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Abstract: The timely detection of special nuclear material (SNM) transfers between nuclear facilities
is an important monitoring objective in nuclear nonproliferation. Persistent monitoring enabled by
successful detection and characterization of radiological material movements could greatly enhance
the nuclear nonproliferation mission in a range of applications. Supervised machine learning can be
used to signal detections when material is present if a model is trained on sufficient volumes of labeled
measurements. However, the nuclear monitoring data needed to train robust machine learning
models can be costly to label since radiation spectra may require strict scrutiny for characterization.
Therefore, this work investigates the application of semi-supervised learning to utilize both labeled
and unlabeled data. As a demonstration experiment, radiation measurements from sodium iodide
(NaI) detectors are provided by the Multi-Informatics for Nuclear Operating Scenarios (MINOS)
venture at Oak Ridge National Laboratory (ORNL) as sample data. Anomalous measurements
are identified using a method of statistical hypothesis testing. After background estimation, an
energy-dependent spectroscopic analysis is used to characterize an anomaly based on its radiation
signatures. In the absence of ground-truth information, a labeling heuristic provides data necessary
for training and testing machine learning models. Supervised logistic regression serves as a baseline
to compare three semi-supervised machine learning models: co-training, label propagation, and a
convolutional neural network (CNN). In each case, the semi-supervised models outperform logistic
regression, suggesting that unlabeled data can be valuable when training and demonstrating value in
semi-supervised nonproliferation implementations.

Keywords: nuclear nonproliferation; gamma-ray spectroscopy; radiation monitoring; data analysis;
semi-supervised machine learning

1. Introduction
1.1. Motivation

Through a set of tools and technologies, organizations such as the International Atomic
Energy Agency (IAEA) monitor nuclear activity and ensure that nation states or individ-
uals are abiding by laws, regulations, and international agreements. The Atomic Energy
Act of 1954 (AEA) defines special nuclear material (SNM) as “plutonium, uranium en-
riched in the isotope 233 or in the isotope 235, and any other material which the Commis-
sion. . . determines to be special nuclear material [1]”. The illicit use of SNM and other ra-
dioactive materials therefore necessitates timely detection and characterization—important
steps toward ensuring nuclear nonproliferation.

This can be a difficult objective to achieve without prior knowledge of the event itself.
Confounding variables and complex physical behavior can occlude radiation signatures
associated with SNM transfers or confuse models based on advanced computing techniques
such as machine learning (ML). Many established ML implementations require large
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volumes of data and/or significant computing costs for pattern recognition. Abundant data
and computing resources may not apply in nuclear nonproliferation scenarios where an
increased burden on verification with limited resources [2] necessitates resource efficiency.
The primary motivation of this work is to focus on tools that can be employed to distinguish
SNM transfers from other environmental effects. This involves answering the following:
(1) is a nuclear material transfer occurring, (2a) what kind of material is it, and (2b) how
much material is present? Achieving both objectives without prior knowledge unique
to the transfer event is essential, provided that the implementation alleviates the high
computing and domain costs typical for traditional ML methods.

Without precise contextual information, signatures from a material transfer may be
difficult to resolve with rudimentary detection algorithms or can be prone to misidentifica-
tion. Thus, the cost of labeling training data needed for appropriately generalizable models
can be as prohibitive as manually evaluating measurement samples with a subject-matter
expert (SME). Methods employing semi-supervised machine learning (SSML) attempt to
address this by incorporating unlabeled data to achieve a performant model with the lim-
ited labeled data expected in constrained resource scenarios. As shown herein, accuracies
competitive with supervised methods are observed when the volume of unlabeled data is
much larger than the volume of labeled data, making semi-supervised machine learning
worthwhile when labeled data are costly to produce, rare, or limited in volume. This means
that monitoring institutions can still utilize information gathered even if it has not been
extensively labeled.

