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Abstract: Throughout history, viral epidemics of varying frequency and intensity have been responsi-
ble for inducing panic and causing widespread damage. The Nipah virus has one of the highest rates
of fatalities of any infectious disease in the world. There have been cases when severe respiratory
distress has resulted in death, and it is known that these cases can cause encephalitis. The appearance
of the virus and its ability to spread are affected by several factors. Several strategies have been
created to raise awareness about the need for personal hygiene and enhance surveillance within the
contaminated zone. This work aimed to determine the characteristics of a previously unidentified
protein linked with the fusion of Nipah henipavirus particles. The protein’s secondary structure com-
prises helix, sheet, turn, and secondary coil structures. The protein is a fusion protein. In addition, the
estimated Ramachandran plot provided evidence of the accuracy of the modeled protein structure.
This accuracy was then verified by the Z-score-based and local model quality evaluation methods.
It is possible to think of the protein as a target for developing prospective therapeutic and vaccine
candidates directed against the protein to fight viral infections.
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1. Introduction

The Nipah virus (NiV), spread by bats and capable of causing fatal encephalitis in
humans, has recently been identified in Malaysia, Bangladesh, Singapore, and India [1–3]. It
belongs to the order Mononegavirales, which contains other developing lethal zoonotic
viruses, including Hendra, Marburg, and Ebola [4]. The virus is thought to be stored natu-
rally in the bodies of Pteropus fruit bats. Humans received NiV from pigs, the intermediate
hosts of the virus, in 1998, during the first documented epidemic in the Malaysian town of
Sungai [5–7]. Since 2001, the intake of raw date palm sap contaminated with the saliva and
excreta of bats has been reported as the source of yearly NiV outbreaks in various districts
of Bangladesh. The first epidemic in India was recorded in Siliguri, West Bengal, in 2001,
and it was mainly spread by intimate personal contact or nosocomial transmission. In 2007,
a second outbreak was reported in Nadia and West Bengal [7,8]. In a recent NiV epidemic
in the Kozhikode region of Kerala, a state in South India, the index patient was said to have
been infected by fruit-eating bats [9]. While nosocomial transmission accounted for the
vast majority of cases, no clinical or statistical data was provided to confirm the frequency
of the illness. The most recent epidemic in Kerala had a death rate of 91%, which is typical
of all outbreaks [9,10].
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Cell–cell fusion (syncytia) in lung, brain, kidney, and heart tissues is caused by the
Nipah (NiV) and Hendra (HeV) viruses. This results in encephalitis, pneumonia, and
frequent deaths. Henipavirus infections are characterized by membrane fusion, which
is required for viral entry and virus-induced cell–cell fusion [11–14]. Understanding the
pathobiology of henipaviruses relies on elucidating the mechanism(s) of membrane fusion,
which may lead to discovering new approaches to creating antiviral therapeutics. Viral
attachment (G) and fusion (F) glycoproteins must work together to facilitate membrane
fusion in henipaviruses. Current theories of henipavirus fusion propose that F is released
from its metastable pre-fusion conformation to promote membrane fusion after NiV or
HeV G attachment to its cell surface receptors [11,15–18]. The selected protein for this
study is a fusion protein of Nipah henipavirus, which is associated with viral infections.
The physicochemical characteristics and anticipated protein structures of the selected
protein demonstrated structure-function relationships of the proteins associated with viral
infections. Therefore, this protein can be targeted for predicting antiviral drugs and vaccines
against the selected protein to combat viral infections.

2. Materials and Methods
2.1. Protein Sequence Retrieval

The protein sequence (GenBank: QBQ56722.1, NCBI accession: QBQ56722) was re-
trieved in FASTA format from the NCBI protein sequence database [19].

2.2. Identification of the Physicochemical Properties

The physicochemical characteristics of the protein were demonstrated by using the
ExPASy ProtParam tool [20] and the SMS (v.2.0) program [21].

2.3. Secondary Structure Identification and Assessment of the Selected Protein

The SOPMA program [22] was used following the default parameters (output width = 8;
the number of conformational states = 4; helix, sheet, turn, and coil; similarity threshold = 8;
and window width = 17) to determine the secondary structural parameters. Moreover, the
SPIPRED program (v.4.0) [23] was used for the determination of the secondary features
and topology of the selected protein.

