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Abstract: Choline (Ch) is an essential molecule of substantial importance for the optimal develop-
ment and function of several biological systems. Ch deprivation has been linked with abnormal fat
metabolism, insulin resistance, and myocardial dysfunction. The current study provides evidence of
an exacerbation of streptozotocin-induced cardiomyopathy in adult diabetic Wistar rats by dietary
Ch deprivation through the administration of a Ch-deprived diet (CDD). Twenty-four adult male
Wistar rats were randomly separated into four groups: control, diabetic (DM), choline-deprived
through choline-deprived diet (CD), and diabetic choline-deprived (DM + CD). After five weeks
of dietary intervention, myocardium echocardiographic and histological assessments were per-
formed. Choline-deprived diabetic rats exhibited significantly slower heart rate, significantly higher
myocardial ejection velocity and left ventricle wall tension index with a concomitant significant
decreased LV posterior wall thickness as compared to diabetic rats fed on a standard diet. Moreover,
histopathological evidence demonstrated an exacerbation of myocardial inflammation and fibrosis
associated with significant up-regulation of VEGF expression in the diabetic rat myocardium as
a result of Ch deprivation. The study’s findings are of particular significance since the examined
experimental approach introduces a previously uncharacterised comorbidity simulation with regards
to myocardial structure and functional profiling.

Keywords: cardiomyopathy; choline; choline deprivation; choline-deficient diet; diabetes; rat;
streptozotocin

1. Introduction

Choline (Ch), a water-soluble vitamin B cofactor, has been long described as an
essential nutrient [1] and dietary intake recommendations have been established by the
Institute of Medicine (IOM) since 1998 [2] and by the European Food Safety Authority in
2016 [3]. Ch is an intrinsic component of several important biomolecules, has a vital role in
the one-carbon cycle pathway by facilitating the metabolism of methyl groups [4] but it is
also involved in crucial cellular functions, including among others lipid biochemistry [4–7],
and proper cardiomyocyte contractile function [8,9]. Ch deprivation, observed either
in physiological (e.g., pregnancy, lactation, intense exercise) or pathological conditions
(e.g., alcoholism and malnutrition), with critical impact on brain function [10,11], has
attracted much consideration due to its association with various adverse health impacts
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that can occur across the life span i.e. nonalcoholic fatty liver diseases [7,12–17] and insulin
resistance [11,18]. In previous studies, we have demonstrated that Ch deprivation can
also affect heart causing myocardial inflammatory infiltration that could lead to impaired
heart mechanical properties which resemble to a restrictive pattern of cardiomyopathy
characterised mainly by diastolic dysfunction [8,19]. One-carbon metabolism activation
seems to have a beneficial effect on the pressure overload cardiac hypertrophy and it is
necessary for the maintenance of energy balance and cardiac homeostasis [9]; thus, Ch
deprivation might play a crucial role in the progression of potential myocardial dysfunction.
Moreover, Ch, as a precursor of the key neurotransmitter acetylcholine, is important
in the protection against various cardiovascular diseases such as myocardial infarction,
arrhythmias, cardiac hypertrophy and ischaemia/reperfusion injury [20].

Diabetes mellitus is also a known leading cause of progressive heart failure [21–23];
diabetic cardiomyopathy describes the cardiac dysfunction in the absence of overt clinical
ischaemic heart disease, valvular disease, and other conventional cardiovascular risk fac-
tors, such as dyslipidaemia and hypertension. The features of diabetic cardiomyopathy
include decreased diastolic compliance, interstitial fibrosis, cardiac stiffness and hypertro-
phy with ultimate progression to both systolic dysfunction and clinical heart failure [24].
Diabetes is also associated with dysfunction of the cardiac microvasculature [25]; vascular
endothelial growth factor (VEGF-A) is one of the important factors that exerts a substantial
role in the development and functional integrity of the vasculature, acting as a signaling
protein [26].

Population with diabetes is dramatically increasing worldwide [24], but, similarly, the
population prone to Ch deficiency is also increasing taking into consideration that 90% of
the population of the United States is not receiving sufficient intake of Ch [27,28]. These
two metabolic disorders (Ch deprivation and diabetes mellitus) are resembling common
cases in the clinical practice; through multiple pathophysiological mechanisms, they could
potentially affect myocardium structural integrity and performance.