1.2. Semi-Supervised Applications to Nuclear Engineering

Most applications of semi-supervised machine learning in nuclear engineering to date
have been for fault diagnosis and transient identification. Ma and Jiang [3] utilize a graph-
based SSML method. This is implemented in a self-training workflow, incorporating new
data in future training iterations. Empirical success was shown in classifying experimental
and simulated nuclear power plant (NPP) fault scenarios. Another example of SSML used
for nuclear safety is Pinciroli et al. [4], where a more ad hoc system of feature extraction
based on importance for characterization is used. Sun et al. [5] use a system of weak
supervision to implement a convolutional neural network (CNN) that applies pseudo-
labels eventually included in future training. This results in a system for object detection
that then is applied to nuclear waste.

Moshkbar-Bakhshayesh et al. [6,7] use a two-step approach for identifying transients
and then apply SSML to unknown transient classifications. First, a supervised machine
learning model attempts to identify known transients. Unknown transients are then passed
to a transductive support vector machine (TSVM) to predict unlabeled samples.

In general, these papers present implementations of SSML to nuclear engineering
that demonstrate viability but lack context to nuclear nonproliferation. Implementations
of SSML appear to be an emerging technology for nuclear nonproliferation applications.
Most applications of machine learning in this space are supervised, which do not utilize the
plethora of unlabeled data that may be available when labeling is costly. Therefore, SSML
should be tested as a viable alternative to supervised machine learning techniques.

1.3. Goals

This work evaluates how semi-supervised machine learning can utilize information
gained from both unlabeled and labeled data in pattern recognition algorithms for applica-
tion in nuclear nonproliferation. In this application space, the goal is to optimally leverage
large volumes of radiation data with limited ground-truth data. The efficacy of SSML mod-
els will be demonstrated on real-world data collected at Oak Ridge National Laboratory
(ORNL) containing transfers of shielded radiological material. Previous implementations
that utilize Multi-Informatics for Nuclear Operating Scenarios (MINOS) data have relied
on anomaly detection using a sequential probability ratio test (SPRT) with post hoc data
analysis [8] or physics-informed machine learning combined with data fusion [9].
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Here, an alternative method with careful consideration of human and computing costs
is offered. The model presented can detect anomalous radiation measurements and, when
trained, uses a machine learning method to distinguish transfers from other anomalous
events. A hypothesis testing algorithm is implemented in order to identify anomalies. This test
is also used to determine the domain-specific thresholds for anomaly detection. The results are
fed into a labeling heuristic that applies a pseudo-label that is then used for training and testing
various machine learning models. Overall, three SSML implementations are benchmarked
against one supervised method. The results indicate an advantage in using an SSML method
that utilizes unlabeled data when labeled data are limited.

In summary, the main contribution of this work is an empirical demonstration of
SSML as a tool for nuclear nonproliferation. The workflow introduced here utilizes all
data collected, regardless of labeling status, without sacrificing performance but rather
improving it over comparable supervised methods.

2. Background
2.1. Machine Learning Overview

Writ large, machine learning, or artificial intelligence, are sets of statistical methods typi-
cally used to describe nonlinear, physical systems, sometimes using experimental observations
to guide construction. This introduction reflects much of the reasoning, and further information
can be found in the textbook by Shalev-Shwartz and Ben-David [10]. Other overviews can be
found in textbooks by Russell and Norvig [11] (which include discussions on implementation)
or by Devroye et al. [12] (with a slightly more statistical perspective). This work’s scope is
limited to machine learning used for classification. Observed instances, x, are sampled from
a distribution, P(X ), determined by domain-specific physical processes. A single instance
is typically represented as a feature vector of discrete elements that could be sampled from
continuous nonlinear systems. Examples include (but are not limited to) images, mathematical
variables, spectra, health data, etc.

