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Simple Summary: Prostate cancer is the most commonly occurring internal malignancy in men.
Immunotherapies are emerging as important cancer therapies, having been successfully applied to a
range of solid tumour types. However, due to the highly immunosuppressive tumour microenviron-
ment, these successes have not been replicated in prostate cancer. To aid in the selection of patients
who would be responsive to immunotherapy, efforts are underway to identify biomarkers which may
be indicative of a positive therapeutic response. This review provides an overview of the prostate
tumour microenvironment, summarises the immunotherapy approaches being explored for use in
prostate cancer, and examines the use of biomarkers for therapy selection.

Abstract: Advanced prostate cancers have a poor survival rate and a lack of effective treatment
options. In order to broaden the available treatments, immunotherapies have been investigated.
These include cancer vaccines, immune checkpoint inhibitors, chimeric antigen receptor T cells and
bispecific antibodies. In addition, combinations of different immunotherapies and with standard
therapy have been explored. Despite the success of the Sipuleucel-T vaccine in the metastatic, castrate-
resistant prostate cancer setting, other immunotherapies have not shown the same efficacy in this
population at large. Some individual patients, however, have shown remarkable responsiveness to
these therapies. Therefore, work is underway to identify which populations will respond positively to
therapy via the identification of predictive biomarkers. These include biomarkers of the immunologi-
cally active tumour microenvironment and biomarkers indicative of high neoantigen expression in
the tumour. This review examines the constitution of the prostate tumour immune microenvironment,
explores the effectiveness of immunotherapies, and finally investigates how therapy selection can be
optimised by the use of biomarkers.

Keywords: prostate cancer; immunotherapy; predictive and prognostic biomarkers; tumour
microenvironment; tumour immune microenvironment

1. Introduction

Prostate cancer is the second most frequently diagnosed cancer, and the fifth leading
cause of cancer death among men in 2020 [1]. For instance, in 2018 in the U.S there were
3,245,430 men living with prostate cancer. In the U.S in 2021 there will be an estimated
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248,530 new diagnoses of prostate cancer, and 34,130 deaths [2]. Due to this high prevalence,
prostate cancer screening, consisting of prostate specific antigen (PSA) detection and digital
rectal exam, generally commences in men in their 50s. Prostate cancer is a biologically
heterogeneous disease that produces variable clinical outcomes. Low- and intermediate-
risk localised prostate cancer is generally treated with curative attempts with ablative
therapies such as surgery and radiotherapy. Of those patients treated for primary disease,
up to 30–40% will eventually fail, and the disease will manifest through biochemical
recurrence (BCR) [3,4]. Of these BCR patients who are treated with hormonal therapies
approximately 10–20% will develop castrate-resistant cancer within 5 years [5]. Metastatic,
castrate-resistant prostate cancer (mCRPC) is a highly aggressive stage of the disease, and
has a prognosis of 9–13 months’ survival [5]. Due to this poor survival rate of mCRPC,
alternate avenues of treatment are being investigated.

Prostate cancer tissue is composed of tumour cells and host components such as
immune cells, stromal matrix and soluble factors (e.g., cytokines) with the host components
referred to as the Tumour Immune Microenvironment (TIME). Within the TIME, crosstalk
occurs between the immune cells, stromal cells, the non-cellular components and the
tumour cells, resulting not only in the evolution of the TIME, but also playing a role in
tumour progression, tumour clearance or treatment response The TIME interacts with
soluble factors secreted by the cancer cells, and in turn, also interacts with the tumour cells.
Importantly, whilst providing structural support and contact with prostate cancer cells,
the TIME also produce soluble factors, all of which combined can drive prostate cancer
progression [6]. Traditionally, it is believed that tumour-intrinsic signalling pathways are
oncogenic pathways, however, emerging evidence is showing that this signalling can also
regulate the TIME and subsequently tumour immune escape [7,8]. In prostate cancer, this
can include PI3K/PTEN/AKT signalling [9,10], TLR9 [11] and p53 loss of function [12],
which drives the accumulation, expansion, infiltration and activation of MDSCs. However,
immune cells within the prostate cancer TIME act as a double-edged sword, because across
the various stages of the disease, the immune cells can also mediate their invasive capacity.