In the current study, we have therefore, attempted to investigate, in an experimental
approach, the effect of dietary Ch deprivation through administration of a Ch-deficient
diet (CDD) on the heart of streptozotocin (STZ)-induced diabetic adult Wister rats. Thus,
cardiac remodeling and performance were examined under the comorbidity simulation of
both metabolic insults.

2. Materials and Methods
2.1. Animals

A total of 24 three-month-old adult male albino Wistar rats with a body weight of
298.6 ± 26.2 g, were supplied by the National Centre of Scientific Research (NCSR), Athens,
Greece. This study protocol was approved by the Doctorate Board of the Medical School of
National and Kapodistrian University of Athens after the approval of the Animal Protocols
by the Department of Rural and Veterinary Policy (RVP), General sector of Rural Economy
and Veterinary, Prefecture of Attica, Hellenic Republic.

Animals were divided into groups and housed under controlled environmental condi-
tions, at a temperature of 22 ± 1 ◦C, and artificial light/dark cycle (12/12 h), with adequate
ventilation and appropriate humidity (~55%). Food and water were provided ad libitum.
The experimental animals were cared for in accordance with the principles of the Labora-
tory Animal Care as previously set by the European Economic Community (EEC) Council
Directive 86/609/EEC [29], and aligned and amended according to the recommendation
2007/526/EU for experimental animals.

2.2. Materials

The standard diet was a choline-enriched (1.5 g/kg) diet at the expense of sucrose.
CDD was produced by Mucedola (Settino Milanese, Milan, Italy) and has been purchased
from Analab Ltd. (Athens, Greece). The analytical structure of CDD was the following
(g/kg): sugar (413), dextrine (110), starch (110), hydrogenated vegetable oil (100), pea
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protein (90), soya protein isolate (60), corn oil (50), mineral mix (35), cellulose (10), vitamin-
free casein (10), vitamin mix (10), L-cystine (2), in addition to fat (16%), protein ingredient
(12%), ash (3.5%), fiber (2%). The highest quality available of STZ and other reagents were
used and purchased from Sigma Chemicals (Darmstadt, Germany). Vascular Endothe-
lial Growth Factor Antibody VEGF-A kit purchased from Invitrogen by Thermo Fisher
Scientific, digital ultrasound system (Vivid 7 version Pro, GE Healthcare) was used.

2.3. Experimental Procedure

Animals were separated into four groups (n = 6 per group): Control, diabetic (DM),
Ch-deprived (CD), and diabetic Ch-deprived (DM + CD). Diabetes was induced by a
single intraperitoneal injection of STZ (50 mg/kg of body weight diluted in a 0.1 mol/L
citrate solution, pH 4.5) [30]; Control and CD groups were injected with vehicle. After 72 h
following STZ administration, blood was collected from the pedal vein puncture, and blood
glucose was assessed using a portable glucometer (Roche Diagnostics GmbH, Mannheim,
Germany); rats with blood glucose level of ≥300 mg/dL were considered diabetic, and the
dietary intervention was imposed for five weeks. Survival rate was 100% throughout the
entire experiment; animals were weighted and sacrificed after five weeks and (a) blood was
immediately collected from the inferior vena cava and used for assessment of biochemical
parameters and (b) heart was quickly removed, weighed and prepared for histological
assessment.

2.4. Echocardiographic Assessment

Before sacrifice, ketamine hydrochloride (100 mg/kg) was used to sedate the animals
and heart function/structure was subsequently evaluated by transthoracic echocardiogra-
phy as previously described in detail [31,32]. Body temperature was kept at 37 ◦C using
heat blanket, while the animals were prone and fixed in a special apparatus. Short and
long-axis images were obtained using a digital ultrasound system (Vivid 7 version Pro,
GE Healthcare) with the 14.0-MHz i13L transducer. Many consecutive assessments were
performed and analysed by two independent investigators. Left ventricle (LV) internal
diameter at systolic phase (LVDs), LV internal diameter at the diastolic phase (LVDd), poste-
rior wall thickness at the diastolic phase (LVPw), left atrium diameter (LA) and the ejection
fraction (EF%) were measured (EF% was calculated using the Simpson equation). The frac-
tional shortening (FS) provided by the following equation: FS = [(LVDd − LVDs)/LVDd]
× 100% was used to access the global contractile LV function.

