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Abstract: Liver metastasis, originating either from a primary liver or other cancer types, represent
a large cancer-related burden. Therefore, studies that add to better understanding of its molecular
basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its
role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration,
metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles
of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung,
melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role
of the Wnt signaling pathway in the communication between the many of the components of the
primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the
liver. The data presented herein are a review of the most recent publications and advances in the
field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its
targeting could potentially relieve liver metastasis–related complications.

Keywords: Wnt signaling pathway; liver metastasis; hepatocellular carcinoma; colorectal cancer;
breast cancer; gastric cancer; lung cancer; melanoma; pancreatic cancer; prostate cancer

1. Introduction

Malignant primary and secondary liver cancers account for the vast part of cancer-
related negative burdens. The most common primary liver cancer is hepatocellular carci-
noma (HCC), which is among the top cancers according to the incidence and mortality. It
represents approximately 90% of all liver cancers and has an incidence of 850,000 new cases
per year [1]. HCC usually occurs in the setting of chronic liver inflammation and is often
linked to chronic viral hepatitis infection (hepatitis B or C) or exposure to toxins (e.g.,
alcohol). Another type of common liver cancer is intrahepatic cholangiocarcinoma (ICC).
ICC is an aggressive epithelial malignancy of the bile ducts within the liver that is often
locally advanced to metastatic disease and has an extremely poor prognosis. The recur-
rence of liver cancer after hepatic resection remains a major complication with no adjuvant
therapies able to prevent it. Recurrence rates are as high as 70% at 5 years and are divided
into either early (<2 years) or late (>2 years) [2]. Recurrence that takes place earlier is
usually due to micro-metastases that remained and progressed after resection, while the
late onset recurrence results from de novo tumors arising in a microenvironment that is
primed for their development. Although metastasis originating from HCC and ICC can be
detected in other organs, the most common site of metastasis of the primary HCC and ICC
is the liver itself, which contributes to the above-mentioned recurrence scenarios.

Another frequent cancer-related liver malignancy includes metastasis from the col-
orectal cancer (CRC) accounting for the most common primary cancer that metastasizes to
the liver. The percentage of CRC that metastasize to the liver is 30–50% [3]. Liver metastasis
is a leading cause of death for CRC patients and, given the fact that CRC is among the top
five cancers by incidence and mortality [4], it is evident that this type of disease progression
represents large cancer-related burden. Other common primary cancers that metastasize to
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the liver include lung, melanoma, breast, pancreatic, and gastric cancer, each with high
incidences for this type of disease progression [3].

It is evident from these introductory lines that liver metastasis, originating either
from primary liver or other cancer types (Figure 1), represents a significant cancer-related
complication. Therefore, efforts are being made in understanding their biology and finding
the targets for the effective treatment. In this paper, the role of the Wnt signaling pathway
as a driving force in liver metastasis originating from primary liver cancer and from other
cancer types is explored.
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ation of Frizzled receptors with different co-receptors. Several different pathways down-
stream of Wnt binding to Frizzled could be initiated, like outlined below. 

2.1. ‘Canonical’ Wnt Signaling Pathway 

Figure 1. Involvement of the Wnt signaling pathway in (A) the progression and metastasis formation by primary liver
cancer and in (B) the formation of secondary cancers in the liver (metastasis from other primary tumors, most commonly
colorectal, pancreatic, melanoma, lung, breast, gastric, and prostate). Different processes that lead to metastatic outgrowth
in both scenarios are delineated.

2. Wnt Signaling Pathways

Wnt signaling is initiated by Wnt-secreted glycoproteins that bind to the seven trans-
membrane spanning domains containing receptors from the Frizzled family. There are
19 Wnt and 10 Frizzled genes in humans. Specificity of the Wnt signaling is possibly
achieved through cell-specific expression of Frizzled receptors, or additionally, through the
association of Frizzled receptors with different co-receptors. Several different pathways
downstream of Wnt binding to Frizzled could be initiated, like outlined below.

2.1. ‘Canonical’ Wnt Signaling Pathway

Among the Wnt signaling pathways, Wnt/β-catenin is the best studied and, therefore,
denoted as the Wnt ‘canonical’ pathway. In the absence of Wnt ‘canonical’ pathway
activation, cytoplasmic β-catenin is destined for a destruction in a so-called β-catenin
destruction complex. This complex includes axin, adenomatous polyposis coli (APC), and
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diversin. In this complex, β-catenin becomes phosphorylated by the serine/threonine
kinases casein kinase 1 (CK1) and glycogen synthase kinase 3 beta (GSK3β). Subsequently,
β-catenin is targeted for ubiquitination by the beta-transducin repeat-containing protein
(β-TrCP) and is then degraded by the proteasome. Activation of the Wnt/β-catenin
pathway results in the recruitment of a cytoplasmic mediator Dishevelled (Dvl) which
leads to the stabilization of a transcription co-factor β-catenin which accumulates in the
cytoplasm and enters the nucleus. In the nucleus, β-catenin acts as a co-activator of the
T-cell factor/lymphoid enhancer factor-1 (TCF/LEF) transcription factors and contributes
to the expression of different target genes. Among other genes with similar function, B-cell
CLL/lymphoma 9 protein (BCL9) has been shown to promote β-catenin’s transcriptional
activity. The common Wnt/β-catenin target genes include c-Myc, cyclin D1 (CCND1),
c-Jun, Axin-2, etc. In the absence of a Wnt signal, TCF/LEF family members interact
with transcriptional inhibitors which serve to repress Wnt signaling. The Wnt/β-catenin
pathway is essential during development, cell proliferation, differentiation, migration, and
survival and is frequently deregulated in different pathological states [5].