For a given x ∼ P(X ) ∈ Rd, the goal of machine learning is to find a function that
relates this to a label, y ∼ Y . The set of classes, Y , defines the possible labels for the
modeled system. The set of datapoint instances, X , can take many forms depending on
the input modality and the model being designed. Said another way, ML methods find
a relationship between x and y such that the model, f , can approximate the relationship:
f (x) ≈ y ∀ (x, y) ∈ (X ,Y). For example, the model could be trying to classify good versus
bad fruit, in which case, the labels may be good banana, bad banana, good apple, or bad
apple, and the instances could be observations of individual pieces of fruit (e.g., color,
shape, size).

To do this, some observations must be used. Labeled instances, L, used in “supervised”
machine learning, have an associated label, and the total number of paired instances is
n = |L|. If observations are present without labels, it is possible to perform “unsupervised”
machine learning on this unlabeled dataset, U, numbering m = |U| instances. The observed
dataset distribution consists of both forms:

D = {(x1, y1), (x2, y2), . . . , (x|L|, y|L|), x|L|+1, . . . , x|L|+|U|} . (1)

For supervised learning, this culminates in empirical risk minimization (ERM) using
a loss function. The loss function is some form of penalization against misclassification
of known observations: 1

n ∑n
i=1 L( f (xi), yi). There may be many, even infinite, models

that describe the observed system. The goal is therefore to find the optimal model that
minimizes this loss function:

f̂ = argmin
f

1
n

n

∑
i=1
L( f (xi), yi) . (2)

There are many ways to choose the model, the loss function, the method of finding f̂ ,
or even the instances (xi, yi) used. A simple model would be a linear regression system
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where each feature vector, xi = [x1, x2, . . . , xj], is connected to its label, yi, by a system of
weights, w. Then, the model becomes f (xi) = ŷi = wᵀxi + b where b is a bias term. The
loss could then be a mean square error (MSE), and ERM finds the optimal set of weights
that describes all (xi, yi) with minimal loss:

ŵ = argmin
w

n

∑
i=1

(wᵀxi − y)2 . (3)

2.2. Semi-Supervised Machine Learning

Semi-supervised machine learning encompasses ML models that use both labeled
and unlabeled data. This class sits between traditional supervised and unsupervised
machine learning. The development of these methods was motivated by high-cost regimes
for labeling. In some fields, labeling must be carried out manually and requires domain
expertise. Both methods increase the cost of this time-consuming pre-processing step.
When the cost is prohibitive, but data are plentiful, SSML can be useful. For a larger
overview of SSML, refer to the textbook compiled by Chappelle et al. [13]. Semi-supervised
learning relies on certain assumptions to learn a decision boundary. That is, the learned
mathematical description that separates classes is in the feature space. This is necessary
for connecting information about classification from labeled data to knowledge about the
underlying data distribution from unlabeled data.

The cluster assumption states that if two samples, x1 and x2, are close together, their
labels should agree: y1 = y2. The notion of closeness is up to interpretation and depends
on the unique data modality. If true, selected features describe the state space responsible
for classification with some notion of smoothness, i.e., f (x0 ± ε) should exhibit the same
response for some small noise, ε. A model cannot learn a decision boundary from a feature
vector if the feature space has no correlation with class labels. This is connected to the
smoothness assumption, which contends that classes of data should be clustered in a region
of high density that is describable by that state space.

The manifold assumption maintains that higher-dimensional data lie on a lower-
dimensional manifold (a topological space). Therefore, the decision boundary that separates
classes in this space may also be lower dimensional and thus does not require the entire
feature space to discern separation. For example, a three-dimensional dataset may have
a two-dimensional representation that makes its classes separable. Both assumptions are
illustrated in Figure 1. Each assumption supports scenarios in which unlabeled data can
improve a learned decision boundary with added information.