Immunotherapies have shown substantial benefit in other cancers, however, there
have been challenges in overcoming the immunosuppressive tumour microenvironment of
prostate cancer.

2. The Prostate Tumour Immune Microenvironment

Immune evasion is a hallmark of cancer and dysregulation of the immune microenvi-
ronment contributes to malignant progression in prostate cancer [13]. The prostate tumour
microenvironment consists of three main compartments: the stroma, the tumour and the
immune cells (Figure 1). Together, cellular populations, nutrients and signalling molecules
generate a highly immunosuppressive tumour microenvironment.

2.1. The Stromal Compartment

The stromal compartment is inherently plastic and can rapidly respond to damage
sustained by the adjacent epithelium. When responding to such damage, stromal cells
are phenotypically and genotypically altered, and there is increased matrix remodelling
and altered expression of repair-associated growth factors and cytokines. This state is
known as reactive stroma [14,15]. In prostate cancer development, reactive stroma initi-
ates during pre-malignant prostatic intraepithelial neoplasia, and co-evolves as the cancer
develops [16]. Carcinoma-associated fibroblasts (CAFs) are the main type of cells present
in reactive stroma and are central in mediating pro-survival signalling in cancer cells. In
terms of the immune microenvironment, CAF proliferation has been shown to lead to
the development of a fibrous stroma, which induces localized vasculature remodelling
and a state of hypoxia and chronic inflammation [17]. Chronic inflammation is akin to a
pre-cancerous state inducing re-modelling of the normal tissue environment, where NF-κB
signalling pathways play a defining role. Here, NF-κB-controlled signalling networks
modulate the expression of cascades of pro-inflammatory genes, particularly cytokines and
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chemokines, and also regulate inflammasome formation. In response, immunosuppressive
cell populations are recruited to the microenvironment, while cytotoxic T-cell function
and dendritic cell maturation are inhibited [18–21]. The transcription factor (HIF-1) which
is regulated by oxygen, is also overexpressed in prostate cancer, and is correlated to the
clinical stage of the disease [22,23]. Importantly, hypoxia can mediate prostatic adenocarci-
noma cell plasticity with the acquisition of a mesenchymal phenotype in a process known
as epithelial–mesenchymal transition (EMT). This process can also contribute to immune
escape via a loss of cell–cell recognition, as observed with decreased e-cadherin modulating
the T-cell synapse which is required for an efficient immune response [24]. In addition,
mesenchymal cells exhibit decreased MHC1 expression levels which promotes differen-
tiation/recruitment of T-regulatory lymphocytes (Tregs), immature DCs and ultimately
tumour immunosuppression [24].
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Figure 1. The tumour immune microenvironment of prostate cancer. The tumour microenvironment
is composed of stroma, tumour cells and a variety of immune cells. The stromal components and tu-
mour cells interact and promote a hypoxic and pro-tumour environment through cytokine production
and pro-inflammatory signalling. As the immune cells infiltrate into the tumour microenvironment,
immunosuppressive cells, such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MD-
SCs) and M2 macrophages, suppress the anti-tumour activity of dendritic cells (DCs), cytotoxic T
cells, natural killer (NK) and B cells, which together promote an immunosuppressive environment.

2.2. The Immune Cell Compartment

The prostate tumour microenvironment has altered levels of the various classes
of immune cells compared to healthy prostate tissue. This includes tumour-associated
macrophages (TAMs), T cells and neutrophils [25]. Interestingly, increased levels of inactive
immune cells such as resting natural killer cells, naive B cells and resting dendritic cells
are present, which may suggest that the prostate cancer microenvironment inhibits the
activation of these cells [25].

