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Abstract

In probabilistic risk assessment (PRA), the fracture limit of fuel cladding tubes under
loss-of-coolant accident conditions plays a critical role in determining the core damage,
highlighting the need for accurate modeling of cladding tube fracture behavior. However,
for high-burnup cladding tubes, it is often infeasible to conduct extensive experiments due
to limited material availability, high costs, and technical constraints. These limitations make
it difficult to acquire sufficient data, leading to substantial epistemic uncertainty in fracture
modeling. To enhance the realism of PRA results under such constraints, it is essential to de-
velop methods that can effectively reduce epistemic uncertainty using limited experimental
data. In this study, we propose a Bayesian approach for designing experimental conditions
based on a widely applicable information criterion (WAIC) in order to effectively reduce the
uncertainty in the prediction of fuel cladding tube fracture with limited data. We conduct
numerical experiments to evaluate the effectiveness of the proposed method in comparison
with conventional approaches based on empirical loss and functional variance. Two cases
are considered: one where the true and predictive models share the same mathematical
structure (Case 1) and one where they differ (Case 2). In Case 1, the empirical loss-based
design performs best when the number of added data points is fewer than approximately
10. In Case 2, the WAIC-based design consistently achieves the lowest Bayes generalization
loss, demonstrating superior robustness in situations where the true model is unknown.
These results indicate that the proposed method enables more informative experimental
designs on average and contributes to the effective reduction in epistemic uncertainty in
practical applications.

Keywords: loss-of-coolant accident; fuel cladding tube; fracture limit; information criteria;
Bayesian update

1. Introduction
In the field of probabilistic risk assessment (PRA), reducing epistemic uncertainty

has been a central challenge, particularly in the evaluation of rare or high-consequence
safety-related events [1–3]. Epistemic uncertainty arises from incomplete knowledge about
the system or environment under analysis and is typically classified into three categories:
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• Parameter uncertainty, which originates from insufficient or imprecise knowledge
about the true values of model parameters. This may result from limited, noisy, or
biased data, as well as from an incomplete understanding of the physical processes
that the parameters represent.

• Model uncertainty, which reflects the possibility that the mathematical structure of
the model does not fully capture the true behavior of the physical system, due to
simplifying assumptions or incomplete theoretical understanding.

• Incompleteness uncertainty, which refers to the absence of relevant variables, mecha-
nisms, or interactions in the model—either because they are known but excluded (known
unknowns) or because they have not yet been recognized (unknown unknowns).

This is distinct from aleatory uncertainty, which stems from inherent variability in
natural processes—such as the randomness of material failure or the stochastic timing of
events—and is considered irreducible by further information. While aleatory uncertainty
is irreducible, epistemic uncertainty can, in principle, be reduced through additional data
collection, improved modeling, and expanded knowledge and insight. In nuclear safety
research, epistemic uncertainty plays a particularly important role in assessing fuel cladding
behavior during a loss-of-coolant accident (LOCA), where the fracture limit is a critical
threshold influencing accident progression and overall risk.

In particular, the fracture limit of fuel cladding tubes under LOCA conditions serves
as a critical threshold for judging the core damage in many PRA models [4–6]. This limit
is determined by whether the stresses generated during LOCA—such as thermal stress
from rapid cooling during reflood and tensile stress from structural constraint—exceed the
mechanical strength of the cladding. However, both the stress evaluation and strength
estimation involve considerable uncertainty. The stresses are difficult to predict precisely
due to the complex thermal–mechanical environment, and the strength is affected by mul-
tiple phenomena, including oxidation, hydrogen embrittlement, and wall thinning due
to ballooning. These factors lead to epistemic uncertainty in the fracture limit. There-
fore, reducing this uncertainty is essential for enhancing the realism and credibility of
PRA results.

