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Abstract: Acetaminophen (APAP) is a widely used pain reliever that can cause liver injury or liver
failure in response to an overdose. Understanding the mechanisms of APAP-induced cell death is
critical for identifying new therapeutic targets. In this respect it was hypothesized that hepatocytes
die by oncotic necrosis, apoptosis, necroptosis, ferroptosis and more recently pyroptosis. The latter
cell death is characterized by caspase-dependent gasdermin cleavage into a C-terminal and an N-
terminal fragment, which forms pores in the plasma membrane. The gasdermin pores can release
potassium, interleukin-1β (IL-1β), IL-18, and other small molecules in a sublytic phase, which can
be the main function of the pores in certain cell types such as inflammatory cells. Alternatively, the
process can progress to full lysis of the cell (pyroptosis) with extensive cell contents release. This
review discusses the experimental evidence for the involvement of pyroptosis in APAP hepatotoxicity
as well as the arguments against pyroptosis as a relevant mechanism of APAP-induced cell death in
hepatocytes. Based on the critical evaluation of the currently available literature and understanding
of the pathophysiology, it can be concluded that pyroptotic cell death is unlikely to be a relevant
contributor to APAP-induced liver injury.

Keywords: acetaminophen; hepatotoxicity; pyroptosis; gasdermin; inflammasome; caspases

1. Introduction

Acetaminophen (N-acetyl-p-aminophenol, APAP, paracetamol) is one of the most
widely used pain reliever worldwide. At therapeutic doses, the drug is considered safe,
but an overdose can induce liver injury and even acute liver failure [1,2]. Because of
the wide-spread availability of APAP, intentional and accidental overdosing is relatively
common, especially in western countries. Thus, APAP overdose is responsible for almost
50% and 70% of all acute liver failure cases in the US and the UK, respectively [3,4].
Because of the clinical significance, understanding the mechanisms of APAP-induced liver
injury has been a priority for decades. Early investigations in mice showed that APAP
is metabolized by cytochrome P450 enzymes to a reactive metabolite, now known as N-
acetyl-p-benzoquinone imine (NAPQI), which can be detoxified by glutathione (GSH), and
after hepatic GSH depletion, NAPQI binds to cellular proteins and initiates toxicity [5–7].
The identification of the critical role of GSH in protecting against APAP-induced cell
death in preclinical models led to the development of the GSH precursor N-acetylcysteine
(NAC) as clinical antidote against APAP poisoning [8]. More recently, the critical role of a
mitochondrial oxidant stress and peroxynitrite formation was established in animals [9].
In addition, it was recognized that although the mitochondrial oxidant stress is initiated
by protein adducts in mitochondria [10], activation of c-jun N-terminal kinase (JNK) in
the cytosol and subsequent translocation of phospho-JNK to the mitochondria amplifies
the formation of reactive oxygen and peroxynitrite in the mitochondrial matrix [11,12]
leading to the opening of the mitochondrial membrane permeability transition pore (MPTP)
and subsequent cell death [13]. This more detailed mechanistic insight resulted in the
recognition of 4-methylpyrazole (Fomepizole), an effective inhibitor of cytochrome P450
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2E1 (Cyp2E1) and JNK in mice, human hepatocytes and in patients [14–16], as a second
possible clinical antidote against APAP poisoning [17,18].

Given that the mode of cell death is related to specific signaling events, substantial
efforts were made to characterize the cell death after APAP overdose. Earlier studies
in animals suggested necrosis or oncotic necrosis as the mode of cell death for drug- or
chemical-induced liver injury due to cell and organelle swelling and release of cell con-
tents [19]. It was thought that the cell death is caused by a catastrophic event, e.g., lipid
peroxidation, calcium dysregulation, or protein adducts formation) [5–7,19,20]. However,
over time more details emerged of the cellular signaling events resulting in APAP-induced
necrosis [21–23], which led to the use of the term programmed necrosis [24,25]. During
this time, it was also suggested that there might be substantial apoptotic cell death [26,27]
but the lack of relevant caspase activation and cell shrinkage and absence of many other
characteristics of apoptotic cell death did not support this hypothesis [28,29]. Necrop-
tosis, a specific form of programmed necrosis, was also hypothesized to be involved
in APAP-induced liver injury [30]. Although evidence for a role of receptor-interacting
serine/threonine-protein 1 kinase (RIP1K) [30,31] and RIP3K [32,33] was provided, the fact
that deficiency of mixed lineage kinase domain like pseudokinase (MLKL) did not protect
against APAP hepatotoxicity [31], did not support necroptosis as a key cell death mode. In
addition, ferroptosis, a cell death mechanism characterized by iron-dependent lipid peroxi-
dation, was suggested to be involved in APAP-induced cell death [34]. However, under
normal conditions, lipid peroxidation after APAP overdose is quantitatively insufficient
to cause cell death and vitamin E does not protect [35]. Furthermore, lysosomal iron is
taken up into mitochondria [36,37] and functions as a catalyst for peroxynitrite-mediated
protein nitration critical for the mitochondrial MPTP opening, not lipid peroxidation [38].
This makes it unlikely that the key mode of cell death caused by APAP is ferroptosis [39].
More recently, it was suggested that the mode of cell death is actually pyroptosis [40–42],
which raises the question whether there is any stronger evidence to support this newest
idea for a mechanism of APAP hepatotoxicity than previously for apoptosis, necroptosis
or ferroptosis.