2.4. Determination and Validation of the Three-Dimensional Protein Structure

The three-dimensional structure of the selected protein was anticipated by using the
Modeller [24] with the HHpred interface [25,26]. Moreover, the PROCHECK program of
the SAVES program (v.6.0) [27] was used for the structural validation of the modeled 3D
structure of the protein. Additionally, the ProSA-web program [28] was used to determine
the Z-score of the modeled structure for structural assessment.

3. Results and Discussion
3.1. Sequence Retrieval of the Selected Protein

The protein sequence retrieved from the NCBI database contains 546 amino acid
residues (Table 1). The fusion protein (accession no. QBQ56722, version no. QBQ56722.1) is
found in the QBQ56722 locus of Nipah henipavirus.

3.2. Physicochemical Parameters Determination of the Selected Protein

The physicochemical parameters of a protein are defined by the characteristics of its
constituent amino acids. The alpha-carbon unit of all amino acids, except for glycine, is
asymmetric, indicating that it is connected to four distinct chemical constituents (atoms
or atom pairs) [29,30]. Consequently, amino acids, except glycine, can appear in two
distinct spatial or geometric configurations (i.e., isomers), which resemble the left and right
hands [31–33]. The ExPASy ProtParam tool identified the physicochemical characteristics
of the protein, such as amino acid compositions, atomic compositions, and protein half-life
calculations (Figure 1). Leucine is the most abundant amino acid (61, 11.2%) compared
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to others in the amino acid sequence. Moreover, the atomic composition of the protein
demonstrated that hydrogen is the most abundant element (4361, 50.8%), followed by
oxygen (817, 9.5%), nitrogen (693, 8.1%), and sulfur (26, 0.3%).

Table 1. Protein retrieval.

Protein Individualities Protein Information

Locus QBQ56722
Amino acid 546 aa
Accession QBQ56722
Version QBQ56722.1
GenBank ID QBQ56722.1
Source Nipah henipavirus
Organism Nipah henipavirus

FASTA sequence

>QBQ56722.1 fusion protein [Nipah henipavirus]
MAVILNKRYYSNLLLLILMISECSVGILHYEKLSKIGLVKG
ITRKYKIKSNPLTKDIVIKMIPNVSNMSQCTGSVMENYK
TRLNGILTPIKGALEIYKNNTHDLVGDVRLAGVIMAGV
AIGIATAAQITAGVALYEAMKNADNINKLKSSIESTNE
AVVKLQETAEKTVYVLTALQDYINTNLVPTIDKISCKQTE
LSLDLALSKYLSDLLFVFGPNLQDPVSNSMTIQAISQAFG
GNYETLLRTLGYATEDFDDLLESDSITGQIIYVDLSGYYIIV
RVYFPILTEIQQAYIQELLPVSFNNDNSEWISIVPNFILVRN
TLISNIEIGFCLITKRSVICNQDYATPMTNNMRECLTGST
EKCPRELVVSSHVPRFALSNGVLFANCISVTCQCQTTGRA
ISQSGEQTLLMIDNTTCPTAVLGNVIISLGKYLGSVNYNS
EGIAIGPPVFTDKVDISSQISSMNQSLQQSKDYIKEAQ
RLLDTVNPSLISMLSMIILYVLSIASLCIGLITFISFIIVEKKRN
TYSRLEDRRVRPTSSGDLYYIGTChem. Proc. 2022, 12, 32 4 of 11 

 

 

 
 

(a) (b) 

Figure 1. Physicochemical parameters of the selected protein. (a) The protein contains Ala (28, 5.1%), 

Arg (18, 3.3%), Asn (36, 6.6%), Asp (23, 4.2%), Cys (12, 2.2%), Gln (22, 4.0%), Glu (25, 4.6%), Gly (30, 

5.5%), His (3, 0.5%), Ile (60, 11.0%), Leu (61, 11.2%), Lys (28, 5.1%), Met (14, 2.6%), Phe (13, 2.4%), 

Pro (17, 3.1%), Ser (51, 9.3%), Thr (40, 7.3%), Trp (1, 0.2%), Tyr (25, 4.6%), and Val (39, 7.1%). (b) The 

atomic composition of the protein as of carbon (2687, 31.3%), hydrogen (4361, 50.8%), nitrogen (693, 

8.1%), oxygen (817, 9.5%), and sulfur (26, 0.3%). 