The prostate cancer TIME is traditionally regarded as immunologically ‘cold’ due to its
relatively low levels of infiltrating T lymphocytes [26]. This is in part due to the low tumour
mutational burden observed in prostate tumours compared to tumours such as melanoma
and renal cell carcinoma, thus reducing the presence of tumour neoantigens [25,27]. This,
paired with the frequent loss or reduction in major histocompatibility complex (MHC)
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class I and II expression in antigen-presenting cells, means that the number of anti-tumour
T cells being attracted to the tumour is minimal [28–31]. Further contributing to the
immunosuppressive microenvironment is the lack of afferent lymphatics to the prostate
and the immunosuppressive properties of seminal fluid [32].

In prostate cancer, T cells are the major class of tumour-infiltrating lymphocytes.
Higher numbers of infiltrating T cells have been correlated with better clinical outcomes
in a variety of solid tumours, including bladder cancer, colorectal cancer, ovarian cancer
and melanoma [33–36]. In contrast, the prognostic value of tumour T-cell infiltration is
controversial, with both very low and high levels being associated with worse clinical
outcomes in prostatectomy specimens [37–40]. This suggests that in cases with low levels
of T cells infiltrating, the immune system has failed to mount an effective anti-tumour
response. On the other hand, cases with high levels of T-cell infiltration may suggest that
the T cells being recruited are able to function effectively. Alternatively, there may be a
defect in recruiting the appropriate T-cell subpopulations. For example, these patients
might have high infiltration of Tregs. Tregs play an important role in downregulating the
cytotoxic T-cell response, and high levels of FOXP3+ Treg infiltration is a negative predictor
of overall survival in a range of cancers [41]. High levels of FOXP3+ Tregs have been
identified in prostate cancer tumour samples and peripheral blood samples, and may in
part explain the dysfunction observed in the cytotoxic CD8+ T cells [42,43].

CD8+ T cells have potent cytotoxic activity and play a key role in anti-tumour immu-
nity. The prognostic value of CD8+ T-cell infiltration in prostate cancer is inconclusive.
Several studies have suggested that high CD8+ T-cell infiltration in the tumour epithelium
has been reported to be associated with improved overall survival or lower risk of disease
relapse and progression in prostatectomy specimens [44,45]. Another study concluded that
higher CD8+ and lower programmed death ligand 1 (PD-L1) expression was associated
with lower risk of biochemical recurrence and metastasis development [46]. However, oth-
ers have shown that high levels of CD8+ T cells are associated with worse prognosis [47,48].
One of these studies hypothesised that the failure of high levels of CD8+ T cells to reduce
disease recurrence may be due to T-cell exhaustion, and associated expression of PD-1. In-
terestingly, another study demonstrated that low levels of PD-L1, an immune-suppression
marker and ligand of PD-1, combined with high levels of CD8+ T cells, was associated
with improved prognosis [46]. This suggests that T-cell exhaustion may play a role in this
finding, given the importance of the PD-1/PD-L1 axis in T-cell activation.

Myeloid-derived suppressor cells (MDSCs) and TAMs are key inflammatory cells
which also contribute to the immunosuppressive prostate cancer TIME. MDSCs are ac-
tivated by Tregs and exert their immunosuppressive functions by depletion of arginine
and tryptophan in the surrounding tissue. Ultimately, this leads to T-cell cell-cycle ar-
rest and decreased expression of T-cell receptors [49,50]. TAMs can be stratified into two
distinct subpopulations, however, the majority of TAMS present in prostate cancer are
M2-like, which are associated with an anti-inflammatory phenotype [51]. The presence
of M2-like TAMS in both epithelial and stromal compartments is associated with tumour
aggressiveness and poorer patient outcomes [52,53].