2. Pyroptotic Cell Death Signaling

Pyroptosis is a necrotic programmed cell death mechanism that depends on gasdermin
processing [43]. Although there are 6 known gasdermins, gasdermin D (GSDMD) is the
prototypic gasdermin, which is present in most cell types including the liver [44]. GSDMD,
as most other gasdermins, consists of a 31 kD N-terminal GSDMDNT fragment and a
22 kD C-terminal GSDMDCT fragment, which are connected through a linker region [44].
GSDMDNT forms pores in the cell membrane and GSDMDCT acts as a repressor of this pore
formation [45–47]. The linker region contains caspase cleavage domains. Thus, based on
the caspases involved, there is a canonical and a non-canonical inflammasome activation
leading to pyroptosis [44] (Figure 1). In the canonical pathway, pathogen associated molec-
ular patterns (PAMPs) or damage associated molecular patterns (DAMPs) activate cytosolic
pattern recognition receptors including NOD-, LRR- and pyrin domain-containing protein
3 (NLRP3), which recruits the Apoptosis-associated speck-like protein containing a CARD
(ASC) and pro-caspase-1. Caspase-1 is activated within the inflammasome and cleaves
pro-IL-1β/pro-IL-18 to the active cytokine. In addition, caspase-1 also proteolytically re-
leases GSDMDNT from GSDMD and the N-terminal fragment translocates to the plasma
membrane and forms GSDMDNT pores [48]. These pores can trigger the release of IL-1β
and IL-18 from the cell but eventually induce lytic cell death (pyroptosis) with extensive
release of cellular contents through the ruptured cell membrane [44]. In contrast, the non-
canonical inflammasome activation and pyroptosis is mediated by activation of caspase-11
(mice) or caspase 4 and 5 (humans) by lipopolysaccharide from Gram-negative bacteria.
The active caspase-11 cleaves GSDMD, and the N-terminal fragments form a GSDMDNT

pores. Cellular potassium release through the GSDMDNT pores triggers activation of the
NLRP3 inflammasome with caspase 1 activation and pro-IL-1β/pro-IL-18 cleavage and
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release. In addition, GSDMDNT pores induce the lytic cell death (pyroptosis) with cell
swelling, plasma membrane rupture and extensive release of cellular contents [44].
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Figure 1. Pathways of pyroptosis. Gasdermin (GSDMD) cleavage and activation are central to
pyroptotic cell death and can occur through a canonical or non-canonical pathway. The canonical
pathway is initiated by recognition of pathogen associated molecular patterns (PAMPs) or damage
associated molecular patterns (DAMPs) by cytosolic pattern recognition receptors such as NOD, LRR
and NLRP3. These then recruit ASC and pro-caspase-1, which is activated to caspase-1 within the
inflammasome. Caspase 1 cleaves pro-IL1β and pro-IL18 to the active cytokines, and also cleaves
GSDMD to release the N-terminal domain (GSDMDNT), which translocates to the plasma membrane
to form pores. While the active cytokines can be released through the GSDMDNT pores, these
eventually cause lytic cell death with release of cellular contents through damaged cell membranes.
In contrast to PAMPs and DAMPs, the non-canonical pyroptotic pathway is initiated by LPS from
Gram-negative bacteria, which activates caspase 4 and 5 in humans. Activated caspase cleaves
GSDMD as in the canonical pathway with formation of membrane pores, but cellular potassium
release through the GSDMDNT pores can induce activation of the NLRP3 inflammasome for IL-1β
and IL-18 release. Ultimately, the pores again induce lytic cell death due to release of cell contents.
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In addition to the classical cleavage of GSDMD by caspase-1, or -11 (mice) and -4,
-5 (humans), there is evidence for some crosstalk between apoptotic and pyroptotic sig-
naling [44]. For example, caspase-8 activated during apoptosis, can also cleave GSDMD
and promote pore formation, although at a slower rate [49]. However, active caspase-
3 can cleave and inactive the N-terminal fragment [50,51]. Thus, GSDMD can trigger
pyroptosis during apoptotic cell death, however, the physiological function of GSDMD
activation/inactivation during apoptosis remains to be determined [44].

