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Abstract: Aminobenzoic acid derivatives have shown various pharmacological properties, one of
which is pesticide activity, giving these compounds the ability to work as alternatives to current
pesticides. Nanotechnology could efficiently support the use of these compounds by encapsulating
them in stable nanoformulations to improve their stability and effectiveness. In the present work,
3-chloropropylaminobenzoate derivatives were synthesised and evaluated against their effect on the
viability of the insect cell line Sf9 (Spodoptera frugiperda), and nanoencapsulation studies of the most
active compound were carried out. The most potent molecules reduced insect cell viability by around
40% at 100 µg/mL.

Keywords: aminobenzoic acid derivatives; aminobenzoates; nanoencapsulation; Sf9 (Spodoptera
frugiperda); insecticides

1. Introduction

According to the FAO (Food and Agriculture Organization), the world population
will reach 9.1 billion by 2050, which represents a 34% increase in the current population [1]
and, consequently, a 70% increase in food production will be required [1,2]. Agrochemicals
have been fundamental to produce food as well as for the control of disease vectors [3]. To
control weeds, insects, and various disease-carrying pest infestations in agricultural feeds,
pesticides are widely used [3,4]. The intensive use of pesticides promotes an insecticide
resistance that impacts the effectiveness and utility of pest protection compounds [5]. Thus,
an alternative is necessary to develop pest control options, especially those with new
mechanisms of action [3,5].

Aminobenzoic acid derivatives are of fundamental interest because different relative
positions of the functional groups on the aromatic ring (para, meta and ortho) can produce
significant differences in chemical properties. ortho-Aminobenzoic acid 9 (sometimes
called anthranilic acid) and its analogues have a privileged profile as pharmacophores
for the development of deliberate drugs for the management of pathophysiology and the
pathogenesis of various diseases. The structure substitution of anthranilic acid provides
a variety of compounds, which allow a comprehensive assessment of structure-activity
relationship analysis for the identification of hits and leads in a typical drug development
paradigm. Anthranilic acid derivatives exhibit interesting antimicrobial, antiviral, and
insecticidal properties [6].
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Nanostructured materials have recently received increasing attention due to their
unique properties and wide range of vital applications [7,8]. Nanotechnology could
efficiently support the use of several biologically active compounds by encapsulating
them in stable nanoformulations, such as nano-emulsions, to improve their stability
and effectiveness [9].

Taking these facts into account, the synthesis of 2- and 3-aminobenzoic acid derivatives
were carried out in order to further evaluate them as potential alternative insecticides, and
nanoencapsulation studies were performed with the most active compound.

2. Results and Discussion
2.1. Synthesis of Aminobenzoic Acid Derivatives 3a–d

Esterification of the aminobenzoic acids 1a–c with the intended alkyl bromide was
carried out with cesium carbonate, since, compared to other alkali metal carboxylate salts,
cesium salts have been shown to be especially efficient in esterification under non-aqueous
conditions. Acetonitrile is a convenient reaction solvent due to its appropriate boiling point
as well as its high dielectric constant and polar nature, which provides good solubility for
the cesium carboxylate salts that are favorable for the esterification [10]. Thus, the reaction of
3-aminobenzoic acid 1a, 2-aminobenzoic acid 1b, and 2-amino-5-bromobenzoic acid 1c with
1-bromo-3-chloropropane 2 was carried out in presence of cesium carbonate in acetonitrile
at 60 ºC. After silica gel column chromatography purification, the corresponding esters
derivatives, namely, 3-chloropropyl 3-aminobenzoate 3a, 3-chloropropyl 2-aminobenzoate
3b, and 3-chloropropyl 2-amino-5-bromobenzoate 3c accompanied with 3-chloropropyl
5-bromo-2-((3-chloropropyl)amino)benzoate 3d, respectively, were obtained in yields up to
41% (Scheme 1) and characterized by NMR (1H and 13C) spectroscopies.
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Scheme 1. Synthesis of esters derived from amino benzoic acids 3a–d.

In the 1H NMR spectra, signals related to the methylene protons of the new substituent
in all derivatives are shown as a quintet (δ 2.21–2.24 ppm) and triplets (δ 3.67–4.44 ppm).
For compound 3d, it was also visible the presence of methylene protons linked to the amine
group, also as a quintet (δ 2.24 ppm) and triplets (δ 3.41–3.70 ppm). The presence of aromatic
protons was detected by the presence of three signals for all derivatives (δ 6.32–7.86 ppm).
The 13C NMR spectra showed the carbons of the methylene groups for all derivatives
(δ 31.65–61.51 ppm) as well as the aromatic carbons (δ 107.28–161.43 ppm). The confirma-
tion of the presence of the newly formed ester linkage in all compounds was also supported
by 13C NMR spectra, which displayed signals of the carbonyl group (δ 166.54–167.39 ppm).