T. Lu [14] argues that near certainty about “some non-trivial relationship between
labels and the unlabeled distribution” is required for success with SSML. Otherwise,
convergence will not be guaranteed. Singh, Nowak, and Zhu [15] take this further by
quantifying the data distribution contexts in which SSML will converge faster or perform
better than supervised methods (particularly when m � n). This is carried out within
the perspective of the cluster assumption, but the definitive conclusion agrees with the
above: SSML will be more effective if a relationship exists and if classes are sufficiently
distinguishable. Arguably, this holds for nuclear radiation data. Spectra that come from
the same radiation source should exhibit the same radiation signature/photopeak. Any
variation is the result of environmental effects and detector efficiencies such as distance
to source and the overall underlying background distribution. Spectra should contain the
same labeling information regardless of whether they are labeled or unlabeled, excluding
edge cases where the signature is barely discernible within a spectrum (such as border
samples from Singh et al. [15]).
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Figure 1. The two underlying SSML assumptions include the cluster assumption (left) and the manifold
assumption (right). In each plot, pluses and triangles are labeled instances, and dots are unlabeled
instances. Colors (blue and orange) represent different classes. Note how the inclusion of unlabeled data
in a ML model would improve its learned decision boundary. (Image source: [16]).

3. Methods
3.1. MINOS Data

The MINOS venture at ORNL collects multi-modal data streams relevant to nuclear
nonproliferation. This is accomplished using a network of nodes distributed at ORNL’s
campus surrounding two points of interest: the Radiochemical Engineering Development
Center (REDC) and the High-Flux Isotope Reactor (HFIR). The reactor facility, HFIR, is
used for scientific experiments (e.g., neutron scattering) and isotope production. Materials
generated at HFIR are loaded into shielded casks and are transferred by flat-bed truck to
REDC. Once at REDC, the materials are unloaded, stored, and/or processed in, for example,
hot cells.

Some of the material produced and processed at ORNL and detected by MINOS
include [9]:

1. Unirradiated 237Np targets used for 238Pu production;
2. Irradiated 237Np containing 238Pu;
3. Unirradiated Cm targets used for 252Cf production;
4. Irradiated Cm containing 252Cf;
5. 225Ac;
6. Activated metals;
7. Spent fuel.

The ultimate goal is to develop capabilities that distinguish and differentiate between
shielded radiological material that might be present at the testbed. Material transportation
can occur along several routes between facilities. Nodes in MINOS are distributed across
the possible routes alongside the road. These nodes collect different forms of data including
atmospheric conditions (e.g., temperature and pressure), video, audio, seismo-acoustic,
and radiation.

Radiation data are collected using a network of sodium iodide (NaI) detectors—each
designated as a node—that are distributed along the roads between HFIR and REDC. This
detector is capable of measuring gamma radiation emitted from nearby sources. Nodes are
designed to take one measurement every second. This measurement is energy-dependent,
binned in 1000 channels of 3 keV per bin. Energy calibration, which accounts for gain
drift in detector electronics, is completed before being shared for data analysis. Materials
transferred around the MINOS testbed will serve as observables for developing and testing
analysis methods.

3.2. Nuclear Material Transfers

One method of detecting shielded radiological material transfers would be with
radiation monitoring. An example gamma radiation spectrum can be seen in Figure 2.
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Some photopeaks visible in the spectrum are the result of persistent background radiation
that naturally occurs around Earth. This includes signatures related to the potassium–
uranium–thorium (KUT) continuum (40K and 208Tl, for example). Other signatures present
in the spectrum must be measured and identified. Figure 3 is a spectrum taken during
a material transfer. To accentuate the portion of the spectrum that is associated with the
material transferred, a portion of the background has been estimated and subtracted (blue
line). Note the substantial increase in count-rate at low energies. This continuum is the
result of radiation from the transferred material being downscattered by container shielding.
In this case, for example, a detection model must be trained to identify this response and
associate it with the appropriate radiation event type.

Figure 2. Here is an example of a radiation spectrum taken from MINOS. Note several spectral
features, including photopeaks associated with background radiation (labeled).

