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Abstract: Thiosemicarbazones are a versatile type of organic compounds which are known for their
coordination ability with different types of analytes, due to the presence of sulfur and nitrogen
heteroatoms. Therefore, the functionalization of thiosemicarbazones with heterocyclic moieties can
be a promising route to developing new optical chemosensors. Tributyltin (TBT) is an antifouling
component of paints that is acutely toxic to aquatic environments, being quickly absorbed by mi-
croorganisms and causing problems such as imposex. Herein, the synthesis of a novel heterocyclic
thiosemicarbazone, functionalized with a quinoline moiety, is reported to assess the potential of this
recognition moiety for TBT optical chemosensing. A preliminary chemosensory study in acetonitrile
solution was performed showing that 50 equivalents of TBT were needed to induce a change of color
from colorless to yellow. Spectrophotometric titration was performed to assess the concentration of
TBT necessary for a maximum optical signal, revealing that 100 equivalents of TBT were necessary to
reach maximum absorbance, although it was able to respond with a detectable color change to a TBT
concentration as low as 10 µM.
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1. Introduction

Optical chemosensors are pursued worldwide due to advantages over other types
of sensors such as low cost and selectivity [1]. Within this field, colorimetric chemosen-
sors show the possibility of “naked eye” detection [1,2], which is extremely relevant and
advantageous to reach a preliminary qualitative detection of the desired analyte. Besides,
this type of sensor may also allow fast and simple quantitative detection [2]. Colorimetric
optical chemosensors are often based on organic chromophores, that can be modified
toward the detection of a particular analyte.

Thiourea derivatives, particularly thiosemicarbazones, are molecules of particular
interest in the sensing field due to the conjugation of heteroatoms with electronic proper-
ties that can be tuned by the presence of electron donor/withdrawing groups [3–5]. The
combination of this core with π-conjugated bridges can yield selective and sensitive optical
chemosensors for different ions. Particularly, the functionalization of a thiosemicarbazone
with a heterocyclic ring such as quinoline can be interesting for the development of col-
orimetric chemosensors, due to the combination of the coordination ability of sulfur and
nitrogen heteroatoms from the thiosemicarbazone with a π-conjugated heterocyclic group.

Tributyltin (TBT) is an antifouling component of paints used on ships, vessels, and
submersed structures to avoid biofouling [6]. This compound is a biocide that prevents
accumulation of microorganisms on the abovementioned structures. However, it was found
that TBT is extremely toxic to aquatic organisms such as bacteria, fish, or algae [7–12]. TBT
is quickly absorbed by microorganisms and induces long-term problems in aquatic living
beings such as imposex i.e., superimposition of male sexual characteristics on female marine
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gastropods [13,14]. The bioaccumulation of TBT in gastropods results in higher testosterone
levels causing an endocrine-disrupting effect [15].

Currently, TBT monitoring is only detected and quantified by sampling and analysis
using chromatographic techniques, such as Liquid Chromatography-Mass Spectrometry
(LC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). However, these tech-
niques require expensive equipment, expert operators, and long procedures with several
steps, such as extraction, preconcentration, and derivatization [16]. Other attempts to moni-
tor TBT include analysis by graphite furnace atomic absorption spectrometry with Zeeman
correction (ZGFAAS), nevertheless this method shares the same disadvantages [17]. There-
fore, TBT optical chemosensors would be a huge and interesting advantage to building
devices capable of in situ TBT detection.

This work reports, for the first time, the synthesis of a novel heterocyclic thiosemicar-
bazone, functionalized with a quinoline moiety, to assess the potential of this recognition
moiety for TBT optical chemosensing. The new compound was obtained by a condensation
reaction, between quinoline-2-carboxyaldehyde and N-phenylhydrazinecarbothioamide,
and its chemosensory ability was studied in the presence of TBT in acetonitrile solution.
A spectrophotometric titration was also performed to assess the concentration of TBT
necessary for a maximum optical signal.

2. Experimental Section
2.1. Methods and Materials

Melting points were measured on a Stuart SMP3 melting point apparatus (Barloworld
Scientific Ltd, Staffordshire, UK). TLC analysis was carried out on 0.20 mm thick precoated
silica plates (Macherey-Nagel), and spots were observed under UV light on a CN-15
camera (Vilber Lourmat, Marne-la-Vallée, France). UV-Vis absorption spectra (200–700 nm)
were obtained using Shimadzu UV/3101PC spectrophotometer (Shimadzu Europa GmbH,
Duisburg, Germany). Nuclear Magnetic Resonance (NMR) spectra were obtained on a
Bruker Avance III 400 (Bruker Corporation, Massachusetts, USA) at an operating frequency
of 400 MHz for 1H using the solvent peak as internal reference at 25 ◦C. All chemical
shifts are given in ppm using δH Me4Si = 0 ppm as reference and J values are given in Hz.
Assignments were supported by spin decoupling-double resonance and bidimensional
heteronuclear correlation techniques. All commercial reagents and solvents were used
as received.