2.2. Toxicity of Aminobenzoic Acid Derivatives 3a–d

The impact of aminobenzoic acid derivatives 3a–d in the viability of Sf9 cells was
evaluated at 100 µg/mL, following 24 h of exposure. As shown in Figure 1, compound
3c, containing, simultaneously, a bromine and an amine group in the benzen ring, was
completely devoid of toxicity. On the other hand, the derivatives 3a, 3b, and 3d elicited a
significant reduction in viability, with compound 3b being the most potent, causing ca. 40%
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cell death. For this reason, 3b was chosen for further nanoencapsulation assays, keeping in
mind a future application as an insecticide.

Chem. Proc. 2022, 12, 91  3 of 7 
 

 

Scheme 1. Synthesis of esters derived from amino benzoic acids 3a-d. 

2.2. Toxicity of Aminobenzoic Acid Derivatives 3a-d 
The impact of aminobenzoic acid derivatives 3a-d in the viability of Sf9 cells was 

evaluated at 100 µg/mL, following 24 h of exposure. As shown in Figure 1, compound 3c, 
containing, simultaneously, a bromine and an amine group in the benzen ring, was 
completely devoid of toxicity. On the other hand, the derivatives 3a, 3b, and 3d elicited a 
significant reduction in viability, with compound 3b being the most potent, causing ca. 
40% cell death. For this reason, 3b was chosen for further nanoencapsulation assays, 
keeping in mind a future application as an insecticide. 

 
Figure 1. Viability of Sf9 cells after incubation with the indicated molecules (100 µg/mL) for 24 h. 
*** p < 0.001. 

2.3. Nanoencapsulation Studies 
Before encapsulation, a preliminary study of the photophysical properties of 

compound 3b was carried out by measuring its absorption and emission spectra in 
solution. This study was needed for determination of the encapsulation efficiency and 
release kinetics, and the results are displayed in Figure 2. The absorption spectrum shows 
two peaks, the first at 250 nm and the other at 340 nm. The fluorescence spectra revealed 
a band between 360 nm and 500 nm, with a maximum around 410 nm. 

 

Figure 1. Viability of Sf9 cells after incubation with the indicated molecules (100 µg/mL) for 24 h.
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2.3. Nanoencapsulation Studies

Before encapsulation, a preliminary study of the photophysical properties of com-
pound 3b was carried out by measuring its absorption and emission spectra in solution.
This study was needed for determination of the encapsulation efficiency and release kinet-
ics, and the results are displayed in Figure 2. The absorption spectrum shows two peaks,
the first at 250 nm and the other at 340 nm. The fluorescence spectra revealed a band
between 360 nm and 500 nm, with a maximum around 410 nm.
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Figure 2. Absorption and fluorescence emission (excitation at 340 nm) spectra of compound 3b in
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Compound 3b was encapsulated into nanoliposomes of egg lecithin/cholesterol (Egg-
PC:Ch 7:3), aimed at allowing an effective release of the loaded compound. A high encap-
sulation efficiency of 97.1% was obtained, showing that derivative 3b can be efficiently
encapsulated into the nanoliposomes. The structural characterization of the prepared
loaded nanoliposomes was performed by DLS by measuring their hydrodynamic diam-
eter, polydispersity index, and zeta potential. As expected, liposomes with the size of
82.4 ± 1.3 nm, PDI of 0.16 ± 0.02 and with a zeta potential of −4.75 ± 1.28 mV were ob-
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tained, similarly to previous results obtained for the same formulation loaded with other
compounds [11].

The release kinetic profile of compound 3b from the nanoliposomes was determined
during 24 h and the obtained experimental data is displayed in Figure 3. The data of the
release profile were fitted to two kinetic models, the Weibull model, and the first-order
model, and the obtained parameters are summarized in Table 1.
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Table 1. Parameters obtained by fitting the release profile to the first-order kinetic model and Weibull
model, and the respective coefficients of determination (R2).

First-Order Weibull

K (s−1) R2 b a R2

0.38 0.97 0.41 0.67 0.99

A high release percentage of 54% was achieved, after 26 h, indicating that the Egg-
PC:Ch formulation is suitable for the efficient release of compound 3b. The Weibull model
better fitted the experimental results, showing a higher coefficient of determination (Table 1).
From the Weibull model fit, a Fickian diffusion is expected because the b value is below
0.75. The first-order model also fits the data quite well, although not as well as the Weibull
model, allowing the determination of a rate constant of 0.38 s−1.