2.3. Cytokines and Signalling Molecules

A plethora of cytokines are present in the TIME and play an important role in promot-
ing tumorigenesis and regulating the immunosuppressive environment. One example is
transforming growth factor-β (TGF-β). In healthy systems, TGF-β acts as a tumour suppres-
sor, where it inhibits proliferation and induces apoptosis. However, when overexpressed in
cancers, such as prostate cancer, TGF-β becomes a potent promoter of tumour invasiveness
and metastasis [54,55]. One way it mediates this is through promotion of tumour immune
evasion through suppression of proliferation and differentiation of lymphocytes, natural
killer cells and macrophages [56,57]. On the other hand, anti-tumour cytokines, such as
type I interferon (IFN), and their respective signalling pathways, are often suppressed in
prostate cancer, especially in the metastatic state [58]. As IFN is important to the coordina-
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tion of the immune response, the reactivation of the pathway with therapy may promote
long-term anti-tumour immunity.

3. Immunotherapy Strategies in Prostate Cancer

Immunotherapy aims to enhance the adaptive immune response, either through
enhancing specificity or promoting stronger activation against the tumour. This approach
has found success in a range of cancers. However, the immunologically ‘cold’ nature of
prostate cancer has made the development of effective immunotherapies more challenging.
Clinical trials currently investigating the use of immunotherapies in prostate cancer patients
are summarized in Supplementary Table S1.

3.1. Cancer Vaccines

One class of immunotherapies is cancer vaccines. Cancer vaccines prime the patient’s
immune system to recognise tumour-associated antigens (Figure 2A). Numerous types
of cancer vaccines have been trialled in the prostate cancer setting, including autologous
and allogeneic cellular vaccines to stimulate the function of antigen presenting cells, DNA
and peptide vaccines which deliver engineered nucleic acids mimicking prostate tumour
antigens, and oncolytic virus vaccines which cause direct lysis of tumour cells allowing for
the release of a broad range of tumour antigens [59].
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Figure 2. Immunotherapy Strategies in Prostate Cancer. Immunotherapy aims to enhance the
adaptive immune response by enhancing specificity or promoting stronger activation against the
tumour. (A) Cancer vaccines involve vaccination of the patient with tumour peptides, allogeneic
whole tumour cells or autologous DCs as vehicles for delivery of the tumour antigen, priming
the patient’s immune system to recognize the tumour-associated antigens. (B) Chimeric Antigen
Receptor T Cells (CAR-T) are genetically modified T cells which express a patient antigen-specific
chimeric receptor combining both antibody specificity and T-cell effector and regulatory functions.
(C) Bispecific antibodies (BiTEs) are designed to target the CD3 protein through an effector arm and a
tumour antigen via a target arm, which promotes the interaction between tumour cells and CD8+ T
cells, resulting in tumour cell death.
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Sipuleucel-T is the only FDA-approved immunotherapy for mCRPC. Sipuleucel-T is an
autologous cellular cancer vaccine which targets the immune system against prostatic acid
phosphatase [60]. Sipuleucel-T treatment significantly increased median overall survival in
mCRCP patients [61,62]. Of note, the greatest survival benefits were observed in patients
with lower PSA [63]. This highlights that treatment may be more beneficial in the early
disease stages, as newly activated cytotoxic T cells have more time to function [64,65]. The
importance of an activated immune response is further highlighted by the fact that patients
treated with Sipuleucel-T exhibited a 3-fold increase in the presence of activated effector
T cells in the tumour microenvironment [64].

Additional vaccines which exhibit signs of efficacy in prostate cancer include PROST-
VAC, GVAX and DCVAC/PCa. PROSTVAC is a virus-based vaccine which targets PSA
and employs a triad of co-stimulatory molecules (TRICOM; CD-80, ICAM-1, LFA-3) which
aid T-cell function, ultimately eliciting a robust immune response [66]. Despite promising
initial results in mCRPC, other trials have failed to demonstrate its associated benefits as a
monotherapy [67,68]. Similarly, despite promising results of improved patient survival in
phase I and II trials, phase III trials with the allogenic GVAX in mCRPC demonstrated poor
results and were terminated early [69–71].

