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Abstract: Recently, multi-component, one-pot reactions have been shown to be efficient and environ-
mentally friendly methods compared to traditional, linear-step syntheses. Heterogeneous catalyzed
multicomponent reactions are one of the green approaches to the synthesis of organic compounds,
especially pyrazoles and their derivatives. Here we demonstrate the one-pot synthesis of pyrazoles
using heterogeneous nickel-based catalysts for the condensation of various hydrazine, ketone deriva-
tives, and aldehyde derivatives at room temperature. The thus synthesized heterogeneous catalyst
can be reused up to the seventh cycle without much loss of catalytic activity.

Keywords: pyrazoles; heterocycles; multicomponent synthesis; organic synthesis; heterogeneous
catalysis

1. Introduction

Nitrogen-containing heterocycles are key core structures that underlie many natural
products, pharmaceuticals, and agrochemicals [1–7]. Among them, the pyrazole moiety is
an extremely important synthetic unit in the pharmaceutical industry [8,9], has abundant
and potent biological activities such as antipyretic [10], antibacterial [11], and insectici-
dal [12].

Pyrazole moieties are widely used in bioactive molecules (Figure 1) [13] and func-
tional materials [14–18]. To date, various methods for the construction of pyrazole rings
are available [19–24], such as the classical Knorr pyrazole synthesis of 1,3-diketones and
TsNHNH2, Refs [25–27] via direct hydrazation of propargyl alcohols A two-step synthe-
sis and subsequent intramolecular cyclization of propargyl hydrazides, cycloaddition
of [28–30] [3+2] terminal alkynes to hydrazones, and aldehydes/ketones generated in
situ to diazo compounds [31–33]. Today, as a privileged structure, it can be synthesized
by the reaction of 1,3-dipolar cycloaddition of diazo compounds [34], acetylenone, [35]
N-sulfonylhydrazone, [36] or chalcone [37], and hydrazine [38]. In this regard, various
catalysts have been investigated to catalyze the formation of pyrazoles: Cao and his
colleagues used Zn complexe [39]; El-Remaily and his group used thiazole complexes
under ultrasonic reaction conditions [40]; Amirnejat et al. [41] used Superparamagnetic
Fe3O4@Alginate supported L-arginine; and recently, nano SiO2 was used by Abou Elmaaty
and his group [42].

In the present work, we have described a new, efficient, and environmentally benign
synthetic method for the formation of pyrazoles using hydrazine, aldehyde, and ketone
through a one-pot method in the presence of a Nickel-based heterogeneous catalyst at room
temperature.
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Figure 1. Examples of biologically active Pyrazole derivatives. 

2. General Experimental Procedure 
The synthesis of Pyrazole derivatives in the presence of Nickel-based heterogeneous 

catalysis was effected using the already reported approach [43]. Initially, acetophenone 
(0.1 mol) and hydrazine (0.1 mol) and a solid Nickel-based heterogeneous catalyst (10 
mol%) were charged into a round bottom flask containing Ethanol (10 mL). After stirring 
for 30 min, benzaldehyde was added dropwise to the reaction mixture, and it was stirred 
for 3 h at room temperature. After completion of the reaction as monitored by TLC, the 
desired pyrazoles were washed with water and toluene to remove the unreacted materials 
and recrystallized by methanol or purified by column chromatography. 

3. Results 
The optimization of the reaction conditions was carried out through testing using 

different solvents at different temperatures and different catalyst loadings. When opti-
mized conditions were in hand, the reaction was generalized to different derivatives of 
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2. General Experimental Procedure

The synthesis of Pyrazole derivatives in the presence of Nickel-based heterogeneous
catalysis was effected using the already reported approach [43]. Initially, acetophenone
(0.1 mol) and hydrazine (0.1 mol) and a solid Nickel-based heterogeneous catalyst (10
mol%) were charged into a round bottom flask containing Ethanol (10 mL). After stirring
for 30 min, benzaldehyde was added dropwise to the reaction mixture, and it was stirred
for 3 h at room temperature. After completion of the reaction as monitored by TLC, the
desired pyrazoles were washed with water and toluene to remove the unreacted materials
and recrystallized by methanol or purified by column chromatography.

3. Results

The optimization of the reaction conditions was carried out through testing using
different solvents at different temperatures and different catalyst loadings. When opti-
mized conditions were in hand, the reaction was generalized to different derivatives of
acetophenones and benzaldehydes. Different Pyrazole derivatives were obtained in the
presence of a heterogeneous Nickel-based catalyst in good to excellent yields (Scheme 1).
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Scheme 1. One-pot synthesis of Pyrazoles in the presence of Nickel-based heterogeneous catalyst. 

4. Conclusions 
In conclusion, in this work, we report the synthesis of pyrazoles using hydrazine, 

various acetophenone derivatives, and various aldehydes in the presence of heterogene-
ous nickel-based catalysts. The reaction proceeds with low catalyst loading and a short 
reaction time, which is an economical and environmentally friendly method. 
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Scheme 1. One-pot synthesis of Pyrazoles in the presence of Nickel-based heterogeneous catalyst.

4. Conclusions

In conclusion, in this work, we report the synthesis of pyrazoles using hydrazine,
various acetophenone derivatives, and various aldehydes in the presence of heterogeneous
nickel-based catalysts. The reaction proceeds with low catalyst loading and a short reaction
time, which is an economical and environmentally friendly method.
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