2.2. ‘Non-Canonical’ Wnt Signaling Pathways

Several ‘non-canonical’ Wnt pathways have also been described. Among them, the
Wnt/planar cell polarity (PCP) and Wnt/calcium pathways are the best understood. Com-
mon theme for both pathways is Dvl activation upon ligand binding to the receptor, but
these pathways diverge further downstream. The PCP pathway is characterized by the
activation of the Rho/Rac GTPases. When this pathway is activated, Wnt binding to
Frizzled receptors mediates asymmetric cytoskeletal organization and the polarization
of cells by influencing the actin cytoskeleton [6]. The Wnt/calcium pathway leads to the
release of intracellular calcium and activates calcium-activated protein kinase C (PKC) and
calcium/calmodulin-dependent protein kinase II (CamKII). Frizzled co-receptors involved
in this pathway include Knypek and receptor tyrosine kinase like orphan receptor 2 (Ror2).
The Wnt/calcium pathway is important for cell adhesion and cell movements during
gastrulation [7].

For easier comprehension, Wnt signaling pathways are usually described as individual
pathways, but reported crosstalk and shared components between the Wnt signaling
branches suggest that Wnts act through a complex intracellular signaling network [8].

2.3. Proteins That Modulate Wnt Signaling Pathways

Some of the proteins that influence Wnt signaling include Wntless (Wls). Wls is a
highly conserved transmembrane protein located in compartments of the secretory pathway
that shuttles palmitoylated Wnt proteins from the endoplasmic reticulum to the plasma
membrane and acts as a Wnt cargo receptor [9].

Wnt antagonists are divided into the secreted Frizzled related proteins (sFRP class) and
the Dickkopf (DKK) class. sFRP class includes the sFRP family (sFRP1-5), Wnt inhibitory
factor-1 (WIF-1), and Cerberus. These antagonists act by binding directly to Wnt, disturbing
their ability to bind to the receptor. Members of the Dickkopf class (DKK1-4) inhibit Wnt
signaling by binding to co-receptor LDL receptor related protein (LRP) 5/LRP6 of the
Wnt/β-catenin pathway. Therefore, while sFRP class of the antagonists may inhibit both
canonical and noncanonical Wnt signaling pathways, those of the DKK class specifically
inhibit Wnt/β-catenin pathway [10].

3. Wnt Signaling Pathway Drives Hepatocellular Carcinoma Metastasis

The role of Wnt signaling pathway in HCC primary growth and treatment is well de-
scribed and has been reviewed elsewhere [11,12]. Briefly, most liver tumors have mutations
in genes encoding key components of the Wnt/β-catenin signaling pathway. This pathway
has been suggested to have an important role in the pathogenesis of HCC and especially
in the transition from chronic liver diseases, including viral hepatitis, to hepatocellular
adenomas and further, from adenomas to HCC [12]. β-catenin activation has also been
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linked to immunotherapy resistance in HCC [13]. For these reasons, the Wnt/β-catenin
pathway has been suggested to be a mechanism by which cells evade anti-tumor drugs
and the immune system [14]. Consequently, the components of the Wnt pathway are
considered to be the targets in HCC treatment [15,16].

This chapter explores another important role for Wnt signaling pathway in HCC and
that is in their regional (intrahepatic) and systemic (other sites) metastatic progression.

3.1. Aberrant Expression of Wnt Signaling Pathway Components Correlates with the Ability of
Liver Cancers to Metastasize

Early studies have noted that the expression of the genes that are implicated in the
Wnt signaling pathway correlates with metastatic abilities of HCC. For example, nuclear
accumulation combined with cytoplasmic accumulation of β-catenin tended to be associ-
ated with metastasis and vascular invasion in HCC [17]. High Wnt3a expression in HCC
was related to poorly differentiated grade, liver cirrhosis, hepatitis B virus infection, higher
tumor-node metastasis stage, and 5-year survival rate [18]. In addition, overexpression
of Dvl2 correlated with histological grade, metastasis, and vein invasion in patients with
HCC, and the knockdown of Dvl2 reduced cell migration and invasion in HepG2 cells. [19].
Further to this, the TCF4 gene expression was closely associated with intrahepatic metas-
tasis of HCC [20] and BCL9 expression was significantly associated with microvascular
invasion and intrahepatic metastasis [21]. Wls is highly expressed in advanced-stage ICC.
The intensity of Wls expression was positively associated with tumor stage, tumor-node-
metastasis stage, and lymphatic invasion in ICC [22]. These studies indicate that metastatic
progression of HCC and ICC include higher expression of some of the components that
positively regulate the Wnt signaling pathway.

3.2. Mechanisms of Action of the Wnt Signaling Pathway in Liver Cancers Metastasis Process: The
Roles in EMT, Migration, Invasion, and Metastasis Formation

Mechanistically, one of the first steps in metastatic cancer progression is epithelial-
mesenchymal transition (EMT) by which epithelial cells gain migratory and invasive
properties and become mesenchymal cells. It has been shown that crosstalk between
β-catenin and Snail induces EMT in HCC [23]. Additionally, Wnt/β-catenin signaling
enhances hypoxia-induced EMT in HCC by increasing the EMT-associated activity of HIF-
1α [24]. Hypoxia, on the other hand, activates Wnt/β-catenin signaling by inducing the
expression of BCL9 in human HCC [25]. The importance of the Wnt pathway activation for
EMT in HCC cells was further confirmed by the study that showed that TGFβ signaling in
HCC EMT includes joint activation of the Sonic hedgehog and Wnt signaling pathways [26].
These studies have described that Wnt pathway is an important part of the network of
signaling pathways that induce complex EMT process. To delineate components of the
Wnt pathway that are involved in HCC EMT, it was shown, for example, by pharmacologic
and genetic interventions, that Fzd2 expression induces EMT and enhances cell migration
and invasiveness through a previously unknown, non-canonical pathway that includes
Fyn and Stat3 [27,28].

Further mechanistic insights into Wnt pathways’ role in HCC metastasis came from
the study that has shown that deletion of Wnt3a inhibits migration and invasion by
downregulating matrix metalloproteinases (MMP) -2/-7/-9 expression via the MAPK
pathway [29]. MMPs stimulate the degradation of extracellular matrix components and
promote the migration of cancer cells into the surrounding tissue. The involvement of
miRNAs downstream of Wnt signaling has been shown in the work that described that the
β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 axis promotes HCC lung metastasis [30].
Taken together, these publications are delineating the events downstream of Wnt signaling
pathway activation that induce HCC metastasis formation.