Systolic and diastolic velocity of the LV posterior wall radial displacement (SVPw
and DVPw) were measured from two-dimensional guided M-mode recordings obtained at
the midventricular level; SVPw and DVPw were calculated using the formula: V = ds/dt
where “V” represents velocity, “s” the distance and “t” time. SVPw was used to assess
the regional systolic function of the myocardium, while DVPw was used to determine the
regional diastolic function of the myocardium. All echocardiographic assessments were
averaged for at least 3 consecutive cardiac cycles. The LV wall tension index was calculated
by the ratio of the LVDd to twice the value of LVPw [33,34] according to the following
equation:

LV wall tension index = LVDd/(2 × LVPw)

2.5. Biochemical Assessment

Serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), and
high-density lipoprotein (HDL) levels were calculated using an automatic analyser (Hitachi,
Roche modular). Fasting blood glucose levels and plasma insulin levels were assessed using
the portable glucometer (Accu-Chek Roche Diagnostics GmbH, Mannheim, Germany) and
the Elisaruo method of DRG ELISA, respectively.
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2.6. Histological Assessment

Collected heart samples were fixed in 4% (v/v) buffered formalin solution and embed-
ded in paraffin wax using conventional techniques. Six sequential excised tissue specimens,
4 µm in thickness, were taken from each heart, at a distance approximately of 2 mm from
each other. Sections were dewaxed, rinsed and stained with haematoxylin and eosin (H&E)
or Masson trichrome stain, to examine and assess the myocardial infiltration with mononu-
clear inflammatory cells, the interstitial fibrosis and perivascular fibrosis and the interstitial
oedema. The tissue specimens were randomized and given a code number for blinded
assessment by two expert pathologists; cardiac inflammation and fibrosis were scored as
previously described by Strilakou et al. [8].

2.7. Immunohistochemical Assessment of Vascular Endothelial Factor-A165 (VEGF)

Deparaffinization, rehydration and antigen retrieval were performed by heating the
slides in PTLink (Dako), using low pH solution [Envision FLEX TARGET RETRIEVAL
SOLUTION Low pH (50×)]. Blocking of endogenous peroxidase was performed by incu-
bating the slides with H2O2 3% solution for 15 min at room temperature (RT) and blocking
of nonspecific staining was performed by incubating the slides with Blocking Solution
(Dako REAL™ Peroxidase-Blocking Solution, code S2023) for 30 min at RT. Overnight incu-
bation of the slides with the primary antibody followed; the antibody used was VEGF-A165
[Vascular Endothelial Growth Factor Antibody (VG1)], Invitrogen by Thermo Scientific
catalogue number PA1-21796, at a dilution of 1:500. Incubation of the slides with Secondary
Antibody (Dako anti-mouse immunoglobulins/ Polymer, IgG), for 30 min at RT was fol-
lowed by incubation of the slides with HRP (Dako REAL™ EnVision™/HRP) for 30 min at
RT (HRP recognizes the primary-secondary antiserum complex). Subsequently, the slides
were incubated with diaminobenzidine (DAB) for 6 min at RT, in a dark environment
(DAB reacts with HRP, resulting in the production of brown colour, visible under light
microscope). Between each step the slides were washed with TBS (Tris Buffered Saline). At
the end, slides were counterstained with hematoxylin, dehydrated and mounted. Evalua-
tion of the immunohistochemical staining, assessed under light microscope in a blinded
method by two independent pathologists for the VEGF stain expression in cardiac samples,
was graded as follows: score 0: <15%, score 1: 16–35%, score 2: 36–65%, score 3: 65–100%
according to Chen et al [35].

2.8. Statistical Analysis

Data are expressed as the mean±SD. A further analysis was performed using one-way
analysis of variance (ANOVA) followed by multiple comparisons with Bonferroni’s and
Tukey’s honest significant difference using GraphPad Prism 5.3 for Windows (GraphPad
Software, San Diego, CA, USA). The significance level for all analyses was set at p ≤ 0.05.

3. Results

An assessment of the heart to body weight ratio at the sacrifice timepoint revealed no
significant differences among the experimental groups (Table S1), and neither did the heart
weight on its own.

Fasting blood glucose levels at sacrifice were significantly higher (p < 0.001) both in
DM and DM + CD groups versus Control and CD groups and higher in the DM + CD
group (p < 0.05) compared to DM group as well. Plasma insulin measurement revealed,
as expected, a significant hypoinsulinaemia in the combination (DM + CD) and the DM
groups compared to CD and control groups (p < 0.01 and p < 0.05 respectively) (Table S1).

