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Abstract: Impaired glucocorticoid signaling in diabetes mellitus and its relation to suppressed im-
mune function and hyperglycemia during acute stroke has been shown to be detrimental. Therefore,
the aim of this study was to examine the effect of glucocorticoid receptor (GCR) blockers in a type-2
diabetic mouse model following hypoxia–ischemia (HI). We induced stroke in diabetic db/db and non-
diabetic db/+ mice by unilateral common carotid artery ligation followed by 20 min of HI. Mice were
pretreated with RU-486, GCRII blocker (40 mg/kg), intraperitoneally, the day before, during stroke
and post-HI. Blood and brain samples were collected at 24 h post-HI to measure blood glucose, corti-
costerone and infarct size. Similarly, another set of mice was pretreated with RU-486 + spironolactone,
GCR1 blocker (25 mg/kg) subcutaneously for a week before inducing stroke and during recovery.
Samples were collected at 48 h post-HI for various analyses. RU-486 treatment did not lower the
blood glucose significantly, but RU-486 + spironolactone decreased the blood glucose in db/db mice
post-HI. However, none of the treatment groups decreased the ischemia-induced serum corticosterone
level or infarct size. This study suggests that even though GCR blockers improve hyperglycemia,
they did not improve the infarct volume.
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1. Introduction

The dysregulation of hypothalamic-pituitary adrenal axis (HPA) and sympathetic
nervous system has been reported both in preclinical and clinical studies of stroke [1,2]. The
increased plasma corticosterone in rodents and cortisol in humans have been associated
with high mortality rate and poor functional recovery in stroke patients [3–5]. A reason for
poor stroke outcome was linked to post-stroke immunodepression and lymphocytopenia,
and the blockade of the glucocorticoid receptor (GCR) prevented the post-ischemic lympho-
cytopenia [6]. Glucocorticoids are the ultimate mediator of the body’s response to stress,
and in conjunction with insulin and leptin, they exert a profound effect on regulation of
energy consumption and expenditure [7]. Another function of glucocorticoids is to stimu-
late hepatic gluconeogenesis and reduce the ability of insulin to inhibit glucose production,
which causes the increased plasma glucose in type-2 diabetes, triggering insulin resistance
and central obesity [8,9]. In addition, elevated glucocorticoids have shown an impact on
the development in ob/ob and db/db mice, where adrenalectomy prior to weaning prevents
the development of obesity [10,11].

Glucocorticoid-induced hyperglycemia is common in both diabetic and non-diabetic
patients. A previous study in an animal model of stroke suggested that a hyperglycemia-
induced release of glucocorticoids worsened stroke outcome in a rat model of cardiac-
arrest-induced transient global cerebral ischemia [12,13], whereas, in a clinical study, both
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low and high cortisol levels were associated with increased mortality after stroke [5]. Other
reports, by Sapolsky and colleagues, revealed that cells of the hippocampus expressing high
levels of glucocorticoid receptors I and II were vulnerable to cell death [14]. Recently, an
inhibitor of serum- glucocorticoid inducible kinase I (SGK1) was found to be protective in a
type-1 diabetic mouse model of stroke [15]. Likewise, Kim et al. demonstrated that diabetes
exacerbated stroke outcome which was associated with activation of the HPA axis and,
inhibition of glucocorticoid synthesis, decreases infarct size via reducing IL-6 inflammatory
response [1]. However, none of the studies investigated whether glucocorticoids are the
main cause of ischemic damage, particularly in the type-2 diabetic mouse model of stroke.
Based on this information, we planned to examine the effects of glucocorticoid receptor
blockers I and II in a type-2 db/db mouse model of stroke.