However, conducting extensive LOCA-simulated experiments, especially for high-
burnup cladding tubes, is often infeasible due to limited material availability and high
associated costs [7,8]. These constraints make it difficult to build statistically rich datasets for
precise fracture modeling and fracture limit estimation. Therefore, it is essential to employ
experimental design methodologies [9–14] that can maximize the information gained from
each individual experiment, thereby reducing epistemic uncertainty in fracture modeling
under data-scarce conditions.

One promising approach is the use of Bayesian optimal experimental design [9,10],
which incorporates uncertainty in both model parameters and predictions and is especially
well-suited for data-constrained safety assessment problems. Among its many applica-
tions across disciplines, a notable early example in the nuclear domain is a study by
Yamaguchi et al. [15], which applied entropy-based Bayesian experimental design to seis-
mic PRA by optimizing test conditions for component fragility modeling. This pioneering
study demonstrated the practical value of Bayesian design in reducing uncertainty for rare,
safety-critical events in nuclear engineering. Their method aimed to minimize information
entropy (empirical loss) in Bayesian models, thereby reducing the Kullback–Leibler (KL)
divergence between the true and predictive distributions [16].

Building upon this foundation, our previous work extended the concept by propos-
ing a design criterion based on functional variance, which quantifies the variability in
model output due to parameter uncertainty [17]. While both entropy-based and functional
variance-based approaches offer useful heuristics for guiding experimental design, they
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do not provide a principled mechanism for minimizing the KL divergence between the
true and predictive distributions. Since KL divergence directly quantifies the discrepancy
between what the model predicts and what is true, minimizing it is fundamental to re-
ducing epistemic uncertainty. Without explicitly targeting KL divergence, these heuristic
approaches may lead to suboptimal experimental conditions—particularly under limited
data or model misspecification—where alignment between the predictive model and the
underlying system becomes critical for reliable inference.

To address this limitation, we propose a Bayesian experimental design method based
on the widely applicable information criterion (WAIC) [18], which asymptotically approxi-
mates the KL divergence between the true model and the posterior predictive distribution,
even in complex or singular models. Unlike entropy-based or functional variance-based
criteria, WAIC provides an asymptotically unbiased estimator of the predictive accuracy,
even in cases of model misspecification or limited sample size. To the best of our knowl-
edge, this is the first study to apply WAIC as a basis for experimental design in the context
of probabilistic fracture modeling for nuclear fuel cladding under LOCA conditions. This
study applies the WAIC-based design method to a fracture probability estimation model
for fuel cladding tubes under LOCA conditions [19]. Numerical experiments are conducted
to demonstrate the effectiveness of the proposed method in reducing epistemic uncertainty
with limited data, thereby contributing to more realistic PRA outcomes and improved
safety decision-making.

The novelty of this study lies in three aspects: (1) the application of WAIC, a mod-
ern Bayesian information criterion, to experimental design problems in nuclear safety;
(2) the demonstration of its effectiveness in reducing epistemic uncertainty for fracture
prediction under LOCA conditions; and (3) the comparison with conventional approaches
(e.g., entropy-based and functional variance-based designs), highlighting its superior ro-
bustness under data-scarce scenarios. These contributions aim to improve the reliability of
PRA by enhancing the realism of input parameter estimation.

Although the present study focuses on experiment design under data-scarce con-
ditions, it is complementary to efforts aimed at improving the fidelity of LOCA simula-
tions and experiments through model enhancements and data assimilation frameworks
(e.g., refs. [20–22]).

This article is a revised and expanded version of a paper entitled Hamaguchi et al. [23].

2. Reduction in Epistemic Uncertainty
WAIC has been developed as a measure of the prediction accuracy of Bayesian mod-

els [18]. The WAIC calculated for each experimental condition represents the prediction
accuracy of the model for each condition, and this information can be used to determine
the value of a new experiment. In this study, we propose a method to reduce the parameter
uncertainty of the model, which is one of the epistemic uncertainties, by preferentially
conducting experiments under experimental conditions where WAIC is large (where the
model’s prediction accuracy is low) and using the obtained data for Bayesian update of
the model.