The lipidemic profile of the nondiabetic and diabetic adult rats exposed to CDD is
provided in Table 1; a significant increase in serum triglyceride was shown in DM group
and a significant decrease in HDL levels in DM and CD groups, compared to control
(p < 0.05).
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rate (a), ejection fraction (b), velocity (c), SVPw (d), DVPw (e) and LV wall tension index (f). After a five-week exposure 
of nondiabetic and diabetic adult rats to CDD. Data refer as mean ± SD. *: p < 0.05, **: p < 0.01, ***: p < 0.001 as compared 
to Control; #: p < 0.05, ###: p < 0.001 compared to DM; †: p < 0.05, ††: p < 0.01 compared to CD. Control: rats receiving 
standard diet and water; CDD: choline-deficient diet; CD: choline-deprived group; DM: diabetic group; DM + CD: diabetic 
rats exposed to CDD; LV: left ventricle; SVPw: systolic velocity of left ventricular posterior wall; DVPw: diastolic velocity 
of left ventricular posterior wall. 
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standard diet and water; CDD: choline-deficient diet; CD: choline-deprived group; DM: diabetic group; DM + CD: diabetic
rats exposed to CDD; LV: left ventricle; SVPw: systolic velocity of left ventricular posterior wall; DVPw: diastolic velocity of
left ventricular posterior wall.
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Table 1. Lipidaemic profile of nondiabetic and diabetic adult rats exposed to CDD.

Groups TC (mg/dL) TG (mg/dL) HDL (mg/dL) LDL (mg/dL)

Control 75.17 ± 8.84 61.17 ± 36.55 52.83 ± 7.94 10.10 ± 15.18
DM 72.20 ± 12.38 137.00 ± 47.93 * 35.80 ± 5.22 * 9.00 ± 8.28
CD 59.50 ± 12.34 72.00 ± 22.67 38.33 ± 11.48 * 6.77 ± 4.57

DM + CD 69.33 ± 12.04 86.00 ± 64.50 46.50 ± 9.81 5.63 ± 6.13
Data refers as mean ± SD of serum levels after a five-week exposure of nondiabetic and diabetic adult rats to
CDD. Statistical significance: *: p < 0.05 compared to control. Where no sign, no significant difference among
the groups. CDD: choline-deprived diet; CD: choline-deprived group; DM: diabetic group; DM + CD: diabetic
rats exposed to CDD; HDL: high-density lipoprotein; LDL: low density lipoprotein; TC: total cholesterol; TG:
triglycerides.Regarding echocardiographic findings, diabetic rats exposed to CDD exhibited significantly slower
heart rate as compared to control (p < 0.05) and to CD group (p < 0.01) (Figure 1a). The assessment of the ejection
fraction (EF%) and fractional shortening (FS) showed no significant differences among the examined groups
(Figure 1b) (Table 2); the assessment of the LV myocardial ejection velocity of the posterior wall was significantly
higher in DM + CD group compared to control and DM (p < 0.05) (Figure 1c).

Table 2. Structural myocardial profile of nondiabetic and diabetic adult rats exposed to CDD.

Group Heart Weight
(g)

Long Axis
(cm)

LVDd
(cm)

LVDs
(cm)

LVPw
(cm)

FS
(%)

LA
(cm)

Control 1.258 ± 0.203 1.67 ± 0.02 0.68 ± 0.06 0.35 ± 0.09 0.18 ± 0.01 49 ± 11.17 0.29 ± 0.02
DM 0.995 ± 0.093 1.66 ± 0.02 0.64 ± 0.03 0.38 ± 0.07 0.16 ± 0.02 44 ± 7.77 0.31 ± 0.02
CD 1.134 ± 0.141 1.70 ± 0.09 0.68 ± 0.06 0.38 ± 0.07 0.17 ± 0.02 39.83 ± 8.75 0.39 ± 0.04 **,##

DM + CD 1.001 ± 0.099 1.63 ± 0.04 0.70 ± 0.03 # 0.37 ± 0.08 0.13 ± 0.01 **,†,# 44.66 ± 13.30 0.40 ± 0.03 **,##

Data refers as mean ± SD of measurements of nondiabetic and diabetic adult rat after a five-week exposure s to CDD. Statistical significance:
**: p < 0.01 compared to control; #: p < 0.05, ##: p < 0.01 compared to DM; †: p < 0.05 compared to CD. Where no sign, no significant
differences among the groups. CDD: choline-deficient diet; CD: choline-deprived group; DM: diabetic group; DM + CD: diabetic rats
exposed to CDD; FS: fractional shortening; LVDd: end diastolic diameter of the left ventricle at a short axis slice; LVDs: end systolic
diameter of the left ventricle at a short axis slice; LVPw: thickness of the posterior wall of the left ventricle; LA: left atrium diameter at
long-axis slice.