The protein has a molecular weight of about 60,280.90 Da (Table 2) with a theoretical 

pI of 6.08 (6.30*). The protein has the total number of positively charged residues (Arg + 

Lys), the whole number of atoms, and the absolute number of negatively charged residues 

(Asp + Glu) as of 46, 8584, and 48, respectively. As more protein therapies are being de-

veloped, many of which have a short plasma half-life, the biotech and pharmaceutical 

industries are focusing more and more on methods to lengthen that half-life [34,35]. The 

therapeutic and cost benefits of a longer half-life are apparent. Numerous recognized or 

in-development biotherapeutics have a short half-life, needing numerous administrations 

to sustain a therapeutic level over a long period [36–38]. The use of half-life extension 

techniques permits the production of medicines with enhanced pharmacokinetic and 

pharmacodynamic characteristics that have a prolonged half-life. Incorporating half-life 

extension methods into the development of numerous biotherapeutics is now standard 

practice. Various options are available for fine-tuning the half-life and adaptation to the 

desired treatment method and condition [39–42]. The anticipated protein half-life is 30 h 

(mammalian reticulocytes, in vitro); >20 h (yeast, in vivo); and >10 h (Escherichia coli, in 

vivo).  

Table 2. Physicochemical parameters of the selected protein. 

Parameters Values 

Molecular weight 60,280.90 Da  

Theoretical pI 6.08 (6.30 *) 

Total number of positively charged residues 

(Arg + Lys) 
46 

Total number of negatively charged resi-

dues (Asp + Glu) 
48 

Total number of atoms 8584 

Estimated half-life 

(a) 30 h (mammalian reticulocytes, in 

vitro) 

(b) >20 h (yeast, in vivo) 

(c) >10 h (Escherichia coli, in vivo) 

Amino acid composition

Ala (A) Arg (R) Asn (N) Asp (D) Cys (C)

Gln (Q) Glu (E) Gly (G) His (H) Ile (I)

Leu (L) Lys (K) Met (M) Phe (F) Pro (P)

Ser (S) Thr (T) Trp (W) Tyr (Y) Val (V)

Figure 1. Physicochemical parameters of the selected protein. (a) The protein contains Ala (28, 5.1%),
Arg (18, 3.3%), Asn (36, 6.6%), Asp (23, 4.2%), Cys (12, 2.2%), Gln (22, 4.0%), Glu (25, 4.6%), Gly (30,
5.5%), His (3, 0.5%), Ile (60, 11.0%), Leu (61, 11.2%), Lys (28, 5.1%), Met (14, 2.6%), Phe (13, 2.4%),
Pro (17, 3.1%), Ser (51, 9.3%), Thr (40, 7.3%), Trp (1, 0.2%), Tyr (25, 4.6%), and Val (39, 7.1%). (b) The
atomic composition of the protein as of carbon (2687, 31.3%), hydrogen (4361, 50.8%), nitrogen (693,
8.1%), oxygen (817, 9.5%), and sulfur (26, 0.3%).

The protein has a molecular weight of about 60,280.90 Da (Table 2) with a theoretical
pI of 6.08 (6.30*). The protein has the total number of positively charged residues (Arg +
Lys), the whole number of atoms, and the absolute number of negatively charged residues
(Asp + Glu) as of 46, 8584, and 48, respectively. As more protein therapies are being
developed, many of which have a short plasma half-life, the biotech and pharmaceutical
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industries are focusing more and more on methods to lengthen that half-life [34,35]. The
therapeutic and cost benefits of a longer half-life are apparent. Numerous recognized or
in-development biotherapeutics have a short half-life, needing numerous administrations
to sustain a therapeutic level over a long period [36–38]. The use of half-life extension
techniques permits the production of medicines with enhanced pharmacokinetic and
pharmacodynamic characteristics that have a prolonged half-life. Incorporating half-life
extension methods into the development of numerous biotherapeutics is now standard
practice. Various options are available for fine-tuning the half-life and adaptation to the
desired treatment method and condition [39–42]. The anticipated protein half-life is 30 h
(mammalian reticulocytes, in vitro); >20 h (yeast, in vivo); and >10 h (Escherichia coli, in vivo).

Table 2. Physicochemical parameters of the selected protein.

Parameters Values

Molecular weight 60,280.90 Da
Theoretical pI 6.08 (6.30 *)
Total number of positively charged residues (Arg + Lys) 46
Total number of negatively charged residues (Asp + Glu) 48
Total number of atoms 8584

Estimated half-life
(a) 30 h (mammalian reticulocytes, in vitro)
(b) >20 h (yeast, in vivo)
(c) >10 h (Escherichia coli, in vivo)

Instability index (II) 38.05
Aliphatic index 112.27
Grand average of hydropathicity (GRAVY) 0.177

* pI calculated by the SMS v2.0 tool.

