneous cubic-shaped particles with su-
perparamagnetic characteristic curves independent of the applied concentration of iron
salts and base was presented. The ion-sensitive swelling properties of the sensor ferrogels
and the reversibility of their swelling make them suitable candidates for applications in
piezoresistive sensors. Their magnetic properties allow applications under magnetic field
control in microfluidics and medicine. Due to their strong swelling in water, the lower
cross-linked actuator ferrogels could be used as adsorption materials for the remediation
of contaminated water.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemproc2021005049/s1.
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