The examination of the LV systolic velocity (SVPw) revealed no significant differences
among the four examined groups (Figure 1d), but interestingly, the LV diastolic velocity
(DVPw) was found significantly lower in both CD and DM + CD groups (p < 0.01 and
p < 0.001 respectively) compared to control; DM + CD group exhibited a significant decrease
in DVPw compared to DM (p < 0.05) (Figure 1e). The wall tension index of the LV was
significantly increased in the combination group as compared to control, DM and CD rats
(p < 0.01, p < 0.001, p < 0.05 respectively) (Figure 1f). LVDd was significantly increased
in DM + CD rats compared to DM (p < 0.05) (Table 2) while the thickness of LVPw was
significantly decreased in the DM + CD group compared to control, DM and CD group
(p < 0.01, p < 0.05, p < 0.05 respectively) (Table 2). The echocardiographic measurement
of the rat myocardium long axis and LVDs revealed no significant differences among the
examined groups (Table 2). Finally, the left atrium (LA) diameter at long-axis slice showed
significant increase in the DM + CD and CD groups compared to control (p < 0.01); and in
the combination group and CD groups compared to DM (p < 0.01).

The histopathological scoring and representative light microscopy (H&E; ×400) cap-
tions of the inflammation occurring in the myocardium of nondiabetic and diabetic adult
rats after a five-week exposure to CDD are provided in Figure 2. Exposure to CDD for
five weeks provoked mild focal myocardial inflammation (Figure 2a,c), and so did DM
(Figure 2a,d). The combined exposure to DM and CDD resulted in diffuse inflammation of
the rat myocardium under the examined experimental conditions (Figure 2a,e).
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exposed to CDD (e). Data refer as percentage (%) of inflammation per optical view after a five-week exposure of nondi-
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The histopathological scoring and representative light microscopy (Masson’s stain;
×400) captions of the fibrosis occurring in the myocardium of nondiabetic and diabetic
adult rats exposed to CDD are provided in Figure 3. Exposure to CDD for five weeks
provoked diffuse myocardial fibrosis (Figure 3a,c), while DM caused mild focal myocardial
fibrosis (Figure 3a,d). The combined exposure to DM and CDD resulted in more severe
diffuse focal fibrosis of the rat myocardium with perivascular fibrosis, under the examined
experimental conditions (Figure 3a,e).
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Finally, the VEGF immunohistochemical stain expression occurring in the myocardium
of nondiabetic and diabetic adult rats exposed to CDD is provided in Figure 4. All experi-
mental groups showed a significant increase in cardiac VEGF stain expression compared to
control (CD and DM + CD p < 0.001 and DM p < 0.01).
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a five-week exposure to CDD. IHC scoring (a) and representative light microscopy (VEGF-A165 stain expression; ×200),
captions (b–e) expression of VEGF-A165 occurring in myocardium as percentage (%) per optical view. Control: rats receiving
standard diet and water (b); CD: choline-deprived group (c), DM: diabetic group (d); CD + DM: diabetic rats exposed to
CCD (e); IHC: immunohistochemistry; VEGF: vascular endothelial factor. Data refer as mean ± SD. **: p < 0.01, ***: p < 0.001.
CDD: choline-deficient diet.

4. Discussion

Nutritional disorders can have a negative impact on cardiac metabolism and perfor-
mance [36]. We have shown through the previous studies the early detrimental effect of
dietary Ch deprivation on the adult healthy rat myocardium [8,19]. We herein provide
novel findings that Ch deprivation impactfully aggravates the myocardial architecture
and potential performance in STZ-induced diabetic adult rats. The present experimental
setup revealed cardinal features of the cardiac remodeling involving at the same time
inflammatory infiltration, fibrosis and stiffness along with increased LVDd and decreased
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LV posterior wall thickness, thus dilation of the left cavity, accompanied by slower heart
rate and decreased peak diastolic velocity, but with higher LV myocardial ejection velocity
and LV wall tension index.