Figure 3. A radiation spectrum taken when material was present (orange). Note the high count-rate
and low energy distribution associated with a transfer. In an attempt to accentuate this feature, an
approximated background distribution (gray) is subtracted from the event spectrum to obtain a
difference (blue) only associated with the anomalous features.

Radiation measurements are temporal, meaning they can be continuously measured
and will vary statistically with time. One month of 1-minute measurements are plotted
in Figure 4. A normalized frequency histogram is plotted in each energy bin of the plot.
That means that each vertical slice is a frequency of how often the measurement for that
energy bin registered that magnitude of count-rate over the course of the month. The goal
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of this work is to identify anomalous measurements outside of the typical distribution
represented in yellow and green. The low energy signatures associated with transfers are
visible as small purple dots, as well as other off-normal measurements elsewhere in the
energy spectrum.

Figure 4. One-minute gamma radiation spectrum measurements collected over one month, collected
into one plot. Here, each vertical slice (energy bin) is a normalized frequency histogram. Color
indicates the frequency at which the count-rate associated with each energy was measured at that
specific magnitude.

3.3. Radiation Events

A transfer event occurs when a vehicle or source moves past a detector and thereby
exhibits a response in that node. Material recently generated in HFIR will typically have
high activity, which is why shielding is necessary for the safety of individuals handling
the material. This shielding means that the signature’s characteristic photopeak will not be
observed by the detector. Instead, emitted gammas are scattered by the shielding material
before reaching the detector. The NaI response will appear as a low-energy, downscattered
continuum without the expected photopeak. If a background spectrum can be measured or
approximated, this continuum should appear above the characteristic background. This is
time dependent, and count rates will rapidly rise as the transportation vehicle approaches
and fall as it drives past the detecting node.

Other radiation events can appear to be anomalous if they exhibit similar rapidity in
count-rate change and must be accounted for in detection algorithms. For example, HFIR
produces a large flux of neutrons when it is active. These neutrons can be captured by argon
naturally in the air at a non-negligible rate. This produces 41Ar, which is radioactive, un-
dergoing β− decay to stable 41K while emitting gamma radiation with a photopeak energy
of 1294 keV. Another example occurs when it rains, which can “washout” radioactive 222Rn
with a half-life of approximately 3.8 days and is a result of the decay of 238U. This weather
pattern will exhibit elevated gamma radiation sourced from the radioactive daughters in
this decay chain.

These unique environmental conditions will each contribute to the background radia-
tion distribution with different intensities at different times. Exact characterization of the
background spectrum is impossible without full knowledge of these conditions. Even a
fully constructed background distribution for one measurement may not be transferable to
a second measurement with different diurnal or seasonal variations. Here, an estimation of
background is used if it is reasonable for a given time and state of a measurement.
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3.4. Hypothesis Testing

First, a model is constructed to identify anomalous measurements from the temporally
continuous radiation data stream. This model ingests energy-independent count rates
for each minute of measurement. That is, the one-second, 1000-bin measurements are
integrated for all energies and every second in a one-minute window. This results in a
“gross” count rate that is a raw measure of the number of gamma emissions counted by
the NaI detector in that period. All of this data pre-processing occurs in RadClass—the
software suite developed for this analysis—as shown in Figure 5.

Figure 5. RadClass expects a standardized data format that can be abstracted to an n by m matrix
with n temporal instances and m bins of data. For MINOS radiation measurements, this would be
1-second temporal instances and 1000 energy bins. For example, one month would be approximately
a 43,200 × 1000 matrix. Given an integration time, RadClass will collapse and integrate a set of rows
for every column. If the integration time is 60 seconds, every 60 rows will be integrated column-wise.
An optional stride parameter could be defined to overlap or skip rows for integration.