Despite the well-described mechanism of pyroptosis, GSDMD cleavage may not al-
ways end up with cell lysis. In some cell types, especially monocytes and neutrophils, the
main function of gasdermin pores may be just the release of mature IL-1β and IL-18 in
the absence of cell death [52,53]. These sublytic gasdermin pores can not only release the
cytokines IL-1β and IL-18 but also other small cytosolic proteins [53,54]. Importantly, the
membrane channels can release ions such as potassium, which triggers activation of the
NLRP3 inflammasome after initiation of the non-canonical pathway by lipopolysaccha-
ride [55,56]. An interesting question is what determines sublytic versus lytic gasdermin
pore formation. Although cell type-specific expression of gasdermins and activation of
caspases may be important factors, it was also recognized that GSDMD pores can be re-
moved by an endosomal sorting complex required for transport (ESCRT) [57]. The ESCRT
is recruited to the plasma membrane by calcium influx through the GSDMD pore and
promotes the budding and release of vesicles with the GSDMD pore-containing membrane
parts [58]. This process can completely repair the membrane damage or at least limit the
function of GSDMD pores to the sublytic phase. Together, the process of pyroptosis is well
regulated by cell type-specific expression of gasdermins, the degree of caspase activation
and gasdermin cleavage and pore formation and the counteracting repair processes.

3. Evidence for Pyroptosis in APAP Toxicity

Recently, pyroptosis has been suggested to be a relevant cell death pathway in the
standard murine model of APAP hepatotoxicity, i.e., 12–24 h after a dose of 300 mg/kg
APAP in fasted mice [40–42]. Wang et al. provided evidence for cleavage of gasdermin D
and of caspase-1 along with a minor increase in IL-1β and IL-18 in plasma. These changes
were observed in both Kupffer cells and in hepatocytes. In addition, knock-down of perox-
iredoxin 3 (Prdx3) aggravated the injury and all pyroptosis parameters, and knock-down
of NLRP3 reduced all pyroptosis parameters and the overall liver injury [40]. The authors
concluded that Prdx3 inhibits APAP-induced pyroptosis by attenuating the mitochondrial
oxidant stress and preventing NLRP3 inflammasome activation [40]. However, there are
many concerns with the interpretation of these experiments. First, the mitochondria-specific
peroxidase Prdx3 protects against mitochondrial dysfunction by removing hydrogen perox-
ide and especially peroxynitrite [59,60]. It is well documented that peroxynitrite is the most
important mitochondrial oxidant generated during APAP overdose [61]. APAP toxicity was
greatly diminished by facilitating the synthesis of GSH as scavenger of peroxynitrite [62],
the deficiency of the mitochondrial SOD2 dramatically enhanced peroxynitrite formation
and injury [63,64] and the mitochondria-specific SOD mimetic mito-tempo eliminated
peroxynitrite formation and effectively protected [65]. Thus, it is not surprising that Prdx3,
an effective peroxynitrite scavenger located in mitochondria, reduced APAP toxicity [40].
However, the mitochondrial stress and dysfunction after an APAP overdose causes the
MPT pore opening and nuclear DNA fragmentation leading to programmed necrosis not
pyroptosis [23,66]. Second, the overall changes in pyroptotic parameters such as cleavage
of gasdermin D or caspase 1 is generally below 2–3-fold of baseline, which leads to very
limited IL-1β and IL-18 formation [40]. In fact, the increase of plasma IL-1β levels from
<10 pg/mL in controls to 20 pg/mL after APAP reported by the authors [40] is almost
identical to levels published previously in a similar mouse model [67]. However, the minor
changes in IL-1β were insufficient to impact the injury [67]. Moreover, a recent study did
not observe protection against APAP or thioacetamide hepatotoxicity in gasdermin D- and
E-knock-out mice [68]. Interestingly, this study also demonstrated that thioacetamide toxic-
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ity did not involve gasdermin D or E cleavage, but no data were provided on gasdermin
cleavage after APAP [68]. In contrast, another report indicated increased APAP-induced
liver injury in gasdermin D-deficient mice [69]. However, as discussed [25], this alleged
protection by gasdermin D may have been the result of a substrain mismatch between the
KO mice and the wildtype animals.