3. Material and Methods
3.1. Typical Procedure for the Preparation of Compounds 3a–d (Illustrated for 3b)

Cesium carbonate (2.38 g, 7.30 mmol) and 1-bromo-3-chloropropane 2 (0.173 mL,
2.56 mmol) were added to a solution of 2-aminobenzoic acid 1b (0.200 g, 1.46 mmol) in
acetonitrile (3 mL). The reaction mixture was stirred for 25 h at 60 ◦C, and was monitored by
TLC (silica: dichloromethane/light petroleum ether 9:1). 3-Chloropropyl 2-aminobenzoate
3b was obtained as a brown oil (0.098 g, 32%). Rf = 0.74 (dichloromethane). 1H NMR
δH (CDCl3, 400 MHz): 2.22 (quint, J = 6.0 Hz, 2H, OCH2CH2CH2Cl), 3.70 (t, J = 6.4 Hz,
2H, OCH2CH2CH2Cl), 4.35 (t, J = 6.4 Hz, 2H, OCH2CH2CH2Cl), 5.76 (s broad, 2H, NH2),
6.63–6.68 (m, 2H, H-3 and H-5), 7.28 (dt, J = 8.8 and 1.6 Hz, 1H, H-4), 7.85 (d, J = 8.0 and
1.6 Hz, 1H, H-6) ppm. 13C NMR δc (CDCl3, 100.6 MHz): 31.65 (OCH2CH2CH2Cl), 41.31
(OCH2CH2CH2Cl), 60.86 (OCH2CH2CH2Cl), 110.36 (C-1), 116.10 (C-3), 116.61 (C-5), 130.95
(C-6), 134.11 (C-4), 150.52 (C-2), 167.75 (C=O) ppm.
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3.2. Biological Assays of Aminobenzoic Acid Derivatives 3a–d

The potential of compounds 3a–d were evaluated as biopesticides in assays using
the Sf9 (Spodoptera frugiperda) insect cell line. Cells were maintained at 28 ◦C and culti-
vated in Grace’s medium with 10% FBS. For the evaluation of viability, cells were plated
at 3.0 × 104 cells/well and exposed to the molecules, after which resazurin was added,
resulting in being read at 560/590 nm after 60 min of incubation.

3.3. Nanoencapsulation and Release Studies of Compound 3b

The ethanolic injection method was used for the preparation of nanoliposomes loaded
with compound 3b [12]. Liposomes of 1,2-diacyl-sn-glycero-3-phosphocholine from egg
yolk (egg phosphatidylcholine, Egg-PC) and cholesterol (Ch) (70% Egg-PC and 30% Ch)
were used [10]. Briefly, an ethanolic solution of Egg-PC:Ch (7:3) and compound 3b was
injected, drop-by-drop, into an aqueous solution, under vortexing. For the determination
of the encapsulation efficiency, EE (%), Equation (1) was used,

EE(%) =
Ctotal − Cnon-encapsulated

Ctotal
× 100 (1)

where ctotal is the compound concentration used for the preparation of liposomes and
cnon-encapsulated is the compound concentration that was not encapsulated into the nanoli-
posomes. The separation of the compound-loaded liposomes from the non-encapsulated
compound was performed using Amicon® Ultra centrifugal filter units of 100 kDa by cen-
trifugation at 3000 rpm for 10 min. The emission of the non-encapsulated compound (the
filtrate part) was measured for the determination of its concentration using a previously
obtained calibration curve of fluorescence intensity vs. concentration.

The release kinetic profiles of compound 3b from the nanoliposomes were obtained
using Amicon® centrifugal filters, in which the upper compartment was filled with the 3b-
loaded nanoliposomes and the bottom with water. For the determination of the cumulative
release, aliquots of 200 µL were collected from the bottom part of the Amicon® and replaced
with an equal volume of water for 24 h. The concentration of the released compound was
determined by measuring the emission of the aliquots, and the experimental data were
fitted to the Weibull model [13] and first-order model [14]. The Weibull model expresses
the compound fraction accumulated (m) in solution at time t, following Equation (2),

m = 1 − e[− (t − Ti)
b/a] (2)

where a defines the timescale of the process, Ti is a location parameter representing the
latency time of the release mechanism, and b parameter denotes the curve type shape. For b
> 1, the transport follows a complex release mechanism; b ≤ 0.75 indicates Fickian diffusion
(in either fractal or Euclidian spaces), and 0.75 < b < 1 indicates a combined mechanism
(Fickian diffusion and Case II transport).

The first-order model follows Equation (3), in which F(%) and M0 are the percentage
and the total amount of the compound released, respectively, in which k represents the
first-order rate constant, and in which t is time.

F(%) = M0 ×
(

1 − e−kt
)

(3)

The emission spectra were collected in a Fluorolog 3 spectrofluorometer (HORIBA
Jobin Yvon IBH Ltd., Glasgow, UK), and the UV-Vis absorption spectrum was obtained in a
Shimadzu UV-3600 Plus UV-Vis-NIR spectrophotometer (Shimadzu Corporation, Kyoto,
Japan). The structural characterization of the nanoliposomes was performed by Dynamic
Light Scattering (DLS), using a Litesizer 500 equipment from Anton Paar (Anton Paar
GmbH, Graz, Austria) with a solid-state laser of 648 nm and 40 mW. For the hydrody-
namic diameter, polydispersity index, and zeta potential, three independent measurements
were performed.
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4. Conclusions

In the present work, four 3-chloropropylaminobenzoate derivatives were synthesized
and used in biological studies against the Sf9 cell line, with the aim of evaluating their
potential as insecticides.

The encapsulation in liposomes of Egg-PC:Ch allowed a high encapsulation efficiency
and an effective release of the most active compound 3b, being a suitable formulation for
this potential insecticide.
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