3.2. Immune Checkpoint Inhibitors

In order to prevent autoimmunity, healthy cells display proteins known as immune
checkpoint molecules. When a T cell binds these, an ‘off’ signal is sent to prevent T-cell-
mediated destruction of the healthy cell. In cancer, however, these immune checkpoints
are often upregulated and enhance immune evasion by the tumour. Immune checkpoint
inhibitor (ICIs) monoclonal antibodies work by stopping this ‘off’ signal, and therefore
allow the tumour to be targeted by the T cells (Figure 3) [72,73].
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Figure 3. The PD-1 and PD-L1 interaction and its inhibition by immunotherapy. (A) PD-1 is expressed
on cytotoxic T cells and PD-L1 is expressed on tumour cells. The T-cell receptor (TCR) binds to the
tumour antigen (Ag) presented on the tumour cell surface by major histocompatibility complex class
I (MHC I). When PD-L1 binds to PD-1, the activity of the cytotoxic T cell will be suppressed and
the interaction between TCR and MHC I is blocked. The subsequent immune checkpoint activation
can cause apoptosis of cytotoxic T cells. (B) Inhibition of PD-1 and PD-L1 activation by anti-PD-
1/PD-L1 immunotherapy. Immune checkpoint inhibitors are antibodies that can specifically bind
to the immune checkpoint molecules, such as PD-1 and its ligand PD-L1. This binding blocks the
interaction between PD-1 and PD-L1 and promotes the anti-tumour activity of the cytotoxic T cell.
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Ipilimumab is an ICI that targets CTLA-4, which has been trialled in mCRPC. In
mCRPC patients who had failed docetaxel therapy, treatment with ipilimumab, alone
or in combination with radiation therapy, resulted in increased median progression-free
survival. However, no benefit to overall survival was observed [74]. The benefit was
stronger in patients with favourable prognostic factors, especially the absence of visceral
metastases. However, a follow-up study in asymptomatic or minimally symptomatic
mCRPC patients without visceral metastases did not demonstrate any significant benefit to
overall survival [75]. Similarly, anti-PD-1 and anti-PD-L1 agents, such as pembrolizumab,
avelumab and nivolumab have been trialled in heavily pre-treated mCRPC. In a phase I trial
of nivolumab, an objective response was not observed, while a phase 1 trial of aveulamab
reported that 39% of patients had stable disease at >24 weeks [76]. In the same clinical
settings, pembrolizmab treatment demonstrated an objective response rate of 17% [77].

3.3. Chimeric Antigen Receptor T Cells

Chimeric Antigen Receptor T Cells (CAR-T) are genetically enhanced T cells modified
to engage with specific patient tumour antigens [78], (Figure 2B). This approach has found
success in haematological cancers but has shown limited efficacy in the treatment of solid
tumours. CAR-T cells targeting PSMA have been developed for the treatment of prostate
cancer. This approach has had limited success in clearing tumours, but has demonstrated
tumouristatic effects in some preliminary studies [79,80]. Newer generations of CAR-T
therapy are integrating elements to counteract the immunosuppressive environment. One
study looking at PSMA-directed/TGF-β-insensitive CAR-T cells has reported promising
initial results [81,82].

3.4. Bispecific Antibodies

Bispecific antibodies consist of two monoclonal antibodies known as bispecific T-cell
engagers (BiTEs) attached by a flexible linker (Figure 2C). These antibodies conjugate
simultaneously with tumour antigens and the T cell to promote cytotoxic 4T-cell trafficking
and function [83]. A phase I study using the BiTE Pasotuxizumab, which engages CD3 on
T cells and PSMA, in androgen deprivation therapy (ADT) and chemotherapy-refractory
mCRPC reported positive results, with 88% of patients exhibiting a PSA response in a
dose-dependent manner. Interestingly, this resulted in a long-term response in 12.5% of
the patients [84]. Another PMSA targeting BiTE, AMG 160, has resulted in a greater than
50% decline in PSA in about one-third of patients, with two patients showing a partial
response and eight patients a stable disease (NCT03792841). Trispecific approaches are also
being investigated, as demonstrated by the phase I study investigating the safety profile
of HPN24 in mCRPC patients who have progressed in systemic therapy (NCT03577028).
This is a CD3-PSMA-targeting monoclonal antibody with an albumin-binding domain for
extending the half-life of the compound.