Previously glucocorticoids have been used to treat edema associated with stroke, bac-
terial meningitis, and multiple sclerosis. However, the efficacy of glucocorticoid treatment
was found to be both beneficial and detrimental in animal models of stroke [16,17]. In our
clinical study, we observed increased hyperglycemia and acute immune suppression in
diabetic patients up until 96 h post-stroke in addition to significant mortality and poorer
recovery compared with non-diabetic stroke patients [18]. Similarly, we found a signif-
icant immune suppression in CNS in type-2 db/db and ob/ob mouse models following
stroke [19,20]. Earlier reports indicated that increased corticosterone production in type 2
diabetes db/db, ob/ob mice and zucker (fa/fa) rats induced insulin resistance and increased
glucose intolerance [21–23] and in a separate study, treatment of ob/ob mice with RU-486, a
GCRII blocker, resulted in euglycemia and lowered circulating insulin levels [24]. Therefore,
in this study, we treated the mice with glucocorticoid receptor (GCR) blockers before in-
ducing stroke, and during recovery, to normalize hyperglycemia and improve the immune
function, which in turn may reduce infarct size and improve stroke outcome in db/db mice
compared with nontreatment control. Simultaneously, we compared the effect of GCR II
blocker to the combined effect of GCR I and II blocker treatment in acute stroke.

2. Materials and Methods
2.1. Mouse Model of Hypoxia/Ischemia

All the experimental procedures in this study were approved by the Institutional
Animal Care and Use Committee of Penn State University. Male type-2 diabetic db/db and
their heterozygous nondiabetic control db/+ mice were obtained from Jackson laboratory
(JAX stock #004456) at 7–8 weeks of age. All mice were housed (2 per cage) in ventilated
cages, maintained on a 12 h dark-light cycle with free access to food and water. After
acclimatization, the mice were weighed, and blood glucose levels were measured with the
BD Logic TM Meter (BD Pharmingen, San Jose, CA, USA) using a tail prick before treatment,
after treatment and post-HI recovery. At 9–10 weeks of age, following the pre-treatment
of RU-486 or combination of RU-486 + spiranolactone or vehicle, mice were exposed to
hypoxia/ischemia as described previously with slight modification [19,25]. Mice were
anesthetized with isoflurane (4% in 70% nitrous oxide/30% oxygen). A small midline neck
incision was made, and the right common carotid artery was exposed and ligated twice
using 3-O surgical silk and the animals were returned to their cages for 3 h of recovery
during which time they had free access to food and water. Following recovery, hypoxia
was induced by placing the mice in 500 mL jars (1 per jar) that were partially submerged in
a circulating water bath maintained at 35.5 ◦C. The animals were exposed to a humidified
gas mixture of 8% O2 balanced with N2 that was uniformly delivered to each jar for 20 min.
The animals were returned to their cages and given free access to food and water for 24 and
48 h post-HI. Blood samples were collected at baseline prior to treatment, after treatment
(day before the procedure) and at post-HI (24 or 48 h) for the measurement of corticosterone.
At the time of sacrifice, mice were transcardially perfused/flushed with 30 mL 1× PBS. The
brains were removed and frozen in isopentane at −30 ◦C and then stored at −80 ◦C prior
to histological analysis
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2.2. Glucocorticoid Receptor Blocker Treatment

In the first study, we tested the acute effect of glucocorticoid receptor blocker II to
determine whether it can reduce stress-induced hyperglycemia and consequently improve
stroke outcome. Both db/db and db/+ mice were randomly separated into two groups
and GCRII blocker, mifepristone (RU-486) or vehicle were injected intraperitoneally 24 h
prior to surgery, a second dose was administered just after surgery, and a third dose 7 h
post-HI. The non-treatment group received an equivalent volume of vehicle. RU-486 was
obtained from (Sigma Aldrich, Burlington, MA, USA, Cat no. M8046) and dissolved in
70% ethanol/phosphate-buffered saline. As an initial acute study, the measurements were
carried out at baseline (prior to treatment) and 24 h post-HI (see the study design Table 1).

Table 1. Study design.

Treatment Stages Study 1
(RU-486, 40 mg/kg; I.P.)

Study 2
(RU-486+ Spironolactone, 25 mg/kg; S.C.)