While the above studies interrogated mainly the role of Wnt/β-catenin pathway, a
recent study has shown that downregulation of VANGL1 inhibits cellular invasion and only
slightly affects motility in HCC cells. The VANGL1 protein is one of the core components
of the Wnt/PCP pathway and this work suggests that the Wnt/PCP pathway may play
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a role in progression of HCC affecting cellular invasion but its role in cell motility is less
prominent [31].

Since the discovery of the positive role of Wnt signaling in HCC metastasis formation,
several studies have explored the expression and the ability of re-introduction of its antag-
onists into HCC cell lines and a consecutive role in metastasis formation. In this way, it
has been shown that reconstitution of Wnt pathway antagonist, sFRP-1, suppresses tumor
growth, angiogenesis, and lung metastasis in HCC cell line MHCC97-H xenografts [32].
Furthermore, the expression of another antagonist, WIF1, in HCC cell lines negatively
correlated with their metastatic potential. The up-regulation of WIF1 expression inhibited
the invasion of HepG2 and SMMC-7721 HCC cell lines possibly through the Wnt/β-catenin
signaling pathway [33]. Although DKK1 is a well-described antagonist that suppresses
Wnt/β-catenin signaling, studies have shown that it might promote HCC cell migration
and invasion through the β-catenin/MMP7 signaling pathway [34–36]. However, DKK4
suppresses cell invasion in human hepatoma cells [37]. These studies remind of the com-
plexity of the Wnt signaling pathways and multitude of players that are involved and
whose specificity of action most probably depends on a cell type, as seen with DKK1 [38].

Proteins That Converge to Wnt Signaling Pathway to Influence Liver Cancer
Metastasis Formation

The studies mentioned above clearly indicate a role for Wnt signaling in HCC metas-
tasis formation. Numerous other studies that analyze the roles of single proteins in HCC
metastasis formation have shown that many of these proteins converge to the Wnt signaling
pathway. Such a network of proteins is briefly outlined in the Table 1, establishing firmly
the role of the Wnt pathway in HCC EMT, motility, migration, invasion, and metastasis
formation. Additionally, the involvement of several miRNAs and lncRNAs into signaling
that leads to Wnt pathway activation has been shown. Those are either downstream of the
Wnt signaling pathway like miR-25 [39] and miR-1258 [30] or converge to its activation or
inhibition like, for example, miR-885-5p [40], miR-148b [41], miR-429 [42], miR-197 [43],
miR-212 [44], miR-3194-3p [45], and miR-186 [46].

Table 1. Proteins that converge to the Wnt signaling pathway and in that way influence epithelial-mesenchymal transition
(EMT), motility, migration, invasion, and metastasis of hepatocellular carcinoma (HCC). The publications are listed in
chronological order.

Protein Mechanism Effect Ref.

HGF Activates Wnt pathway by transcriptional
activation of LEF1 Facilitates in vitro tumor migration and invasion [47]

CTHRC1 Activates the PCP pathway of Wnt signaling Promotes in vitro tumor migration and invasion
and cell-matrix adhesion [48]

CAV1 Induces Wnt/β-catenin pathway through nuclear
accumulation of β-catenin

Enhances EMT, invasiveness, and lung
metastasis in vitro and in vivo [49]

CLDN3
Inactivates the Wnt/β-catenin-EMT axis through
downregulation of GSK3B, CTNNB1, SNAI2, and

CDH2

Inhibits cell motility and invasiveness in vitro
and in vivo [50]

AEG-1 Transcriptionally regulated by c-Myc and induces
c-Myc by activating the Wnt/β-catenin pathway

Activates prosurvival and EMT–signaling
pathways and induces in vivo lung metastasis [51]

GAL1
Promotes β-catenin nuclear translocation,

TCF4/LEF1 transcriptional activity and CCND1
and c-Myc expression

Triggers EMT in vitro [52]

TRIM37 Activates the Wnt/β-catenin pathway Promotes in vitro and in vivo cell migration and
metastasis by inducing EMT [53]

HKDC1 Downregulation represses β-catenin and c-Myc
expression Associated with aggressive phenotype [54]
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Table 1. Cont.

Protein Mechanism Effect Ref.

FRAT1
Knockdown suppresses Wnt/β-catenin pathway
by partially suppressing the expression levels of

β-catenin, CCND1, and c-Myc

Knockdown inhibits in vitro hypoxia-induced
EMT, migration, and invasion [55]

NTR1 NTS/NTR1 co-expression correlates with the
activation of the Wnt/β-catenin signaling pathway

NTS/NTR1 co-expression enhances EMT,
invasion, and in vivo metastasis formation [56]

CTNND1 Acts, at least in part, by indirectly enhancing
Wnt/β-catenin signaling

Promotes in vitro migration, invasion, and
in vivo metastasis formation [57]

PRC1 Inhibits APC stability, and promotes β-catenin
release from the APC complex Promotes in vitro migration and invasion [58]

CX32 Its inhibition enhances Snail expression through
activation of Wnt/β-catenin signaling

Regulates EMT, migration, and invasion in vitro
and inhibits tumor metastasis in vivo [59]

FERMT2
Activates Wnt/β-catenin signaling and increases

β-catenin expression (especially
non-phosphorylated form)

Promotes in vitro invasion and metastasis [60]

OCT4 Upregulates LEF1, a key component of the WNT
signaling pathway Induces EMT in vitro [61]

DDX39 Activates Wnt/β-catenin pathway by increasing
β-catenin levels in the nucleus

Promotes tumor growth, migration, invasion,
and in vivo metastasis [62]

PCL3 Inhibits β-catenin degradation, and activates
β-catenin/TCF signaling

Positively regulates the migration, invasion, and
in vivo metastasis formation [63]

ITGB5
Directly interacts with β-catenin and inhibits its

degradation, thus leading to Wnt/β-catenin
activity

Elevated ITGB5 facilitates in vitro cell migration [64]