WAIC is defined as follows:

WAIC = T +
V
n

(1)

V =
n

∑
i=1

Eω [(log p(yi|ω))2]−Eω [(log p(yi|ω))]2 (2)

T = − 1
n

n

∑
i=1

log p∗(yi) (3)
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p ∗ (yi) = Eω [p(yi|ω)] (4)

where T is the empirical loss, V is the functional variance, yi is a random variable, ω is
the vector of parameters, p(yi|ω) is a Bayesian model, Eω [] is the expectation value over
the posterior distribution of ω, p ∗ (yi) is the posterior predictive distribution, and n is the
number of samples.

As shown in Equation (5), the average of WAIC asymptotically approaches the av-
erage of the Bayes generalization loss G [18], which represents the prediction accuracy
of the model. Therefore, WAIC can be used as a measure of the prediction accuracy of
Bayesian models.

E[G] = E[WAIC] + O(
1
n2 ) (5)

S = −
∫

q(y) log q(y) (6)

KL =
∫

q(y) log
q(y)
p∗(y)

dy (7)

G = S + KL = −
∫

q(y) log p ∗ (y)dy (8)

where q(y) is the true model, E[] is the expected value, S is the entropy, and KL is the KL
divergence between q(y) and p ∗ (y).

In this study, we propose a method to reduce parameter uncertainty of the model by
preferentially conducting experiments under experimental conditions where the WAIC is
large (where the prediction accuracy of the model is low). The proposed method consists
of the following three steps, as shown in Figure 1.

Figure 1. Flow of reduction in epistemic uncertainty.
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[Step1] Bayesian update 1

The first Bayesian update is performed using the experimental data and prior distribu-
tion to obtain the posterior distribution.

[Step2] Design of data sampling points

WAIC at each point on the design space of the data sampling points is calculated
from the posterior distribution of parameters, and the experiment is conducted at the data
sampling point with a large WAIC value to obtain new data.

[Step3] Bayesian update 2

Then, the second Bayesian update is performed, including the newly added experi-
mental data, and the posterior distribution of parameters is updated. In this way, a new
posterior distribution with reduced parameter uncertainty is obtained.

3. Numerical Experiments
To evaluate the effectiveness of the proposed epistemic uncertainty reduction method,

numerical experiments were conducted by applying the proposed method to a fracture
probability estimation model [19]. The fracture probability estimation model provides
an estimate of the fracture probability of a non-irradiated Zircaloy-4 cladding tube under
LOCA conditions. This model uses equivalent cladding reacted (ECR), which quantifies the
extent of oxidation and initial hydrogen concentration, representing the hydrogen content
prior to the LOCA transient, as explanatory variables, since these are the dominant factors
influencing cladding embrittlement and fracture under LOCA conditions.

This understanding is based on decades of experimental research identifying oxidation
and hydrogenation as the primary mechanisms of cladding fracture [24–31]. Although the
current numerical experiments focus on non-irradiated cladding, our previous study [31]
has reported that the fracture limit is not significantly reduced even at burnups up to
approximately 85 GWd/t. This suggests that the proposed method is also applicable to
high-burnup cladding tubes and remains relevant for realistic safety evaluations.

In these experiments, a “true” model was assumed to generate binary fracture/non-
fracture data. While such a true model is unobservable in actual applications, constructing
a predictive model that approximates this unknown mechanism is a central challenge in
safety modeling. To examine the performance of the proposed method under different
modeling conditions, we considered two representative cases: Case 1, where the true and
predictive models share the same mathematical structure, and Case 2, where they differ.
These cases were selected to capture both ideal and more realistic situations, including
model misspecification, which is frequently encountered in practice.