First dose 24 h prior to surgery daily injection 1 week prior to surgery

Second dose just after surgery, just after surgery

Third dose 7 h post-HI, 24 post-HI

Sample Collection 24 h post-HI 48 h post-HI

The results of our initial study prompted us to examine whether treatment with a
combination of glucocorticoid receptor blockers for a week prior to inducing stroke would
lower the hyperglycemia and reduce the impact of stroke. In the second study, both db/d &
db/+ mice were divided into two groups. The treatment group received the combination of
GCRII blocker, RU-486 (25 mg/kg) and GCR1 blocker, spironolactone, (25 mg/kg, Sigma
Aldrich, USA, Cat no. S3378), dissolved in polyethylene glycol and non-treatment control
received an equivalent volume of vehicle. The drug was injected subcutaneously daily, one
week prior to the surgery until 48 h post-HI. The measurements were carried out prior to
treatment (baseline), after a week treatment (after tt) and 48 h post-HI.

2.3. Histological Analysis of Stroke

Fresh frozen coronal brain sections (16 µm) were obtained by cryosectioning at regular
intervals from striatum to hippocampus for hematoxylin and eosin (H & E) staining. H & E
staining was performed as described previously [26]. A striatal and hippocampal section
from each mouse brain was stored at −80 ◦C until staining. The fresh frozen brain sections
were rehydrated using 2 min changes of ethanol (100%, 95%, and 70%). Then, sections were
fixed in 70% ethanol for 5 min, rinsed twice in distilled water, stained with hematoxylin for
1.5 min, and rinsed in tap water for 10 min. The sections were dipped in eosin for 2 sec and
rinsed in 70% ethanol. Then, sections were dehydrated with ethanol (70%, 95%, and 100%),
cleared with xylene and cover slipped with Cytoseal60 TM (Thermo Scientific). Each brain
region was graded on an arbitrary scale of 0 to 7 under a microscope (Olympus BX-50). The
grading was blinded to the treatment, section A (frontal brain: caudate putamen) scored
cortex 0–1, caudate 0–2. Section B (midbrain/hippocampus) scored cortex 0–1, caudate
0–0.5, thalamus 0–1.5, hippocampus/dentate gyrus 0–1. The potential total of section A = 3
and B = 4 with 0 being no damage and A + B = 7 being the greatest infarct size.

2.4. Corticosterone Measurement

Retroorbital blood samples (50 µL) were collected under anesthesia at baseline, after
treatment and specific intervals of recovery times. The samples were collected routinely
around 10 AM in each experiment to prevent diurnal rhythm effects on corticosterone
level. Serum was obtained by centrifugation at 16,000× g for 10 mins at room temperature
and stored at −80 ◦C until the analysis. Serum corticosterone (CORT) was measured
by radioimmunoassay using ImmuChem Double Antibody Corticosterone 125I RIA Kit
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(MP Biomedicals, LLC Diagnostic Division, Orangeburg, NY, USA), according to the
manufacturer’s instructions. Corticosterone values were calculated from a standard curve,
which was generated using 0 to 1000 ng/mL CORT standards.

2.5. Statistical Analysis

The results are expressed as Mean ± Sem. Two-way ANOVA followed by Tukey’s
multiple comparison were applied to compare more than two groups and more than one
variable to test the interaction between control and treatment at different time points for
body weight, blood glucose, and corticosterone measurement. One-way ANOVA followed
by Tukey’s multiple comparison was used for stroke grading. The results were analyzed by
Graph Pad Prism 6.0 and statistical significance was set at p < 0.05.

3. Results
3.1. Effect of Glucocorticoid Receptor Blockers on Body Weight and Blood Glucose

The body weight was significantly higher in db/db mice compared with their db/+
vehicle and db/+ treatment group at baseline. We did not observe a change in body
weight at 24 h post-HI in either group as shown in Figure 1A. The pretreatment of RU-486
significantly decreased the blood glucose in the db/db group from baseline to 24 h post-HI
(475.13 ± 26.76 vs. 253.78 ± 34.52 mg/dl). Similarly, the non-treatment db/db group also
showed a decrease in blood glucose from baseline (556.31 ± 14.39 vs. 330.63 ± 65.76 mg/dl)
as shown in Figure 1B. However, we did not find a significant effect of RU-486 on blood
glucose between treatment and non-treatment at 24 h post-HI in db/db mice, which indicates
RU-486 acute treatment had no effect on blood glucose. The lower blood glucose level in
both groups may be the result of poor intake of food and water during recovery.