More recently, 2 additional manuscripts were published with the conclusion that
pyroptosis may be a mode of cell death during APAP hepatotoxicity in mice [41,42]. The
conclusion was based on only minor (<2-fold) increases in gasdermin-D, caspase-1 and
NLRP3 protein expression at the whole liver level [41,42]. However, minor changes in
protein expression are insufficient to explain extensive cellular necrosis and are certainly
not specific for pyroptotic cell death. Furthermore, no specific intervention for pyroptosis
was used to justify the conclusion that pyroptosis may be relevant for APAP-induced liver
injury. Thus, most of the data and conclusions regarding the critical role of pyroptosis in
APAP-induced liver injury are based on correlations and have to be questioned.

4. Evidence against Pyroptosis in Acetaminophen-Induced Liver Injury

As discussed above, key signaling events in pyroptotic cell death are the activation
of the NLRP3 inflammasome with cleavage of pro-caspase 1. The active caspase cleaves
gasdermin and the N-terminal fragments translocate to the cell membrane forming a pore
to facilitate the release of IL-1β, and eventually cause cell death. A recent study showed
that gasdermin D- and E-deficient mice are not protected against APAP hepatotoxicity [68].
Caspase 1 is one of many caspases that are all effectively inhibited by suicide substrates
like Z-VAD-fmk. These caspase inhibitors bind irreversibly to the active caspase and block
the enzyme activity [70]). Pancaspase inhibitors and inhibitors more specific for individual
caspases, e.g., caspase 3 or -8, are highly effective in models of hepatocellular apoptosis
such as galactosamine/endotoxin shock [71–73], or agonistic Fas antibody-induced liver
injury [74–76] but fail to protect against APAP hepatotoxicity [28,67,77,78]. The few studies
that claim a beneficial effect of pancaspase inhibitors in the APAP model [27,79] were
later shown to be effects of the solvent dimethyl sulfoxide (DMSO) [78,80], which is an
effective inhibitor of cytochrome P450 enzymes [81]. Nevertheless, when IL-1β formation
was evaluated after an APAP overdose, there was a significant but moderate increase
of IL-1β mRNA and mature IL-1β protein formation [67,82] suggesting activation of the
inflammasome and caspase-1 in the mouse model. Indeed, a pancaspase inhibitor reduced
IL-1β protein levels but did not affect IL-1β mRNA levels [67]. However, the IL-1β levels
were far below concentrations that could have affected APAP-induced liver injury both in
mice [67,83] and in human overdose patients [84], which is consistent with the fact that IL-1
receptor-deficient mice are not protected against APAP hepatotoxicity [67].