JUB Activates β-catenin in the nuclei Induces in vitro EMT and migration [65]

LRP16 Its overexpression could prevent β-catenin from
entering the nucleus

Attenuates cell migration, and invasion in vitro,
and metastasis in vivo [66]

ZIC5 Increases the expression of β-catenin and CCND1
and promotes β-catenin to enter the nucleus

Promotes proliferation, migration, and invasion
in vitro and in vivo [67]

SOX9 SOX9-AS1/miR-5590-3p/SOX9 positive feedback
acts through the Wnt/β-catenin pathway

Aggravates HCC progression and metastasis
in vitro and in vivo [68]

AKIP1
Interacts with and sustains β-catenin in the

nucleus by blocking its interaction with APC;
enhances phosphorylation of β-catenin

Promotes invasion and increases intrahepatic
and lung metastasis in vivo [69]

FBXO17
Its silencing might function through

downregulating the expression of proteins in
Wnt/β-catenin pathway

In vitro metastasis ability in the anti-FBXO17
group is decreased [70]

FOXG1 Activates Wnt signaling through forming
TCF4/β-catenin/FOXG1 complex

Promotes EMT and aggressiveness in vitro and
enhances metastasis in vivo [71]

GATA5 Co-localizes with β-catenin in the cytoplasm,
preventing β-catenin from entering the nucleus

Inhibits in vitro cell growth, colony formation,
migration, and invasion [72]

GRP78 Activates the Wnt/HOXB9 pathway by
chaperoning LRP6

Promotes in vitro and in vivo invasion and
metastasis [73]

HEG1
Promotes β-catenin expression and maintains its
stability, leading to its accumulation and nuclear

translocation

Promotes EMT and in vitro and in vivo invasion
and metastasis [74]

NDRG3 Promotes nuclear translocation of β-catenin Enhances metastasis and angiogenesis in vitro
and in vivo [75]

MSI1

Activates Wnt/β-catenin signaling pathway
(downregulation reduces the expression of

phospho-β-catenin and CCND1 and elevates the
protein expression of DKK1 and APC)

Affects in vitro cancer cell viability, migration,
and invasiveness [76]

p62/IMP2 Activates Wnt/β-catenin pathway Promotes in vitro EMT and migration [77]

RICH2
Overexpression positively correlates with the
expression of WNT5a and inversely correlates

with β-catenin

Inhibits formation of filopodia and invasion and
proliferation in vitro [78]
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Table 1. Cont.

Protein Mechanism Effect Ref.

AQP9 Overexpression reduces the levels of DVL2,
GSK-3β, CCND1, and β-catenin

Overexpression suppresses in vitro migration,
invasion, and EMT [79]

ARHGEF11 Induces β-catenin nuclear translocation and
upregulates ZEB1 Promotes EMT and migration in vitro [80]

GAL3 Activates the PI3K-Akt-GSK-3β-β-catenin
signaling cascade

Regulates in vitro angiogenesis and EMT and
favors tumor lung metastasis in vivo [81]

KIF2C
Direct target of the Wnt/β-catenin pathway that
mediates the crosstalk between Wnt/β-catenin

and mTORC1 signaling

Promotes migration, invasion, and metastasis
both in vitro and in vivo [82]

KIF18B The knockdown downregulates the expression of
c-Myc, CCND1, β-catenin, and p-GSK-3β

Knockdown might suppressproliferation,
migration, and invasion in vitro [83]

MTDH

Its overexpression induces PRMT5 translocation
from the nucleus to the cytoplasm and

translocation of β-catenin from the cytoplasm to
the nucleus which upregulates WNT/β-catenin

signaling pathway

PRMT5 and β-catenin play a pivotal role in
MTDH-mediated HCC in vivo metastasis [84]

NRF1 Enhances ubiquitination of β-catenin for targeting
proteasomal degradation

Promotes invasion and metastasis to the lung
and liver in in vivo models [85]

FXR
Decreases expression of β-catenin target genes and
reduces nuclear translocation of β-catenin proteins

in vitro and in vivo

Suppresses migration and invasion in vitro and
inhibits local invasion and lung metastasis

in vivo
[86]

USP1 Its knockout impairs expression of Wnt target
genes

Frequently upregulated in liver circulating
tumor cells and expression correlates with

metastasis
[87]

ATE1 Accelerates degradation of β-catenin and inhibits
Wnt signaling by regulating turnover of RGS5

Knockdown promotes cancer growth, migration,
and disease progression in vitro and in vivo [88]

PGC1α Inhibits Warburg effect by PPARγ–dependent
WNT/β-catenin/PDK1 axis Suppresses in vitro and in vivo metastasis [89]

RAD54B
Increases nuclear β-catenin and up-regulates

Wnt/β-catenin downstream target genes (c-Myc,
CCND1, MMP7, CD44, VEGF, c-Jun)

Increases in vitro cell viability and motility, and
in vivo intrahepatic metastasis [90]

ZEB1
Could activate the Wnt/β-catenin signaling

pathway by upregulating the protein expression
levels of β-catenin, c-Myc, and CCND1

Promotes in vitro cell proliferation and
migration and inhibits apoptosis [91]