Similarly, in the second study (RU-486 + spironolactone), the body weight was found
to be significantly higher in db/db compared with db/+ in both treatment (35.74 ± 0. 7 vs.
23.06 ± 0.20 gm) and non-treatment (33.76 ± 0.35 vs. 23.10 ± 0.63 gm) groups at baseline,
and remained significant at all time points. One-week treatment of RU-486 + spirono-
lactone did not show any effect on body weight either in non-diabetic db/+ or diabetic
db/db mice compared with their vehicle control (as shown in Figure 2A). As expected, the
blood glucose values were significantly higher in db/db mice compared with db/+ in both
treatment (473.13 ± 27.68 vs. 165.50 ± 12.16 mg/dl) and non-treatment (374.27 ± 68.69 vs.
178.50 ± 12.23 mg/dl) group at baseline as shown in Figure 2B. We did not see a change
in blood glucose values after a week of treatment compared with vehicle-treated db/db
mice (529.13 ± 32.54 vs. 567.25 ± 17.63 mg/dl). However, the values were significantly
lower in db/db-treated group compared with db/db vehicle-treated group (501.10 ± 49.91 vs.
339.40 ± 64.59 mg/dl) 48 h post-HI. The result indicated that combined receptor blockade
lessened the hyperglycemia without any change in body weight.
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Figure 1. (A,B) shows the effect of RU-486 treatment on body weight and blood glucose in type-2
diabetic db/db and non-diabetic db/+ at baseline and 24 h post-HI compared with their vehicle
control. (C) shows the representative image of H & E staining at hippocampal level and (D) shows the
stroke grading following RU-486 treatment on infarct size in type-2 diabetic db/db and non-diabetic
db/+. Values were shown as mean ± SEM and significance were set at p < 0.05. db/+C: vehicle
control (n = 8 to 16), db/+D RU-486 treatment (n = 6 to 15), db/db C: vehicle control (n = 10 to16),
db/db D: RU-486 treatment (n = 6 to 10). * p < 0.05 vs. db/+C baseline: and & p < 0.05 vs. db/+D
baseline: @ p < 0.05 vs. db/+ C post-HI: ˆ p < 0.05 vs. db/+D post-HI: # p < 0.05 vs. db/db C-baseline:
$ p < 0.05 vs. db/db D baseline.
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126.80 ± 21.54 ng/mL), and the release of corticosterone increased after hypoxia–ischemia 
in both db/+ and db/db group compared with their baseline [27]. However, the significant 
increase in corticosterone was only observed in the RU-486-treated db/+ not in the db/db 
mice when compared with their vehicle control at 24 h post-HI as shown earlier (Kumari 
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Figure 2. (A–C) shows the effect of RU-486 + spironolactone treatment on body weight, blood glucose
and corticosterone at baseline, one week after treatment (tt) and 48 h post-HI compared with their
vehicle control. Values were shown as mean ± SEM and significance were set at p < 0.05. db/+C: vehicle
control (n = 5 to 8), db/+D: RU-486 + spironolactone treatment (n = 5 to 8), db/db C: vehicle control
(n = 5 to 8), db/db D: RU-486 + spironolactone treatment (n = 3 to 8), db/db C-tt: after 1week vehicle
treatment, db/db D-tt: after 1 week of drug treatment. * p < 0.05 vs. db/+C baseline: and & p < 0.05 vs.
db/+D baseline, # p < 0.05 vs. db/db C baseline: $ p < 0.05 vs. db/db D baseline, % p < 0.05 vs. db/db C -tt:
@ p < 0.05 vs. db/db D-tt. (D) shows the effect of RU-486 + spironolactone treatment on infarct size
(stroke grading), at 48 h post-HI compared with their vehicle control. Values were not significant.