3.5. Combination Therapy Strategies

Given the lack of success in finding a single-agent immunotherapy for prostate cancer,
the focus has shifted to identifying combination therapies. This includes combining with
standard therapies as well as identifying useful dual-immunotherapy approaches.

As chemotherapy is one of the main treatments for cancer, there is strong interest
in combining it with immunotherapies, and this approach has yielded early promise. A
study of nivolumab plus docetaxel in chemotherapy-native mCRPC patients with on-
going ADT therapy reported an objective response rate of 40% and a median overall
survival of 18 months following treatment [85]. Interim analysis from a second study of
pembrolizumab and docetaxel and prednisone in mCRPC previously treated with ADT
reported an objective response rate of 23.1% [86]. It has been suggested that chemotherapy
releases neoantigens from the tumour upon cell death and these neoantigens promote the
activation of CD8+ cells, thus promoting the efficacy of immunotherapies.
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Like chemotherapy, poly-ADP ribose polymerase (PARP) inhibitors promote the
necrotic release of tumour neoantigens. Additionally, like chemotherapy, their effectiveness
as part of a combination therapy with immunotherapies has also been investigated. Most
promisingly, treatment with durbalumab and PARP inhibitor, oliparib, in mCRPC patients
who had progressed with androgen deprivation therapy reported that 53% of patients
had a radiographic and/or PSA response [87]. An interim analysis of a second study
reports a PSA response in 9%, and a partial response in 8% of those with measurable
disease in mCRPC patients previously treated with docetaxel, following treatment with
pembrolizumab and oliparib [88].

Another combination of interest is treatment with androgen-deprivation therapy and
immunotherapies. It has been shown that ADT results in increased trafficking of anti-tumour
immune cells, and as such, ADT may enhance the effectiveness of immunotherapies [89].
Across multiple studies, treatment with pembrolizumab in patients with mCRPC who had
previously been treated with ADT reported a disease control rate of between 35 and 51%,
however, one study did not show any benefit of therapy [90–92].

The combination of anti-angiogenic therapies with those of immunotherapies has also
recently attracted interest. Here, it has been shown that tumour angiogenesis-targeted
agents such as Sunitinib can induce a pro-immunogenic state in the tumour by inducing
miR-221 expression. This is then thought to cause an induction of an interferon-related
gene signature in the prostate cancer cells supported by miR-221 upregulation [93]. These
data would suggest that the treatment combination of tumour kinase inhibitors (TKIs) and
immune-based approaches might be a promising avenue to explore with TKIs treatment,
inducing an immune responsive environment due to boosting miR-221 expression levels.

One of the main immunotherapy combination strategies under investigation is co-
treatment with anti-PD-1 and anti-CTLA-4 agents. A study on asymptomatic or minimally
symptomatic mCRPC patients not previously treated with ipilimumab and nivolumab
showed an objective response rate of 26% at interim reporting, while in those who had
progressed with chemotherapy, the objective response rate was 10% [94,95]. Ipilimumab
and nivolumab have also been trialled in a subgroup of mCRPC patients positive for AR-V7.
Outcomes tended to be better in a subset of patients, specifically in those with DNA damage
repair mutations, however this was only significantly different in terms of progression-free
survival [96]. This highlights the importance of biomarkers to enable selection of patients
who will respond to therapy.

4. Immune Therapy Biomarkers

Metastatic prostate cancer presents a range of challenges to treatment with immunother-
apy. Early studies on the use of these agents in prostate cancer have been characterised
by a lack of response in a high percentage of patients. However, there is evidence that
some subpopulations are highly responsive to immunotherapy. Therefore, it will likely be
pertinent to identify improved molecular biomarkers that will allow for the selection of
those patients that are most likely to benefit.