Although the experiments focus on these two cases, the proposed Bayesian design
methodology is not limited to them. Rather, it is broadly applicable to other safety-critical
systems where experimental data are limited and epistemic uncertainty is significant. The
present evaluation aims to demonstrate the method’s utility in typical scenarios, thereby
supporting its generalizability.

3.1. Case 1: True and Predictive Models Have the Same Mathematical Structure
3.1.1. Model Definition

The true model is defined as follows, as in the previous study [11]:

Y ∼ Bernoulli(Ptrue(Y = 1|X)) (9)

Ptrue = Φ(10 + 7 log(
X1

100
) + 20 log(1 +

X2

10, 000
)) (10)
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where Y is LOCA-simulated test data binarized to 1 for fracture and 0 for non-fracture,
Bernoulli() is Bernoulli distribution, Ptrue is the fracture probability estimated by the true
model, X1 is an explanatory variable for ECR (%), X2 is an explanatory variable for the
initial hydrogen concentration (wtppm), and Φ is the cumulative distribution function of
the standard normal distribution.

The predictive model is defined as follows:

Y ∼ Bernoulli(P(Y = 1|X)) (11)

P = Φ(ω0 + ω1 log(
X1

100
) + ω2 log(1 +

X2

10, 000
)) (12)

where P is the fracture probability, estimated by the predictive model, and (ω0, ω1, ω2) are
parameters to be estimated.

Marginal prior distributions of these parameters are assumed to follow the following
noninformative prior distribution:

ωk ∼ Normal( 0, 100) (k = 0 , 1 , 2 ) (13)

3.1.2. Calculation Flow

Numerical experiments were conducted in the following steps (a) to (f).

(a) The design space of data sampling points was defined as a two-dimensional space consist-
ing of ECR and initial hydrogen concentration. The design space consists of 403 sampling
points in which ECR ranges from 10% to 40% in 1% increments, and the initial hydrogen
concentration ranges from 0 wtppm to 1200 wtppm in 100 wtppm increments.

(b) Initial data were set as in the previous study [17], as shown in Figure 2.
(c) Bayesian inference was performed to obtain the joint posterior distribution of pa-

rameters using the Markov chain Monte Carlo (MCMC) method with the initial
data generated in step (b) and the prior distributions. The MCMC sampling was
performed using Stan via the rstan package version 2.21.7 [32] for R language ver-
sion 4.1.3 [33]. For the MCMC sampling, 27,000 iterations were run for each of the
four chains (with the first 2000 iterations excluded as a warm-up), resulting in a total
of 100,000 iterations.

(d) WAIC was calculated for each sampling point of the design space using the joint poste-
rior distribution of parameters, and the data sampling points were determined so that
the sampling points having large WAIC would be preferably selected. The number of
data sampling points was gradually increased to 1, 3, 5, 7, 10, 15, and 20. For compari-
son, data sampling points were also designed for conventional methods [15,17] using
functional variance and empirical loss in addition to WAIC.

(e) New data were generated from the true model at the sampling points designed in
step (d), and a Bayesian update of the predictive model was performed using the new
data, the initial data, and the marginal prior distributions. For this Bayesian update,
2700 iterations of MCMC sampling were performed in each of the four chains (with the
first 200 iterations excluded as a warm-up), and a total of 10,000 iterations were run.
To account for the effect of randomness of the new data, the above Bayesian update
was performed 100 times with different random number seeds when generating new
data from the true model.

(f) The Bayes generalization loss, a measure of the model’s prediction accuracy in the
design space, was calculated using the joint posterior distribution of parameters
obtained in step (e) to evaluate the predictive accuracy of the fracture probability
estimation model.
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Figure 2. Initial data generated from the true model.

3.1.3. Results and Discussion

The relationship between the Bayes generalization loss and the number of data points
added is shown in Figure 3. The results of 100 independent experiments with different
random number seeds are shown in this figure as box plots, which follow a standard
statistical convention: the boxes represent the interquartile range (IQR), with the lower
and upper edges corresponding to the first and third quartiles, respectively. The whiskers
extend to the most extreme values within 1.5 times the IQR from the quartiles, and values
outside this range are considered outliers. For comparison, the results of conventional
methods [15,17] using the functional variance and the empirical loss (information entropy)
are also shown in this figure.