3.2. Effect of Glucocorticoid Receptor Blockers on Corticosterone

Previously we observed a higher baseline corticosterone level in ob/ob mice compared
with non-diabetic ob/+ [20]. Similarly, in this RU-486 treatment study, we reported a higher
level of corticosterone in db/db mice compared with db/+ at baseline (311.40 ± 57.33 vs.
126.80 ± 21.54 ng/mL), and the release of corticosterone increased after hypoxia–ischemia
in both db/+ and db/db group compared with their baseline [27]. However, the significant
increase in corticosterone was only observed in the RU-486-treated db/+ not in the db/db
mice when compared with their vehicle control at 24 h post-HI as shown earlier (Kumari
et al., 2011).

In this study, again we observed a higher baseline corticosterone level in diabetic mice
compared with non-diabetic control db/+ (170.0 ± 30.88 vs. 103.24 ± 7.43 ng/mL). However,
no significant change in corticosterone level was observed after a week of treatment of
RU-486+ spironolactone either in db/+(123.93 ± 20.76 vs. 190.66 ± 20.76 ng/mL) or db/db
(99.74 ± 6.43 vs. 199.43 ± 20.99 ng/mL) compared with their vehicle control. A significant
increase in corticosterone was observed at 48 h post-HI in db/db mice compared with their
baseline and after treatment (tt) groups as shown in Figure 2C. However, at 48 h post-HI
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the difference between treatment and non-treatment was not found to be significant in
db/db mice.

3.3. Effect of Glucocorticoid Receptor Blockers on Infarct Size

We assumed that the glucocorticoid receptor blockers would normalize the hyper-
glycemia and lower the corticosterone and consequently reduce the infarct size. In this
study, first, we pretreated the mice with GCRII blocker, RU-486 (40 mg/kg) 24 h before
inducing stroke and during recovery. At 24 h post-HI, the results showed a significant
increase in infarct size in db/db mice compared with db/+. However, no significant change
in infarct size was noted after treatment either in non-diabetic db/+ or db/db mice com-
pared with their vehicle group as shown in Figure 1C (H & E staining) and Figure 1D
(stroke grading).

We then tested the effect of both glucocorticoid receptor blockers I and II on infarct
volume following a week of treatment before inducing stroke. We graded the stroke in
different regions of the brain and found no significant difference between treatment and
non-treatment group either in control db/+ or db/db mice, as shown in Figure 2D.

4. Discussion

In this study, we determined the effects of GCR II blocker and combination of GCR I + II
blocker on acute hyperglycemia following stroke and the measured the outcome in terms of
infarct size. The results suggested that both GCR blockers, RU-486 and a combined treatment
of RU-486 + spironolactone tend to reduce the hyperglycemia in type-2 db/db mice, and
the effect was significantly different when treated in combination. However, the reduced
hyperglycemia had no positive outcome in reducing infarct size.