The decreased DVPw in the diabetic setting compared to control group is consistent
with the features of the early stages of development of diabetic cardiomyopathy [24].
Nevertheless, when the diabetic myocardium is concomitantly under the influence of
Ch deprivation, diastolic velocity is deteriorated even more for the same time period
along with cardiac fibrosis, implying increased stiffness and impaired relaxation properties
of the left ventricle. Consequently, the significant increase in velocity observed in the
combination group probably reflects an attempt of the Ch-deprived diabetic myocardium
to counterbalance the impaired diastolic filling, to preserve the heart contractile properties.
This concept is consistent with the observed preserved fractional shortening and ejection
fraction under the combined insults.

In Ch-deprived diabetic design our study reveals for the first time that the structural
remodeling of the LV goes beyond the established frameworks, according to which the
diastolic heart failure is characterised by concentric hypertrophied myocardium [37], and
shows that LV cavity with thinner wall and increased LVDd (thus potential enlargement)
could also exert such functional derangement as shown by the increased LV wall tension
index in the Ch-deprived myocardium. Additionally, the concurrently observed left atrium
dilatation reflects the LV diastolic dysfunction and it is also probably associated with an
increased atrial wall stress and stretch that could also provoke arrhythmogenesis, such as
atrial fibrillation, which, in turn, jeopardises cardiac output [38].

It has been reported that autonomic nervous system (ANS) imbalance plays a crucial
role in the development of heart failure [39]; decreased heart rate variability coupled with
defective parasympathetic control has been shown even in the early stages of chronic heart
failure. The reduced heart rate observed in the diabetic group is in line with previous
studies that correlate this phenomenon with autonomic neural dysfunction and sinoatrial
node impairment characterised by reduced intrinsic heart rate caused by STZ-induced
diabetes [40]. Under the Ch-deprivation effect, where hyperglycaemia is exacerbated, the
heart rate is decreased even more and could be the result of the severe metabolic injury
not only to the pacemaker cells but also to the other nerves as well [41], promoting their
denervation and the establishment of cardiovascular diabetic neuropathy [42]. The present
experimental model suggests that diabetes mellitus along with dietary Ch deprivation
interfere earlier with the cholinergic signaling of the heart, thus modulating cardiac remod-
eling [43]; the LV morphological changes might induce mechanical stretch of the cardiac
muscle and further compromise the cholinergic heart signaling and the functional reser-
voirs in cases of pressure or volume overload, while over time they could also predispose
to systolic impairment. The persistent hyperglycemia as a result of the well-established
insulin resistance caused by Ch deprivation [11], and the hypoinsulinaemia of the STZ-
induced diabetes in rats [44,45], might act as a significant independent contributing factor
to the multifactorial cardiac fibrosis [46].

The significant inflammation observed in the choline-deprived diabetic group myocar-
dia could be due to oxidative stress (OS) produced by exacerbation of hyperglycaemia and
the excessive pro-inflammatory cytokine production [47–49]. However, one should not
exclude the possibility of a synergistic cardiotoxic effect of CDD and diabetes that might
not be restricted only to OS-mediated inflammation due to significant hyperglycaemia; pre-
vious studies of ours [8,19], and others [50,51], have suggested a complex interdependence
of antioxidants (like carnitine) [52,53], and Ch, while both diabetes and Ch deprivation are
known to cause serious metabolic dysregulation on multiple systems [1,7,54–56]. Taking
into account that Ch deprivation is usually accompanied by carnitine deficiency, which
has been associated by itself with dilated cardiomyopathy [57], it turns out that the set-
ting of Ch deprivation along with diabetes introduces a new distinctive phenotype of
cardiomyopathy. Ch deprivation has been repeatedly characterised as a time-dependent
pathogenetic factor [14,58,59], with its toxicity to become more complex and irreversible
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with time. Although our study has focused on a rather short period of simultaneous
Ch deprivation and diabetes mellitus exposure, this experimental time frame efficiently
demonstrated myocardial injury due to the impactful effects of Ch deprivation and dia-
betes independently but probably not providing the full view of their potential at a longer
timeframe. The herein examined experimental conditions could provide evidence of an
early stage of diabetic cardiomyopathy with restrictive features [60–62], characterised by
mild myocardial inflammation and fibrosis with preserved ejection fraction that is accom-
panied by impaired LV remodeling under the Ch-deprivation effect with features of dilated
cardiomyopathy.