4.1. Immune Checkpoint Molecules as Biomarkers

ICI directly targets the immune checkpoint molecules; therefore, it follows that the
expression of such molecules may be an important determinant of therapy response. PD-
L1 levels have been shown to have varying degrees of association with therapy, with
expression correlated with ICI response in melanoma but not in squamous cell carcinoma
and non-small-cell lung cancer [97–99]. The expression of PD-L1 and PD-1 is low in healthy
prostate tissue, present in around 0.5% and 1.5% of cases, respectively, and is increased
in prostate cancer cases, with one study reporting positive staining in 13.2% and 7.7%,
respectively [100]. Although dynamic expression is observed, high PD-L1 expression is
associated with prostate cancer aggressiveness, with 61.7% of aggressive primary prostate
tumours and 50% of CRPC expressing PD-L1 [101,102]. Despite this, PD-L1 expression does
not strongly predict response to ICI in prostate cancer. A study examining pembrolizumab
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efficacy in PD-L1-positive versus PD-L1-negative cohorts of treatment-refractory mCRPC
patients reported objective response rates of 5% and 3%, respectively [103]. This suggests
that other factors contribute to the effectiveness of anti-PD-L1 therapy in these patients and
that simple measurement of PD-L1 levels in tissue may not be an effective biomarker of
treatment response.

4.2. Genetic Variations as Biomarkers

Genetic mutations present in a tumour can be a powerful predictor of therapy response.
Prostate cancer has traditionally been difficult to target with immunotherapy due to its low
number of mutations and therefore presence of fewer neoantigens, especially in relation to
other highly mutated cancers such as melanoma and lung cancer [27].

Patients with high microsatellite instability (MSI-H) or mismatch-repair-deficient
(MMRd) tumours have a high tumour mutational burden (TMB) and increased presence
of tumour neoantigens, and are therefore strong candidates for immune checkpoint in-
hibitor immunotherapy [104,105]. The ICI pembrolizumab is FDA-approved for use in
metastatic/unresectable MSI-H/MMRd tumours, however it is only effective in a subset
of prostate cancer patients [106]. A retrospective study reported durable clinical benefit
in 45.5% of MSI-H/MMRd prostate tumours treated with anti-PD1 or anti-PDL1 agents,
either as monotherapy or combination therapy [107]. In addition, a second study ob-
served increased overall survival in patients with higher-than-median TMB following ICI
therapy [94].

Increased neoantigen expression and higher TMB is also associated with mutations
in specific genes, particularly those involved in DNA damage repair such as BRCA1/2,
ATM, MSH2, POLE and CDK12 [108–111]. A comprehensive analysis of POLE/POLD1
mutation in multiple cancer types reported that 1.8% of primary prostate tumours had
mutations in one or both genes, correlating with a significantly higher TMB. Patients with
POLE/POLD1 mutations have been shown to have longer overall survival following ICI
treatment across all tumour types, with POLE/POLD1 reported as an independent risk
factor for identifying prostate cancer patients who benefited from ICI [110].

CDK12 mutations are observed in 1.2% of primary prostate tumours, rising to 6.9% of
mCRPC. A unique mutation signature was observed for CDK12-deficient tumours, differen-
tiating it distinctly from MMRd prostate tumours [105]. PSA decline following ICI treatment
has been observed in patients with CDK-12 mutations in a number of studies [105,111–113].
Interestingly, there was no difference observed between patients with mono- versus bi-
allelic mutations in PSA decline, however, PSA-progression-free survival was marginally
improved for those with biallelic mutations [113]. These retrospective studies indicate
that prospective randomized trials incorporating genomic screening and selection of pa-
tients with MSI-H/MMRd prostate tumours with higher-than-median TMB or CDK12
mutations would be highly informative as to the usefulness of treating these patients
with ICI-based therapies. At the present time, this combined strategy would appear to
be the most promising of the genomic-based approaches to enhance ICI response rates in
prostate cancer.

