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Abstract: Two gold(I) complexes have been synthesized by a two-step reaction. The first reaction
step was the deprotonation with butyllithium to obtain the corresponding NHC. In the second
reaction step, the metal precursor was added to afford the corresponding gold complex. At this
point, the complex obtained depends on the nature of the metal precursor. A monocarbene complex
(sydnone-Au-tht) was obtained using [Au(tht)Cl] as the metal precursor and a biscarbene complex
(sydnone-Au-imidazolium) was obtained using a gold imidazolium complex as the metal precursor
instead. The 13C-NMR resonance frequencies of the carbene carbon atom shifted to higher values
from 97.3 to 135.6–139.7 ppm, mono and biscarbene, respectively.

Keywords: N-heterocyclic carbene; sydnone; gold(I) complex

1. Introduction

Sydnones (1,2,3-oxadiazolium-5-olates), discovered by Earl and Mackney in 1935 [1],
are mesoionic compounds, “dipolar five-membered heterocyclic compounds in which
both the negative and the positive charge are delocalized, for which a totally covalent
structure cannot be written, and which cannot be represented satisfactorily by any one
polar structure” according to IUPAC [2]. Their properties such as planar aromatic character-
istic, relatively small size, and variation in electron density around the ring are auspicious
to becoming biologically active scaffolds [3,4]. Unlike other mesoionic compounds, syd-
nones have the particularity of being very stable and easily synthesized [5]. On the other
hand, they can be functionalized at C-4 by hydrogen substitution for different groups
(heteroatoms, acyl substituents, and metals).

Gold has been used for therapeutic or catalytic purposes for decades [6–9]. The current
concern is to achieve higher stability of the compounds that carry metals, for which the
coordination with N-heterocyclic carbene (NHC) ligands has been an excellent strategy [10].
Seeking new ligands that could stabilize and modify the complexes’ properties, sydnones
result as an interesting option as they are adequate starting materials for NHC generation.

Based on a series of Au(I)-NHC complexes synthesized by our research group [11–13]
and a report of sydnone imine-Au complexes [14], herein, we inform about the synthesis of
new gold(I)-NHC complexes from 2,4,6 trimethylsydnone.

2. Materials and Methods

Solvents were distilled, dried, and stored according to standard procedures [15]. 2,4,6-
trimethylphenyl sydnone [5], butyllithium [16], 1-methyl-3-butyl imidazole-2-ylidene cloro
gold(I) [6], and Au(tht)Cl [17] were prepared according to reported procedures. 1H and 13C
NMR spectra were recorded with a Bruker Advance 300 spectrometer. Chemical shifts (δ)
are reported in ppm with the residual solvent resonance signal: δ H/C 7.27/77.2 for CDCl3,
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and coupling constants (J) are reported in hertz. Infrared spectra were collected on a FT-IR
Spectrometer Nicolet Nexus-470.

2.1. General Procedure for Preparation of Gold Complexes
2.1.1. Monocarbene

Under an inert atmosphere of N2, the 2,4,6-trimethylphenyl sydnone was dissolved
in anhydrous THF and was cooled to −50 ◦C. A solution of BuLi in hexane was added.
After 30 min, [Au(tht)Cl] was incorporated into the solution. The reaction was warmed
up and stirred for 18 h. Then, water was added and the aqueous phase was extracted
with CH2Cl2. The combined organic phases were dried over MgSO4 and evaporated. The
desired compound was purified by precipitation with hexane from THF.

(3-mesityl-5-oxido-1,2,3-oxadiazol-3-ium-4-yl)-(tetrahydrothiophene)gold(I) (Figure 1a).
1H NMR (300 MHz, CDCl3) δ 6.95 (s, 2H, H-1), 3.19 (s, 4H, H-9), 2.33 (s, 3H, H-6), 2.15 (s,
6H, H-8), 2.00 (s, 4H, H-10). 13C NMR (75 MHz, CDCl3) δ 177.7 (C-5), 140.2 (C-7), 135.6
(C-4), 134.1 (C-2), 129.0 (C-1), 38.9 (C-9), 30.7 (C-10), 21.3 (C-6), 17.2 (C-8).
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2.1.2. Biscarbene

Under an inert atmosphere of N2, the 2,4,6-trimethylphenyl sydnone was dissolved
in anhydrous THF and was cooled to −50 ◦C. A solution of BuLi in hexane was added.
After 30 min, a solution of imidazolium gold(I) complex in THF was incorporated into the
mixture. The reaction was warmed up and stirred for 18 h. Then, water was added and the
aqueous phase was extracted with CH2Cl2. The combined organic phases were dried over
MgSO4 and evaporated. It was purified by column chromatography.