Abbreviations: HGF, hepatocyte growth factor; CTHRC1, collagen triple helix repeat containing 1; CAV1, caveolin 1; CLDN3, claudin 3;
AEG-1, astrocyte elevated gene-1; GAL1, galectin-1; TRIM37, tripartite motif containing 37; HKDC1, hexokinase domain containing 1;
FRAT1, frequently rearranged in advanced T-cell lymphomas 1; NTR1, neurotensin receptor 1; CTNND1, catenin delta 1; PRC1, protein
regulator of cytokinesis 1; CX32, connexin 32; FERMT2, FERM domain containing kindlin 2; OCT4, octamer-binding transcription factor
4; DDX39, DExD-box helicase 39A; PCL3, polycomb-like protein 3; ITGB5, integrin beta 5; JUB, LIM domain-containing protein ajuba;
LRP16, LDL receptor related protein 16; ZIC5, zic family member 5; SOX9, SRY-box transcription factor 9; AKIP1, A-kinase interacting
protein 1; FBXO17, F-box protein 17; FOXG1, forkhead box G1; GATA5, GATA binding protein 5; GRP78, endoplasmic reticulum chaperone
BiP; HEG1, heart development protein with EGF like domains 1; NDRG3, NDRG (n-myc downstream-regulated gene) family member 3;
MSI1, musashi RNA binding protein 1; p62/IMP2, insulin-like growth factor 2 mRNA binding protein 2; RICH2, ARHGAP44 Rho GTPase
activating protein 44; AQP9, aquaporin 9; ARHGEF11, Rho guanine nucleotide exchange factor 11; GAL3, galectin-3; KIF2C, kinesin family
member 2C; KIF18B, kinesin family member 18B; MTDH, metadherin; NRF1, NF-E2-related factor 1; FXR, farnesoid X receptor; USP1,
ubiquitin specific protease 1; ATE1, arginyltransferase 1; PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha;
RAD54B, RAD54 (DNA repair and recombination protein) homolog B; ZEB1, zinc finger E-box binding homeobox 1.

3.3. Wnt Signaling Pathway in Liver Cancer Stem Cell and Mesenchymal Stem Cell Biology

Besides its roles in the above-mentioned processes that endow cancer cells with in-
creased metastatic abilities, the Wnt signaling pathway is also active and contributes to
the biology of other cells that are implicated in the metastatic outgrowth. For example,
metastatic cancer spread is potentiated by cancer stem cells (CSC) which possess quali-
ties that are characteristic of embryonic or adult stem cells. Those include self-renewal,
differentiation, dormancy, and cellular plasticity which enables their adaptation to new
environments. These abilities are needed for the successful establishment of metastasis [92].
The roles of Wnt signaling in CSCs biology is well described and has been a subject of
several reviews [93,94]. In HCC, it was shown that deacetylation of β-catenin by SIRT1
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increases its protein stability and regulates self-renewal and oncogenesis of liver CSCs
through promoting the transcription of Nanog [95]. Additionally, a small molecule inhibitor
that inhibits Wnt/β-catenin signaling targets and depletes CD133+/ALDH+ liver CSCs,
which decreases their tumorigenicity in vitro and in vivo [96]. Sox9 is a member of the Sox
proteins that are involved in human development by regulating lineage restriction, cell dif-
ferentiation, and stem cell properties. It was shown that Sox9 confers stemness properties
in HCC and suppresses HCC cell migration, invasion, and in vivo lung metastasis through
Frizzled-7 mediated Wnt/β-catenin signaling [97]. In the mentioned publication, Frizzled-
7 was identified to be the direct transcriptional target of Sox9. A further paper confirmed
the role of the above-mentioned signaling axis that includes Sox9 and Wnt/β-catenin in
the self-renewal of liver CSCs [98]. Additionally, several miRNAs and lncRNAs have been
shown to influence liver CSCs through the Wnt pathway [99]. These include miR-612 [100],
miR-452 [101], miR-5188 [102], lncAPC [103], lncSAMMSON [104], and lncFZD6 [105].

Mesenchymal stem cells (MSCs) are multipotent adult stem cells that are present
in multiple tissues. MSCs promote hepatocarcinogenesis and metastasis formation via
signaling that includes activated Wnt/β-catenin pathway and EMT [106]. Further to this,
irradiated mesenchymal stem cells have been shown to increase the ratio of CD133+ HCC
cells and support stemness maintenance of HCC stem cells through the Wnt/β-catenin
signaling pathway. This was reflected when liver CSCs were co-cultured with irradiated
MSCs, which resulted in increased colony and tumor formation abilities via increased
activity of the Wnt/β-catenin signaling pathway [107]. In another study, it was also shown
that overexpression of hepatocyte nuclear factor 4 alpha (HNF4a) in human MSCs inhibits
HCC progression by reducing hepatoma cell growth, migration, and invasion through
downregulation of the Wnt/β-catenin signaling pathway [108].

3.4. Wnt Signaling Pathway Affects the Communication between Different Components of the
Liver Cancer Microenvironment That Promote Metastasis

The activation of Wnt signaling in other components of a liver cancer microenviron-
ment that promote metastasis has been documented. These include crosstalk between
hepatic tumor cells and macrophages, which takes place via Wnt/β-catenin signaling. This
communication promotes M2-like macrophage polarization and tumor growth, migration,
metastasis, and immunosuppression in HCC [109]. To confirm the role of Wnt signaling in
this process, it was shown that lncRNA LINC00662 promotes M2 macrophage polarization
and HCC progression via Wnt/β-catenin signaling pathway [110]. Another component of
a liver cancer microenvironment, hepatic stellate cells, have been shown to promote EMT,
proliferation, invasiveness, and metastatic abilities of HCC in vitro and in vivo through
microRNA-1246-RORα-Wnt/β-catenin axis [111].

Angiogenesis is another important prerequisite for cancer cells to grow and metas-
tasize. Wnt signaling is involved in vasculature formation [112] and in endothelial cell
proliferation and migration [113]. Recently, angiocrine Tie-Wnt signaling axis in the liver
controlling hepatocyte function during liver regeneration was described [114]. Moreover,
angiocrine Wnt signaling controls liver growth and development of metabolic liver zona-
tion in mice [115]. In HCC, miR-1301 was shown to inhibit angiogenesis, cell migration,
and invasion in vitro and in vivo by decreasing Wnt/β-catenin signaling through down-
regulation of BCL9, β-catenin, and VEGF expression in tumor cells. [116]. These papers
add to the evidence that show that Wnt signaling affects many of the processes required
for metastatic expansion, including vasculature formation.