4.3. Peripheral Immune-Based Biomarkers

Traditionally, mutational status of tumours has been assessed via biopsy, however
biopsy acquisition is an invasive procedure that is not always practical for cancer patients.
In contrast, blood samples are relatively easy to obtain and are being investigated as a
potentially rich source of biomarkers.

One such source of biomarkers is circulating tumour DNA (ctDNA). ctDNA-based
assays are becoming increasingly popular as an alternative to biopsy for the detection
of actionable genetic mutations. A case series reported the detection of MSI-H status in
two prostate cancer patients via ctDNA samples. Importantly, they were able to monitor
the response to treatment by using the frequency of variant alleles in blood samples as
a readout, since it can be repeated for real-time monitoring of tumour clones [114]. This
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demonstrates the utility of such technologies as biomarkers of potential treatment efficacy
and in monitoring response.

Cytokines are key regulators of the immune response; therefore, several studies have
explored cytokine levels at baseline and their correlation with response to immunother-
apy treatment, in particular treatment with cancer vaccines. One study suggests that
higher baseline circulating interleukin-10 (IL-10) levels in CRPC patients may be negatively
associated with response to treatment with a DNA vaccine encoding prostatic acid phos-
phatase [115]. A second study demonstrated that higher baseline levels of interleukin-6
(IL-6) was associated with shorter survival in patients treated with the personalized peptide
vaccine [116].

The presence of various immune cell populations, such as T cells and MDSCs, have
also been investigated for their merit as predictive biomarkers for clinical response to
immunotherapy. Lower baseline levels of PD-1+Tim-3NEG CD4 effector memory cells and
higher baseline PD-1NEGTim-3+ CD8 and CTLA-4NEG Tregs in mCRPC predicted improved
survival following treatment with PROSTVAC and ipilimumab [117]. Similarly, higher
baseline levels of CD4+CTLA-4+ T cells predicted improved survival when treated with
GVAX and ipilimumab. In contrast, CRPC patients with higher CD14+HLA-DR-monocytic
MDSCs had worse survival following treatment [118]. There is also evidence that early
changes in circulating immune cells can be used to monitor the response and adjust
treatments accordingly, as a study reported that in mCRPC patients treated with DCVac
and docetaxel an on-treatment decrease in MDSC independently predicted disease-specific
survival [119].

5. Conclusions

As the second most commonly diagnosed cancer in males, prostate cancer is a major
health concern. In particular, metastatic, castrate-resistant prostate cancer patients have
poor survival rates. Immunotherapies have seen success in many other cancers; however,
the treatment of prostate cancer through these methods suffers due to the immunosup-
pressive tumour microenvironment. Recent studies have helped elucidate many of the
immune-suppressive mechanisms at play in prostate cancer. This knowledge, in combina-
tion with biomarkers, can help inform treatment selection and allow these mechanisms to
be overcome through combination therapy strategies.
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castrate-resistant prostate cancer); MDSCs (myeloid-derived suppressor cells); MHC (major
histocompatibility complex); MMRd (mismatch repair deficient); MSH-I (high microsatel-
lite instability); NK (natural killer cells); MSH2 (MutS homolog 2); PAP (prostatic acid
phosphatase); PARP (poly-ADP ribose polymerase); (PD-1 (Programmed cell death protein
1); PD-L1 (Programmed death-ligand 1); PI3K (phosphoinositide 3-kinases); POLD1 (DNA
Polymerase Delta 1); POLE (DNA polymerase epsilon); PSA (prostate-specific antigen);
PSMA (Prostate Specific Membrane Antigen); PTEN (phosphatase and tensin homolog);
STEAP1 (six-transmembrane epithelial antigen of prostate); TAMS (tumour-associated
macrophages); TCR (T-cell receptor); TGF-β (transforming growth factor-β); TGF-β RII
(transforming growth factor-β receptor II); TIME (tumour immune microenvironment); TKI
(tyrosine kinase inhibitor); Tregs (regulatory T cells); Tumour mutational burden (TMB)
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