(3-mesityl-5-oxido-1,2,3-oxadiazol-3-ium-4-yl)-(1-butyl-3-methyl-1,3-dihydro-2H-
imidazol-2-ylidene)gold(I) (Figure 1b). 1H NMR (300 MHz, CDCl3) δ 6.94–692 (brs, 2H,
H-11 H-12), 6.83 (s, J = 1.4 Hz, 2H, H-1), 3.81 (t, J = 7.0 Hz, 2H, H-13), 3.63 (s, 3H, H-10), 2.30
(s, 3H, H-6), 2.18 (s, 6H, H-8), 1.53 (q, J = 7.4 Hz, 2H, H-14), 1.12 (q, J = 7.6 Hz, 2H, H-15),
0.84 (t, J = 7.3 Hz, 3H, H-16). 13C NMR (75 MHz, CDCl3) δ 187.6 (C-9), 179.5 (C-5), 140.1
(C-7), 139.7 (C-4), 136.1 (C-2), 134.2 (C-3), 128.8 (C-1), 121.7 (C-12), 120.5 (C-11), 50.7 (C-13),
37.9 (C-10), 33.2 (C-14), 21.3 (C-6), 19.6 (C-15), 17.2 (C-8), 13.7(C-16).

3. Results and Discussion

In order to obtain the sydnone carbene, several bases were used. NaOAc, K2CO3, and
NaHCO3 in ethanol at room temperature were tested with negative results. Furthermore,
stronger bases, considering that the pKa of sydnone is approximately 18 [18], such as
tBuONa, NaNH2, LiHMDS, and NaHMDS in THF were employed with similar results.
However, the last two bases showed promising evidence of carbene formation, such
as sydnone disappearance (by TLC) and a different pattern of signals in NMR spectra.
Unfortunately, despite the efforts made, we could not isolate the desired complex after
adding the metal precursor. Additionally, the manipulation and conservation of this base
were extremely difficult because of its sensitivity to the presence of water. Finally, once
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complete deprotonation with BuLi was achieved, we studied its coordination to the metal
precursor to obtain the desired metal complex.

Au(tht)Cl is the gold-precursor used to obtain imidazolium gold complexes in our
group [11–13]; thus, it was added to the sydnone carbene seeking the obtention of the
sydnone-Au-Cl complex. However, sydnone-Au-tht was the monocarbene complex ob-
tained instead. The other metal precursor employed was an imidazolium-Au-Cl complex
previously synthetized, and this led to the biscarbene complex (sydnone-Au-imidazolium)
obtention (Figure 2).
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Figure 2. General procedures for preparation of sydnone-gold(I) complexes.

Gold(I) complexes were fully characterized by 1H, 13C, NMR, and FT-IR spectroscopy.
The 1H NMR data confirmed the metal coordination by the disappearance of the proton
signal of the sydnone (singlet at δ 6.34 ppm). In addition, in 13C NMR spectra, some signals
were shifted to a higher ppm relative to the sydnone substrate. These modifications in the
complexes’ spectra are consistent with C-Au bonding. The signals of the ligands from the
gold precursors were affected too. Chemical shifts from C-4, C-5, C-9, and C-10 are listed in
Table 1.

Table 1. 13C NMR shifts.

Sydnone Au(tht)Cl Imidazolium-Au-Cl Monocarbene Biscarbene

C-4, 97.3 C-4, 135.6 C-4, 139.7
C-5, 169.4 C-5, 177.7 C-5, 179.5

C-9, 40.1 C-9, 170.9 C-9, 38.9 C-9, 187.6
C-9, 30.2 C-10, 30.6

FT-IR spectra of 2,4,3-trimethylsydnone showed a characteristic band at 1728 cm−1

corresponding to carbonyl stretching. This band was modified to 1671 cm−1 when bonded
to Au(tht) and 1691 cm−1 when bonded to Au-imidazolium.

4. Conclusions

Several bases were tested to achieve sydnone deprotonation. Butyllithium was the
selected base to effectively deprotonate 2,4,6 trimethylsydnone, and then two metal pre-
cursors were used to obtain new NHC-gold(I) complexes. They were purified and fully
characterized by NMR and FT-IR spectroscopy. The following next step would be the
variation in the sydnone substrate and gold precursors.
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