3.5. Wnt Signaling Pathway Is Activated in Residual HCC Cells after Incomplete
Radiofrequency Ablation

Some therapeutic approaches in HCC, like incomplete radiofrequency ablation (RFA),
leave residual cancer cells behind. It was shown that incomplete RFA enhances invasive-
ness and metastasis of residual HCC cells by stimulating EMT-like phenotype changes
through activation of the β-catenin signaling in HCCLM3 cells [117]. Another study has
shown that insufficient radiofrequency ablation promotes the metastasis of residual hepato-
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cellular carcinoma cells via upregulating flotillin proteins which altered the EMT status and
metastatic potential of heat-treated HCCLM3 cells by activating the Akt/Wnt/β-catenin
signaling pathway [118].

Taken together, the data presented in Section 3 confirm that the expression of the
components of the Wnt pathway is de-regulated during HCC metastatic progression.
Further, the Wnt pathway has been shown to strongly influence HCC EMT, motility,
migration, invasion, and metastasis. It has a key role in CSCs, too, as well as in the biology
of other components of the HCC microenvironment that potentiate the metastatic spread.
Finally, after the treatment of HCC, the residual cancer cells, which are usually more
aggressive and have higher metastatic abilities, show the activation of the Wnt pathway.
Since the treatment options in advanced liver cancer are limited, the data presented here
point to the possibility that targeting Wnt signaling pathways in liver cancers could alleviate
metastasis related complications.

4. Wnt Signaling Pathway Drives Secondary Liver Cancers

Secondary liver cancers denote metastasis in the liver that originate from primary
cancers from tissues other than the liver. Common primary cancers that metastasize to the
liver include colorectal, lung, melanoma, breast, pancreatic, gastric, and prostate cancer.

4.1. Colorectal Cancer Liver Metastasis

Like mentioned above, colorectal cancer liver metastases represent a large cancer-
related burden and are, therefore, the most studied. In the colon, the Wnt signaling pathway
is an essential mediator of tissue homeostasis and repair and is frequently de-regulated
during cancer development. Almost all CRCs show hyperactivation of the WNT pathway,
which is believed to be the initiating and driving event [119]. The most common mutation
in CRC is inactivation of APC and in carriers of an APC inactivating mutations, the risk of
CRC by the age of 40 is almost 100% [120]. For these reasons, the Wnt signaling pathway is
an important target in anti-CRC treatment [121,122].

4.1.1. Aberrant Expression of Wnt Signaling Pathway Components Correlates with the
Ability of CRC to Metastasize to the Liver

In the CRC metastasis to the liver, the expression of the Wnt signaling pathway com-
ponents is highly de-regulated. Early on, it was noted that Wnt2 mRNA is frequently up
regulated in colorectal polyps, primary CRC, and also in liver metastasis from CRC [123].
High Wnt6 expression in CRC tissue indicates unfavorable survival outcome for patients
with CRC liver metastasis after liver resection suggesting that detection of Wnt6 expres-
sion may be valuable marker for guiding postoperative treatment [124]. On the other
hand, nuclear β-catenin expression at the invasive front and in the vasculature predicts
liver metastasis in CRC [125] and its overexpression in metastatic sentinel lymph node is
strongly associated with synchronous liver metastasis and may contribute to predict liver
metastasis [126]. Further, deregulated expression of nuclear β-catenin was associated with
the development of liver metastasis, but not of CNS metastasis [127]. Co-expression of
CD166/β-catenin, CD44/β-catenin, and CD44/CD166/β-catenin were significant factors
associated with liver metastasis, suggesting that specific combinations of CSC markers
and β-catenin and additional analyzed proteins could be a significant predictor of poor
survival in stage II CRC [128]. Finally, a recent study analyzing liver metastasis from
different origins found that β-catenin overexpression was frequent in metastasis from
CRC patients (27 out of 30 samples), but also breast (3/5), lungs (1/2), and some other
sites [129]. Another study analyzed the expression of β-catenin, APC, and Wnt1 in the
primary tumor and corresponding metastasis of patients with CRC. In accordance with the
above-mentioned results, the authors found a higher expression of nuclear β-catenin at the
tumor invasion front, in the primary tumor, and the corresponding hepatic and lymphatic
metastases. By contrast, APC expression was significantly lower in all analyzed tumor
compartments compared with normal colonic mucosa. The same study found that Wnt1
protein expression was significantly lower in liver metastases but not in the primary tumor
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or lymphatic metastases compared with normal colonic mucosa [130]. An additional study
adding to the hypothesis that the suppression of Wnt signaling pathway is a favorable
event in CRC patients with metastasis, showed that high preoperative levels of circulating
sFRP-5 predict better prognosis in those patients, and its levels are significantly lower in
patients with either vascular invasion or liver metastasis [131].

4.1.2. Mechanisms of Action of the Wnt Signaling Pathway in CRC Metastasis Process

Mechanistically, Frizzled-7 expression has been suggested to promote survival, inva-
sion, and metastatic characteristics of CRC cells through non-canonical and the canonical
Wnt signaling pathways [132]. Among the downstream Wnt pathway events that lead to
metastasis, new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, were iden-
tified and shown to induce EMT, cell migration, and experimental metastasis of CRC
cells [133]. Further, it was shown that the SOX17/miR-371-5p/SOX2 axis suppresses
EMT at least in part by inhibiting Wnt/β-catenin signaling which leads to the inhibi-
tion of CRC metastasis [134]. Like with HCC metastasis, for CRC liver metastasis, nu-
merous studies have shown that single protein or miRNA manipulation leads to the
regulation of the Wnt pathway and in this way influences the CRC liver metastasis for-
mation. These include cyclin dependent kinase 8 (CDK8) [135,136], HNF4a [137], sciellin
(SCEL) [138], R-spondin 2 (RSPO2) [139], DNA methyltransferase 1 (DNMT) [140], the E2A
gene (encodes two basic helix-loop-helix transcription factors, E12 and E47) [141], paired
related homeobox 2 (PRRX2) [142], neuronal pentraxin 2 (NPTX2) [143], forkhead box P3
(FOXP3) [144], mitochondrial pyruvate carrier 1 (MPC1) [145], thyroid hormone receptor
interactor 13 (TRIP13) [146], NUMB endocytic adaptor protein (NUMB) [147], ATM inter-
actor (ATMIN) [148], FOS like 1, AP-1 transcription factor subunit (FOSL1) [149], arrestin
beta 1 (ARRB1) [150], far upstream element binding protein 1 (FUBP1) [151], CK1δ/ε-AES
axis [152], etc.