The role of VEGF, one of the most powerful and important angiogenic growth factors,
in the cardiac vascularization and remodeling is indisputable; under normal conditions,
the expression of VEGF is relatively low in myocardium [63]. The significant up-regulation
of myocardium VEGF expression induced by Ch deprivation is in line with previous stud-
ies [64–66]; this paradoxical [67] although response under Ch deprivation and STZ-induced
diabetes could be attributed to the mitochondrial dysfunction [15] and to the up-regulation
in gene expression due to hypomethylation induced by Ch deprivation [68,69]; VEGF
except for being a major regulator of cardiac angiogenesis, it also exerts cytoprotective,
antioxidative and antiapoptotic effects on cardiomyocytes [70]. This concept is in line with
the up-regulation of VEGF expression in the cardiac tissue of all groups in our experimental
model, which reflects the imbalance in the antioxidant status that occurs when there is
either Ch deprivation or diabetes mellitus alone or in combination.

Previous data of ours have demonstrated that Ch deprivation disturbs cardiac extra-
cellular matrix homeostasis and induces a significant up-regulation of the tissue inhibitors
of metalloproteinases (TIMP-2) myocardial expression accompanied by a significant down-
regulation of matrix metalloproteinases (MMP-2) myocardial expression after only four
weeks of dietary intervention [19]. It has been suggested that TIMP-2 inhibits angiogenesis
and promotes cardiac dysfunction by decreasing the VEGF and MMP-2 expression, while
it up-regulates myocardium anti-angiogenic components of myocardium that contribute
to LV remodeling [71,72]. Nevertheless, studies have shown that the induced response
of VEGF to pathological conditions such as OS, inflammation, hypoxia and/or ischaemia
is intense and abrupt at the early phase and then fades off [73]. This finding is consis-
tent with our experimental data showing that the up-regulation of VEGF expression in
the myocardium of Ch-deprived diabetic rats does not alter significantly compared to
Ch-deprived or diabetic rats, although someone would expect a synergistic effect.

It seems that Ch deprivation aggravated the collagen deposition, interstitial fibrosis
and depleted the antioxidant capabilities in diabetic myocardium. According to Kim
and colleagues, the mechanoregulatory mechanisms induced by the established cardiac
fibrosis might also disturb and promote the myofibroblast transdifferentiation in the my-
ocardium [74] thus exacerbating the stiffness and consequently the hemodynamic burden
on the heart suggested by the increased diastolic filling resistance. The herein presented
findings are of particular importance since the examined experimental setting introduces a
previously unknown comorbidity simulation of two metabolic insults that seem to trigger
the transition of a restrictive type of cardiomyopathy to a potential dilated type.

5. Conclusions

The Ch deprivation through the administration of a CDD, can exacerbate STZ-induced
cardiac remodeling in rats, within five weeks.

STZ-induced diabetic rats exposed to Ch deprivation exhibit significantly slower
heart rate, significantly higher myocardial ejection velocity and left ventricle wall tension
index as compared to diabetic rats fed a Ch-supplemented diet. The echocardiographic
data are compatible with the aggravation of inflammation and fibrosis in the diabetic rat
myocardium as a result of Ch deprivation in association with the up-regulation of VEGF
expression in myocardium. The two metabolic insults seem to trigger the transition of a
restrictive type of cardiomyopathy to a potential dilated type.
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Furthermore, considering the major role of OS in the development of diabetes-induced
complications [75], in addition to our previous findings on the cardioprotective role of
carnitine in attenuating cardiotoxicity induced by Ch deprivation [8,19], the herein pre-
sented experimental setup could (a) provide a suitable basis for the screening of several
antioxidant compounds, and (b) act as an ideal model for the further exploring of the role
of Ch supplementation in the course of diabetic cardiac injury.

Even though for most the studied factors the effect was clear, a limitation of the study
was the short time of the experimental procedure; thus, further research is warranted to
determine the progress of this cardiomyopathy over time.

6. Clinical Perspectives

Both metabolic insults (Ch deprivation and diabetes) could eventually resemble com-
mon cases in clinical practice, such as diabetes in post-menopausal women and preg-
nancy/lactating [76], diabetic patients with malnutrition and/or alcoholism and/or hepatic
failure [77], diabetic patients with chronic renal failure [50], diabetic patients on parental
nutrition and/or short bowel syndrome and/or autoimmune diseases [13], but also in
critically ill patients [78]. Thus, Ch could eventually be considered to be a supplement in
the prevention (or at least modification) of the course of diabetic cardiac injury and in the
treatment strategies.
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