Figure 3. Relationship between the number of data added and the Bayes generalization loss. White:
WAIC; red: functional variance; blue: empirical loss.

In this context, the Bayes generalization loss—defined as the expected KL divergence
between the true data-generating process and the predictive distribution—serves as a
proxy for epistemic uncertainty. A lower generalization loss indicates that the predictive
distribution more closely approximates the true data-generating process, suggesting that
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the model better reflects the underlying system and that epistemic uncertainty has been
effectively reduced.

As shown in this figure, the Bayes generalization loss was lowest on average when the
empirical loss was used, which demonstrates an effective reduction in epistemic uncertainty
of fracture when using the empirical loss. Our proposed method showed a minimal
reduction in generalization loss when the amount of additional data was small (fewer than
~10). However, as the number of additional data points increased, it tended to achieve a
generalization loss comparable to that obtained using the empirical loss.

These results can be attributed to the consistent mathematical structure between the
true model and the predictive model. Since the mathematical structures of the true model
and the predictive model are identical, it is clear from their mathematical definitions that
minimizing the empirical loss, which is the expected value of the negative log-likelihood of
the predictive model, will also minimize the Bayesian generalization loss, which is the KL
divergence between the true model and the predictive model.

Moreover, the relationship between the estimated parameters and the number of data
points added is shown in Figure 4. As shown in this figure, the method using empirical
loss is more capable of bringing the parameters closer to the true value than the proposed
method when the amount of additional data is small (less than ~10 data points). However,
as the number of additional data points increased, our proposed method approached the
true value as well as the method using empirical loss. This shows that the proposed method
accurately predicts the true values of the parameters.

 

Figure 4. Relationship between the number of data added and each parameter values. White: WAIC;
red: functional variance; blue: empirical loss.

3.2. Case 2: True and Predictive Models Have Different Mathematical Structures
3.2.1. Model Definition

The true model is defined as in Section 3.1.1.
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In the real world, the true model cannot be known, and thus, the true model and the
predictive model will not match. Therefore, in Case 2, a predictive model is defined as a
model with a mathematical structure different from that of the true model. The following
changes to the true model were applied to the predictive model:

• The standard normal cumulative distribution function Φ was changed to the
logistic function.

• No logarithm was taken for explanatory variables.
• A cross-term was added for the explanatory variables.

Finally, the predictive model is defined as follows:

Y ∼ Bernoulli(P(Y = 1|X)) (14)

P(Y = 1|X) = Logistic(ω0 + ω1
X1
100 + ω2

X2
10,000 + ω3

X1X2
10,000 )

= 1
1+exp(−(ω0+ω1

X1
100+ω2

X2
10,000+ω3

X1X2
10,000 ))

(15)

where (ω0, ω1, ω2, ω3) are assumed to follow the following noninformative prior distribution:

ωk ∼ Normal( 0, 100) (k = 0 , 1 , 2 , 3 ) (16)

3.2.2. Calculation Flow

Numerical experiments were conducted with the same steps (a) to (f) in Section 3.1.2.

3.2.3. Results and Discussion

The relationship between the Bayes generalization loss and the number of data points
added is shown in Figure 5. The results of 100 independent experiments with different
random number seeds are shown in this figure as box plots, using the same definition as in
Figure 3. For comparison, the results of conventional methods [15,17] using the functional
variance and the empirical loss are also shown in this figure.

 
Figure 5. Relationship between the number of data added and the Bayes generalization loss. White:
WAIC; red: functional variance; blue: empirical loss.

As shown in this figure, the Bayes generalization loss was lowest on average when
WAIC was used to design experiments. Therefore, the proposed method is considered to
effectively reduce the epistemic uncertainty of fracture when the number of experimental
data is limited.