Combined mutations of APC, KRAS, and TGFBR2 were shown to govern metastasis
of intestinal cancer illustrating how key driver mutations in CRC cooperatively influence
the development of a metastatic disease [153]. Adding to this data, it was shown by
whole exome sequencing of CRC liver metastasis that the top three genes with the highest
mutation frequency were TP53, APC, and KRAS [154]. This suggests that APC mutations
are not only important during CRC development but are also playing an essential role in
its metastasis formation.

Colon cancer metastases are often associated with activation of the Wnt/β-catenin
signaling pathway and high expression of the metastasis mediator S100A4. Studies have
shown that inhibiting Wnt/β-catenin signaling suppresses S100A4-dependent CRC liver
metastasis, and, therefore, has a therapeutic potential [155,156]. Another protein frequently
involved in positive regulation of CRC metastasis formation is the neural cell adhesion
molecule L1 [157]. Gene coding for L1 is a target gene of β-catenin/TCF in CRC cells. L1
localizes preferentially to the invasive front of tumors and its forced expression confers
increased cell motility, invasion, and tumorigenesis, and the induction of human CRC cell
metastasis to the liver but does not require changes in EMT and CSCs markers [158]. This
type of CRC cell metastasis formation is gaining attention recently and it is a subject of
several studies that are trying to widen the knowledge on this process [157].

Regarding CRC CSCs, it was shown that those CSCs that express CD110, the throm-
bopoietin (TPO)-binding receptor, mediate liver metastasis. Further, TPO promotes metas-
tasis of CD110+ CSCs to the liver by activating lysine degradation which generates acetyl-
CoA that is subsequently used in p300-dependent LRP6 acetylation. This triggers tyrosine
phosphorylation of LRP6, which activates Wnt signaling to promote self-renewal of CD110+
CSCs [159]. The importance of the Wnt pathway in CRC CSCs biology was also shown by
the study that documented the significance of leucine-rich repeat-containing G-protein-
coupled receptor 5 (Lgr5) in cancer stem cells in the colon and rectum [160]. Lgr5 is a
Wnt target gene and is widely used as a marker of organ stem cells with self-renewal
capacity [161].
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4.1.3. Wnt Signaling Pathway Affects the Communication between Different Components
of the CRC Microenvironment That Promote Metastasis

Metastasis formation is a process involving a multitude of different cells that act
in concert in the primary tumor microenvironment, but also at the secondary site. In a
microenvironment of a CRC primary tumor, it was shown that cancer-associated fibroblasts
(CAFs) play an important role in metastasis formation. For example, CAF secreted exo-
somes promote metastasis and chemotherapy resistance by enhancing cell stemness and
EMT. Mechanistically, CAFs promote the transferring of exosomes to CRC cells, leading to
an increase of miR-92a-3p level in CRC cells, which activates the Wnt/β-catenin pathway
and inhibits mitochondrial apoptosis contributing to cell stemness, EMT, metastasis, and
5-FU/L-OHP resistance [162]. In a study where conditioned medium (CM) from normal
colonic fibroblasts, CAFs from primary tumor (CAF-PT) or liver metastasis (CAF-LM) were
used the influence of each CM on CRC cell lines was tested. In this way, it was shown that
the liver microenvironment induces more efficiently the aggressiveness of CRC cells but
secondarily evokes cell death. The transcriptomic profile of CRC cells treated with CAF-
LM CM was associated with Wnt and MAPK pathways activation in gene set enrichment
analysis [163]. Another study showed that intervention with BCL9 activity and expression
modulates the cellular landscape of CAFs in the tumor-immune microenvironment of CRC.
Moreover, CAFs affect cancer-associated immune surveillance by inhibition of the Wnt
signaling pathway [164]. CAF-derived Wnt2 increases tumor angiogenesis in colon cancer
both in vitro and in vivo [165]. In regard to angiogenesis, it was shown that lncRNA GAS5
inhibits angiogenesis, invasion, and metastasis of CRC through the Wnt/β-catenin signal-
ing pathway [166]. Additionally, Wnt/β-catenin signaling was shown to influence many of
the processes involved in vasculature formation in CRC, like sprouting and nonsprouting
angiogenesis, vasculogenic mimicry, and the formation of mosaic vessels [167].

In the light of involvement of other cells in the metastasis process, single-cell transcrip-
tome analysis revealed granulocytes enrichment and tumor-immune microenvironment
heterogenicity in CRC liver metastases. In this context, the Wnt signaling pathway was
found to be activated and promote granulocytes migration [168].

4.2. Breast Cancer Liver Metastasis

Like mentioned above, several cancers other than CRC frequently metastasize to
the liver. Studies have shown the importance of the Wnt signaling in those processes.
For example, it was shown that AF1q is a novel TCF7 co-factor that specifically binds
to TCF7 in the Wnt signaling pathway and results in transcriptional activation of CD44
as well as transcription of multiple downstream targets of the TCF7/LEF1. In this way,
AF1q promotes breast cancer metastasis including those to the liver [169]. Ablation of
Frizzled-6 expression in mammary cancer cell lines inhibited motility and invasion, induced
a more symmetrical shape of organoid three-dimensional cultures, and inhibited bone
and liver metastasis. Further to this, multivariate analysis suggested an independent
prognostic significance of Frizzled-6 expression in triple-negative breast cancer (TNBC),
predicting distant relapse [170]. Another study has shown that β-catenin-independent
Wnt signaling and Ki67 are associated with poor prognosis in patients with breast cancer
liver metastases [171]. Moreover, simultaneous metastases in liver, ovaries, and bone
from chemo-resistant TNBC are prevented by interfering with the Wnt signaling pathway,
suggesting that inhibition of the Wnt pathway treats multi-organ metastases of TNBC [172].