It has long been appreciated that hyperglycemia is mediated by glucose-induced
elevated plasma corticosterone. In an earlier study, despite successfully reducing corticos-
terone levels using metyrapone (11β-HSD1, synthesis inhibitor), hyperglycemia-induced
brain damage was not prevented in a rat MCAO model [28]. In this study, we prevented
the binding of corticosterone to the glucocorticoid receptor by a GCR blockers to reduce
the function rather than preventing the synthesis of corticosterone. Therefore, we noted in-
creased serum corticosterone in both RU-486 and RU-486 + spironolactone-treated mice fol-
lowing HI. In our initial study, we successfully reduced the corticosterone using metyrapone
in a stress-induced model in C57BL6 mouse. Metyrapone is an inhibitor of enzyme11β- Hy-
droxysteroid dehydrogenase type-1, which converts inactive 11-dehydroxy corticosterone
into active corticosterone which amplifies the glucocorticoid receptor mediated action.
However, the treatment effect was transient due to a very short half-life of metyrapone
(around 1.9 h), and multiple injections were required during post-stroke recovery, which
may have added additional stress during stroke recovery (data not published). Therefore,
in this study, we chose to block the receptor using RU-486, GCR II blocker, which has a
slow metabolism and the plasma concentration of drug decreases to half by 12 to 72 h.
Similarly, spironolactone has active metabolites until 13 to 16 h, therefore a single injection
was suitable for this study. In the first study, we attempted to block the GCR II receptor in
type-2 db/db mice and noted the decrease in blood glucose and increase in corticosterone
level following RU-486 treatment. Similar to our findings, Liu et al. suggested that RU-486
treatment reversed the increases in glucocorticoid receptor expression and the enzyme
responsible for corticosterone synthesis within liver, which reduced the blood glucose
level, increased plasma corticosterone without any significant change in body weight and
insulin level in type-2 diabetic mice [24]. In this study, mice received lower doses of RU-486,
25 mg/kg twice daily for 2–3 weeks, compared with a higher dose 40 mg/kg every 12 h in
our study. The results showed a decrease in blood glucose in db/db mice that did not reach
significance, compared with their vehicle control, however, this could be due to long-term
vs. short term treatment of RU-486.

It has been shown that basal levels of GC only activates GCR1 receptor or miner-
alocorticoids, whereas inflammatory or stress related release of GCs activate both GCR1
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and GCRII [29]. Therefore, in this study, we treated the diabetic mice with GCR1 blocker,
spironolactone (25 mg/kg) and GCRII blocker, RU-486 (25 mg/kg) for one-week prior
inducing stroke. The treatment strategy reduced hyperglycemia and increased the corticos-
terone level as reported previously [24] without any change in infarct size.

Previously, Soulet and Rivest et al. showed that RU-486 pretreatment decreased the
survival rate of mice exposed to an intracerebral infusion of lipopolysaccharide (LPS) and
suggested that blockade of glucocorticoid action at the receptor level increased synthesis of
putrescine, which is responsible for the severe immune reaction in the CNS [30]. Similarly,
another study of pretreatment of RU-486 in rat, caused a severe immune reaction, which
was highly toxic for the cerebral tissue [31]. In this study we did not observe a difference in
mortality between vehicle and RU-486-treated db/db mice at 24 h post-HI. However, we
observed overall higher mortality in db/db compared with db/+ in the RU-486 treatment
group (37.5% vs. 6.25%) following post-HI. In the RU-486 + spironolactone study, mortality
in db/db mice was lower in the treatment group compared with vehicle (25% vs. 50%)
at 48 h post-HI. In fact, the overall mortality was similar in db/+ and db/db treatment
group. We do not know the exact reason for such differences in survival/mortality between
RU-486 alone and RU-486 + spironolactone group. As mentioned above, an impaired
HPA axis in the type-2 diabetic rodent may be a factor for the higher mortality rate. The
beneficial or detrimental effects of an immune reaction in the brain is dependent upon
the ability of glucocorticoids to provide the proper feedback mechanism. Once the level
of corticosterone rises in the plasma, a feedback action activated on HPA axis and in this
study, a compromised HPA axis in db/db mice may be the reason of poor outcome. Another
possibility may be the lack of release of heat shock proteins (HSPs), which maintains the
glucocorticoid and mineralocorticoid receptor in the inactive form [29]. It is possible that
in this study, blocking of the GC receptors may have reduced the release of HSPs and
consequently imbalance the action of GCs causing the adverse response.

In conclusion, this study suggested that pretreatment of glucocorticoid receptor II
blocker and a combined treatment of glucocorticoid receptor I + II, lessened the hyper-
glycemic effect but provided no improvement in infarct size post-HI. The combination
treatment showed improvement in the overall survival in diabetic mice. Future studies
are warranted to understand the relationship, and the effects of glucocorticoid receptor
blockers on hyperglycemia.
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