There were outliers regardless of the number of data points added for all the cases
using WAIC, the functional variance, and the empirical loss. Upon investigating the
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additional data in the cases where these outliers occurred, the binary data regarding
fracture/non-fracture tended to differ from the binary predictions made by the predictive
model. In other words, due to the probabilistic fluctuations of the samples, rare datasets
that differed from the predictions were generated, resulting in a lack of improvement in
prediction accuracy and a significant deterioration in the Bayes generalization loss.

4. Conclusions
This study aimed to develop a methodology to reduce epistemic uncertainty in fuel

cladding fracture prediction under LOCA conditions, particularly in situations where
experimental data are limited. Since the fracture limit of cladding tubes serves as a crit-
ical threshold in core damage determination in PRA, uncertainty in this parameter can
significantly affect the realism of PRA. To address this, we proposed a Bayesian experi-
mental design approach using an information criterion, WAIC, and conducted numerical
experiments to evaluate its effectiveness.

Numerical experiments were conducted for the following two cases: one where the
true model and the predictive model share the same mathematical structure (Case 1) and
one where they have different mathematical structures (Case 2). In Case 1, when the number
of newly added data points was relatively small (fewer than ~10), minimizing empirical
loss, as proposed in a previous study, most effectively reduced the Bayes generalization
loss, which is a measure of the accuracy of fracture predictions. This result aligns with the
mathematical fact that minimizing empirical loss also minimizes the KL divergence between
the true model and the predictive model. In Case 2, the proposed method using WAIC
most effectively reduced the Bayesian generalization loss. Therefore, the proposed method
enables more informative experimental designs on average and can reduce epistemic
uncertainty in realistic situations where the true model is unknown. This indicates that the
proposed method can predict fuel fracture stably with higher accuracy and less uncertainty,
even when the experimental data are limited.

While the proposed method effectively reduces epistemic uncertainty, the Bayes
generalization loss occasionally shows variability due to aleatory effects from random data
generation. As future work, we will explore improvements such as using non-binary data,
adopting sequential experimental design, and incorporating informative priors to enhance
robustness and computational efficiency.

Author Contributions: Conceptualization, S.H., T.N. and T.T.; methodology, S.H., T.N. and T.T.;
formal analysis, S.H.; data curation, S.H., T.N. and T.T.; writing—original draft preparation, S.H.;
writing—review and editing, T.N. and T.T.; supervision, T.T.; project administration, T.N. and T.T.;
funding acquisition, T.N. and T.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP23K13685.

Data Availability Statement: The datasets presented in this article are not readily available because
the data include proprietary information. Requests to access the datasets should be directed to
takata_t@n.t.u-tokyo.ac.jp.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

Abbreviations
ECR Equivalent cladding reacted
IQR Interquartile range
LOCA Loss-of-coolant accident
MCMC Markov chain Monte Carlo
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PRA Probabilistic risk assessment
WAIC Widely applicable information criterion
wtppm Weight parts per million
Symbols
Bernoulli() Bernoulli distribution
Eω [] The expectation value over the posterior distribution of ω
E[] The expected value
G Bayes generalization loss
KL Kullback–Leibler divergence between q(y) and p ∗ (y)
n The number of samples.
Normal() Normal distribution
p(yi|ω) Bayesian model
Ptrue Fracture probability estimated by the true model q(y)
P Fracture probability estimated by the predictive model
q(y) True model
S Entropy
T Empirical loss
V Functional variance
X1 Explanatory variable for equivalent cladding reacted (ECR, %)
X2 Explanatory variable for the initial hydrogen concentration (wtppm)
Y LOCA-simulated test data binarized to 1 for fracture and 0 for non-fracture
yi Random variable
ω The vector of parameters
(ω0, ω1, ω2) Parameters to be estimated
Φ Cumulative distribution function of the standard normal distribution
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