4.3. Gastric Cancer Liver Metastasis

In gastric cancer, it was shown that β-catenin expression is lost in a subgroup of
primary gastric cancers. It is also frequently absent in metastases, and exhibits nuclear
localization in cancers with either β-catenin or APC gene mutations [173]. In contrast with
this, the paper showed that Twist promotes gastric cancer cell migration, invasion, and
metastasis. The same paper suggests that Twist may play an important role in Wnt/TCF4
signaling because overexpression of Twist in MKN28 cells increased TCF4/LEF DNA
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binding activity, and promoted expression of TCF4′s downstream target genes, CCND1
and MMP-2 [174]. Supporting the positive role of Wnt signaling in gastric cell metastasis,
a study has shown that blocking Wnt5a by antibody suppresses in vitro migration and
invasion and in vivo metastasis formation of gastric cancer cells by inhibiting its receptor-
mediated endocytosis [175]. In addition, RYK, a receptor of noncanonical Wnt ligand
Wnt5a, is positively correlated with gastric cancer tumorigenesis and, specifically, the
potential of liver metastasis [176]. Further to this, Dvl-associating protein with a high
frequency of leucine residues (Daple) was shown to mediate Wnt5a-induced Rac and
JNK activation, laminin c2 expression, and cell migration and invasion. According to
these in vitro-obtained results, Daple depletion suppressed liver metastasis in a mouse
xenograft model of gastric cancer, suggesting that the non-canonical Wnt signaling pathway
contributes to gastric cancer progression at least partly via Daple [177].

4.4. Lung Cancer Liver Metastasis

In lung cancer, it was shown that Glypican-5 suppresses EMT of the lung adenocarci-
noma by competitively binding to Wnt3a and inactivating the Wnt/β-catenin signaling
pathway [178]. Besides Wnt3a, Wnt5a was also found to enhance EMT, invasion, migration,
and metastasis in vitro and in vivo in non-small-cell lung cancer [179]. Further, Destrin
(DSTN), a member of ADF/cofilin family of proteins, was shown to contribute to lung
adenocarcinoma progression, including liver metastasis. Mechanistically, DSTN facilitates
nuclear translocation of β-catenin, which promotes EMT [180].

4.5. Melanoma Liver Metastasis

The studies on the role of Wnt signaling in melanoma progression are scarce. However,
recent study has shown that Wnt signaling enhances neural crest migration of melanoma
cells and induces an invasive phenotype, emphasizing the essential role of embryonic
EMT-inducing neural crest signaling for the spreading of malignant melanoma [181].

4.6. Pancreatic Cancer Liver Metastasis

As shown in Figure 1, pancreatic cancer often progresses to form liver metastasis.
An early study has shown that aberrant expression of β-catenin and E-cadherin corre-
lated strongly with lymph node spread and liver metastases in pancreatic endocrine
tumors [182]. In further studies, it has been shown that BCL9L plays an important role in
TGF-β-induced EMT and metastasis of pancreatic cancer through its effects on E-cadherin
and β-catenin [183]. Several other studies investigated the roles of molecules that con-
verge to Wnt signaling pathway and influence pancreatic cell metastasis. These include
semaphorin 5a (SEMA5A) [184], lncRNA DLX6-AS1 [185], activator of transcription and de-
velopmental regulator (AUTS2) [186], cadherin 13 (CDH13) [187], and lncRNA 00261 [188].

4.7. Prostate Cancer Liver Metastasis

Prostate cancer is another cancer type with frequent liver metastasis. The results from
my recent work [189], which is a meta-analysis of the gene expression data, show that
many of the genes whose expression changes specifically in liver metastasis in comparison
to primary prostate cancer belong to the enriched term of the Wnt signaling. Those include
genes coding for sFRP-1, Frizzled related protein (FRZB), Frizzled-6, Frizzled-7, ROR1,
LRP1, LRP6, GSK3B, TCF7, BCL9, CCND2, CAMK2G, Dishevelled associated activator
of morphogenesis 2 (DAAM2), and Ras homolog family member A (RHOA). Although
some of the antagonists of Wnt pathway are significantly down-regulated, also, some
of the positive regulators of the pathway are slightly down-regulated, so it would be
hard to conclude on the status of the Wnt signaling pathway in these samples. However,
considering the number of the components with changed expression, Wnt pathway de-
regulation in prostate cancer liver metastasis is recognized and could serve as an initial
point for further studies. For example, a study has shown that DKK1 expression increases
early in prostate cancer development and decreases during progression from primary tumor
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to metastasis, which would indicate the activation of the Wnt pathway [190]. Additionally,
a recent study presented a new model of multi-visceral and bone metastatic prostate
cancer with activation of Notch and Wnt pathways [191] adding to the complexity of Wnt
signaling in contribution to a metastatic process in prostate cancer.

In conclusion, the data presented in Section 4 point to the de-regulated Wnt signaling
pathway in liver metastasis from different primary tumors. They also confirm involvement
of the Wnt pathway in the many of the steps that are required for the metastatic outgrowth
and that are schematically outlined in Figure 1.

5. Conclusions

Liver metastasis, originating either from primary liver or other cancer types, represents
a large cancer-related complication. Wnt signaling pathway is considered in the treatment
of HCC and primary cancers, like CRC, that often metastasize to the liver [15,16,121,122].
Herein, the data that show critical involvement of Wnt pathway in many of the steps
that are required for liver metastasis in different scenarios are presented. Therefore, the
information outlined in these chapters contributes to the idea that Wnt pathway is among
the drivers of liver metastasis and that its targeting could potentially relieve the liver
metastasis-related burdens. To that end, selective inhibitors of Wnt pathway could be used
alone or in combination to treat patients with advanced liver metastasis. Future studies that
will describe their efficacy and toxicity are needed. This is especially important, because the
vast majority of cancer-related deaths are caused by metastasis formation and the current
anti-cancer therapies mainly target primary cancers. Therefore, therapies that effectively
target metastasis should significantly contribute to the success of anti-cancer treatments.
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