The sterile inflammatory response after an APAP overdose is initiated by the release
of DAMPs from necrotic hepatocytes including mitochondrial DNA and nuclear DNA
fragments [85], which bind to Toll-like receptors, e.g., TLR9, on Kupffer cells and trigger the
transcriptional activation of pro-inflammatory cytokine genes [82,86]. Additional DAMPs
like ATP activate the NLRP3 inflammasome by binding to the purine receptor P2X7 on
Kupffer cells, which causes the activation of caspase-1 and processing of pro-IL-1β to
the active cytokine [48]. In addition to the relatively moderate formation of these active
cytokines, the fundamental issue is that the activation of the inflammasome and caspase-1
and IL-1β formation occurs mainly in Kupffer cells [83] whereas the main APAP-induced
cell death occurs in hepatocytes. This would question the possibility that caspase-mediated
pyroptosis could be responsible for APAP-induced hepatocyte necrosis. Consistent with
these findings, analysis of time series single-cell RNA sequencing data during APAP
hepatotoxicity reveals that Kupffer cells and infiltrating macrophages are the primary
cells expressing the pyroptotic genes Casp1, IL-1β, Gsdmd and Nlrp3 while hepatocytes,
regardless of spatial location within the liver lobule, maintain very low expression levels
for these pyroptotic genes (Figure 2) [87–89]. A limitation of the single cell data is that it
cannot distinguish between the original Kupffer cells and monocyte-derived macrophages
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that may have shifted their phenotype during the resolution phase of the injury. However,
this does not affect our conclusion that genes related to pyroptosis are primarily located in
macrophages and not in hepatocytes, which means that hepatocytes are unlikely to be able
to die by pyroptosis. Collectively, these findings support a potential role of pyroptosis to
resolve the sterile inflammatory response after an APAP overdose, however, pyroptosis as
the primary mode of hepatocyte cell death is unlikely.
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Figure 2. Single-cell RNA sequencing data reveal pyroptotic genes are expressed predominantly
in infiltrating macrophages (Macs) or Kupffer cells (KCs) during the acetaminophen time course
(24, 48, 72 h) in mice. Data in the left column (A) show representative cell type markers for infiltrat-
ing macrophages (Ccr2), KCs (Vsig4), periportal hepatocytes (cyp2f2) and pericentral hepatocytes
(cyp2e1). Data in the right column (B) show canonical genes of pyroptosis (Casp1, IL-1β, Gsdmd,
and Nlrp3). Single-cell RNA seq data were aggregated from publicly available datasets (GSE136679,
GSE200771, zenodo.6035873).

5. Summary and Conclusions

The mode of cell death after an APAP overdose has been extensively investigated and
discussed [24,25]. Besides oncotic necrosis, other forms of cell death including apoptosis,
necroptosis, ferroptosis and most recently pyroptosis have been implicated in APAP-
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induced liver injury. However, one glaring weakness of many studies claiming one of these
cell death pathways as central to the toxicity is the lack of discussion of other cell death
pathways and the fact that others have come to fundamentally different conclusions. A
problem in this respect is that there are overlap in signaling pathways between different
modes of cell death (discussed in detail: [25,90]), which can lead to misinterpretations.
For example, the translocation of Bax to the mitochondria and formation of pores in the
outer mitochondrial membrane, which can induce release of cytochrome c and other inter-
membrane proteins, is generally considered a pro-apoptotic signaling event [91]. However,
mitochondrial Bax translocation is an early event in APAP hepatotoxicity that facilitates
the release of endonuclease G and apoptosis-inducing factor (AIF) from mitochondria and
promotes nuclear DNA fragmentation [92]. Thus, Bax pores amplify caspase activation
through mitochondrial cytochrome c release during apoptosis but promote nuclear DNA
degradation through mitochondrial endonuclease G release and its translocation to the
nucleus during APAP-induced necrosis. Importantly, these events do not require tran-
scriptional activation of Bax. It is therefore important to not just associate the increased
expression of mRNAs or proteins of certain genes presumably associated with a cell death
pathway but fully understand the functional importance of the genes in the signaling
events of cell death. For pyroptosis, this means that neither increased protein expression
of inflammasome components, caspase-1 nor gasdermins are evidence for pyroptotic cell
death. In contrast, activation of caspase-1, cleavage of gasdermins and translocation of the
N-terminal fragment to the cell membrane and pore formation are the critical events [44].
Although evidence was provided for modest caspase-1 and gasdermin D cleavage and
limited formation of IL-1β and IL-18 in both hepatocytes and Kupffer cells after APAP
overdose [40], gasdermin D gene knockout mice were not protected against APAP tox-
icity [68,69] suggesting no relevant pyroptosis in APAP-induced liver injury. However,
based on the experience with apoptosis [29,93] and ferroptosis [39] in APAP hepatotox-
icity, questionable evidence (minor increases of mRNAs or protein expression of genes
presumably related to pyroptosis) can be expected to be used by other authors in the
future as evidence for pyroptosis. Unfortunately, this will only add to the confusion but
not advance our understanding of the pathophysiology of APAP or the mechanism of
protection with various interventions. We hope that our discussion can limit the casual use
of cell death modes like pyroptosis based on gene expression data and encourage proper
investigations into this cell death pathway using specific interventions, e.g., gasdermin D
gene knockout mice, and documentation of quantitively relevant inflammasome activation
and gasdermin pore formation in specific cell types of the liver. Furthermore, authors
should integrate their new findings with earlier available information on necrotic cell
signaling after an APAP overdose in order to make progress in understanding the nuances
of APAP pathophysiology.
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