2.2. Synthesis of N-phenyl-2-(quinolin-2-ylmethylene)hydrazine-1-carbothioamide 1

Quinoline-2-carboxaldehyde 2 and N-phenylhydrazinecarbothioamide 3 in equal
amounts (0.318 mmol) were dissolved in 10 mL of MeOH at room temperature. The
reaction mixture was stirred for 8 h, and then for 6 h more at 60 ◦C. After cooling, the
precipitated compound was filtered, dried, and obtained as a brown solid in 17% yield
(0.017 g).

Mp: 160 ◦C. 1H NMR (DMSO-d6, 400MHz): δ = 7.24 (t, J = 7.6 Hz, 1H, H4), 7.40 (dt,
J = 7.6 and 1.6 Hz, 2H, H3 + H5), 7.55 (dd, J = 8.0 and 0.4 Hz, 2H, H2 + H6), 7.62 (dt, J = 7.2
and 1.2 Hz, 1H, H6’), 7.78 (dt, J = 7.2 and 1.2 Hz, 1H, H7’), 7.99 (dd, J = 8.0 and 0.4 Hz, 1H,
H5’), 8.02 (d, J = 8.4 Hz, 1H, H8’), 8.33 (s, 1H, N=CH), 8.38 (d, J = 8.8 Hz, 1H, H4′), 8.59 (d,
J = 8.4 Hz, 1H, H3′), 10.38 (s, 1H, NH-C=S), 12.17 (s, 1H, NH-N) ppm.

2.3. Preliminary Chemosensory Studies

For the preliminary test, 50 equivalents of TBT (50 µL, 1 × 10−1 M) were added to
an acetonitrile (ACN) solution of the new thiosemicarbazone 1 (1 mL, 1 × 10−4 M). The
color/fluorescence changes were assessed by visual inspection and in a UV-vis chamber
under ultraviolet light at 312 nm. Spectrophotometric titration was performed with se-
quential addition of TBT (10−2 M) to an ACN solution of compound 1 (3 mL, 1 × 10−5 M).
Absorbance spectra were collected until a plateau was reached.
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3. Results and Discussion
3.1. Synthesis of N-phenyl-2-(quinolin-2-ylmethylene)hydrazine-1-carbothioamide 1

The synthesis of the new thiosemicarbazone 1 was performed with a mixture of
quinoline-2-carboxaldehyde 2 and N-phenylhydrazinecarbothioamide 3 in equal amounts
(0.318 mmol). The two precursors were dissolved in MeOH (10 mL) and stirred at room
temperature for 8 h. However, TLC analysis showed that the reaction did not progress, so
it was stirred for further 6 h at 60 ◦C. After this time, the pure product 1 was obtained as a
brown solid, which was filtered from the cold reaction mixture in 17% yield (Scheme 1).
The novel thiosemicarbazone 1 was characterized by 1H NMR.
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Scheme 1. Synthesis of thiosemocarbazone 1.

1H NMR spectrum shows the characteristic signals for NH protons at 12.17 and
10.38 ppm. Imine N=CH proton appears as a singlet at 8.33 ppm. Phenyl group protons
appear at a smaller chemical shift at 7.24 (H4), 7.40 (H3 and H5), and 7.55 (H2 and H6)
ppm, while quinoline protons show higher chemical shifts with H6’ at 7.62 ppm, H7’ at
7.78 ppm, H5’ at 7.99 ppm, H8’ at 8.02 ppm, H4’ at 8.38 ppm, and H3’ at 8.59 ppm.

3.2. Studies of the Chemosensory Ability of Thiosemocarbazone 1 for TBT

The chemosensory ability of the new thiosemicarbazone 1 was studied in the presence
of TBT. To an ACN solution of the compound (1 mL, 10−4 M), 50 equivalents of TBT (50 µL,
10−1 M) were added. The optical response was analyzed by visual inspection and in a
UV-vis chamber under ultraviolet light at 312 nm. A color change from colorless to yellow
was observed (see Figure 1). No changes in fluorescence were found.
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Figure 1. Preliminary TBT chemosensory test for the new thiosemicarbazone 1: left—compound 1;
right—compound 1 + 50 equivalents of TBT.

A spectrophotometric titration was performed to assess the number of equivalents
necessary to reach the maximum optical signal (see Figure 2). A sequential addition of
a TBT solution (10−2 M) to an ACN solution of the compound (10−5 M) was conducted
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and the absorbance spectra were collected. It was observed that 100 equivalents were
necessary to reach the absorbance plateau. However, the addition of 1 equivalent (10 µM)
was enough to detect a change in the optical signal, showing this compound has a large
range of concentrations in which TBT can be detected.
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Figure 2. Spectrophotometric titration of thiosemicarbazone 1 with TBT.

4. Conclusions

In this work, a new thiosemicarbazone was successfully synthesized by a condensation
reaction between quinoline-2-carboxyaldehyde and N-phenylhydrazinecarbothioamide.
The compound was tested in the presence of the biocide TBT and the preliminary test
revealed a color change from colorless to yellow. A spectrophotometric titration was
performed to assess the number of equivalents necessary to reach the plateau of the
absorbance spectra. It was found that 100 equivalents of TBT were necessary to reach the
maximum optical signal. However, this colorimetric probe was able to detect a change in
the optical signal with a concentration as low as 10 µM. The wide range of concentrations
that can result in optical changes, allows to conclude that compound 1 shows potential to
be used as a TBT chemosensor.
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