Efforts are undertaken to establish a relationship between the metabolic stability of
proteins and aspects of their primary sequence and to use weight estimates of instability
for a protein with an established sequence to determine its resilience properties [43–46].
Proteins may be evaluated for viability in vitro using the “Instability Index.” If the index is
under 40, the substance will likely be stable in the test tube. It is presumably not sustainable
if it is more significant [47–49]. The instability index of the selected protein is 38.05 (less
than 40.00), resulting in a stable nature. The aliphatic index measures how much space is
taken up by a protein’s aliphatic side chains compared to its total volume [50]. The thermal
stability of proteins is related to their aliphatic index. Proteins with a high aliphatic index
are less likely to denature when heated. Hydrophobicity is a property shared by aliphatic
amino acids [50–52]. The aliphatic index of the selected protein is demonstrated as 112.27.
GRAVY is the value employed to demonstrate a protein’s hydrophobicity. This value is
computed by accepting the absolute hydropathy values of all amino acids (aa) and splitting
that whole by the entire sequence length [53–56]. The estimated GRAVY of the protein is 0.177.

3.3. Identification and Validation of the Predicted Secondary Structure of the Selected Protein

In the context of a polypeptide chain, the term “secondary structure” refers to the
standard and recurrent spatial configurations of neighboring amino acid residues. Hydro-
gen bonds between amide hydrogens as well as carbonyl oxygens in the peptide backbone
are responsible for its stability. Alpha-helices (α-helices) and beta-structures (β-structures)
are the two most important types of secondary structures [57–59]. The SOPMA program
demonstrated that the protein contains an alpha helix (239, 43.77%), an extended strand
(112, 0.51%), a beta turn (23, 4.21%), and a random coil (172, 31.50%). No Pi helix, beta
bridge, bend region, and ambiguous states were present in the protein (Figure 2). The
selected protein contains polar, non-polar, aromatic group-containing, and hydrophobic
amino acid residues in its structure (Figure 3). Moreover, the sequence plot demonstrated
the protein parameters, including the protein’s helical, coil, and extracellular properties
(Figure 3). The secondary structure of the selected protein is illustrated in Figure 4.
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3.4. The Three-Dimensional Protein Structure Anticipation and Assessment

The three-dimensional form of a protein is known as its tertiary structure. One
primary “backbone” polypeptide chain in the tertiary structure comprises one or more
protein secondary structures (PSSs) called domains [60–62]. There are a variety of possible
interactions and bonds between amino acid side chains. The sequence-structure gap (SSG)
is a significant obstacle in computational biology and chemistry, and protein structure
anticipation is one strategy to close this gap. Accurately predicting the structure of a protein
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is critical since protein structure dictates its function [60,63,64]. The most favored protein
template (HHpred ID: 2B9B_A) was selected for anticipation of the three-dimensional
protein structure by the Modeller program with the HHpred interface with a probability of
100%, an E-value of 2.8 × 10−132, and a target length of 497 (Figure 5).
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The estimated Ramachandran plot calculations of the selected protein were as follows:
residues in most favored regions (411, 91.9%); residues in additional allowed regions (30,
6.7%); residues in generously allowed regions (6, 1.3%); number of non-glycine and non-
proline residues (447, 100.0%); and there was no residue in disallowed regions (Figure 5).
Moreover, the local model assessment and the overall model quality by Z-score (−7.26)
assessed the anticipated protein model quality and validated the structure of the protein.
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4. Conclusions

NiV has developed into a fatal zoonotic disease. Bats, the natural reservoir of the
virus, are adept at viral propagation, and human outbreaks continue to be documented
routinely. Since bats may be found worldwide, we might expect to see new epidemics
in previously unaffected regions. Acute illness progression and a high death rate make a
correct diagnosis challenging. The absence of accessible, affordable diagnostic tests and
laboratories to process viral samples makes the situation worse. The total caseload is low,
and the course of infection is rapid. Thus, there is a dearth of investigations into human
subjects that might yield effective therapy and prevention. The selected protein’s secondary
and tertiary characteristics demonstrated the protein structure-based relationships and,
therefore, more comprehensive properties of the protein. The protein is a fusion protein
deeply associated with viral infection. Therefore, the selected protein can be a target for
both protein-based drug and vaccine design against the protein to minimize viral infections.
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