A method of hypothesis testing is employed that was originally used in counting
statistics [17]. Given two measurements, x1 and x2 (in this case, one-minute gross count-
rates), taken at times t1 and t2, respectively, it is expected that they are each sampled from
some statistical distribution. In the case of radiation counting statistics,

x1 ∼ Poisson(µ1)

x2 ∼ Poisson(µ2) ,
(4)

where µ1 and µ2 are the expected values of the Poisson distribution. If the magnitudes of x1
and x2 are approximately equivalent, then they likely come from the same distribution. For
example, if that distribution is the background, then they can both confidently be labeled
as coming from the background. However, if their magnitudes are appreciably different,
then they should be labeled as anomalous, i.e., from different statistical distributions:

H0 : µ1 = µ2

H1 : µ1 6= µ2 .
(5)

This anomalous behavior could be from a nuclear material transfer or from any other
kind of radiation event off-normal for the defined background distribution. Anomalies
depend on the rate of change between t1 and t2 to be recognized as having sufficiently
varying magnitudes. The expected values, µ1 and µ2, are typically not measurable without
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enough unbiased samples. Suppose H0 is true, then a mathematical translation can be made:

n = x1 + x2

µ = µ1 + µ2

p =
µ1

µ2 + µ2
=

1
2

.

(6)

Therefore, comparing one measurement, x1, with the sum of both measurements, n,
behaves like a binomial distribution

x1 | x1 + x2 ∼ Binomial(x1, n,
1
2
) . (7)

If H1 is true, then the binomial test above will fail to some significance level. This binomial
test can be completed using MINOS data and identifies anomalous measurements in a temporal
dataset. Each consecutive pair of measurements is tested, a p value is computed, and the null
hypothesis is either accepted or rejected to some significance level. For a specified significance
level, certain amounts of deviation are tolerated beyond which the null hypothesis is rejected,
and an anomaly is identified. This significance level threshold acts as a hyperparameter and
must be set via optimization using a ground-truth reference.

Using one node, one month of data (approximately 43,200 measurements) and ground
truth for transfers, a receiver operating characteristic (ROC) curve can be generated (see
Figure 6). Here, a positive is defined as a prediction of a transfer event, and a negative is a
prediction of some other anomalous event. First, the number of correct positive classifications
can be expressed as the true positive rate: Recall = TPR = TP

TP+FN . The rate of positive
misclassifications can be expressed as the false positive rate: FPR = FP

TN+FP . True positives
are defined here as an anomalous measurement taken within 20 min of the timestamp for
the event in ground truth or, absent a specific ground-truth timestamp, one anomalous
measurement in a given day with a recorded transfer. This accounts for transportation and
detector efficiencies that delay nuclear material transfers from being registered in a detector
response for some time after the event may be recorded in ground truth.

Figure 6. ROC for one node and one month of data using energy-independent, 1-minute count rates.
Individual red points on the curve indicate different significance levels, which vary how strictly to
enforce the measurement equivalence. As the significance level becomes larger, more and more null
hypotheses are rejected, capturing more true and false positives. The gray dotted line indicates a
50–50 ratio, equivalent to an algorithm that makes a random guess for classification.
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Note that the ROC curve sweeps over several values for significance level. An ideal
significance level is one that maximizes true positives while minimizing false positives.
However, true positives (i.e., material transfers) are rare in the dataset compared to the
measurement frequency. This leads to an imbalance in the number of true positives and
true negatives. That is, a percentage increase in the FPR is a larger increase in magnitude
of false positives than a comparable percentage increase in the TPR.

For example, the tenth point (a significance level of 0.001) registers 22 out of 23 true
positives (TPR = 95.7%) with a FPR of only 1.2%. In gross terms, this false-positive
rate corresponds to 540 one-minute false-positive measurements. The next significance
level of 0.005 captures the last true positive at the cost of an additional 397 false positives
(TPR = 100%, FPR = 2.1%). This imbalance must be considered in choosing a strict value
for training and testing the models below.

The p value used for the analysis below is 10−20, which is the strictest value tested
with a true positive rate of only about 40% but is also the smallest false positive rate tested.
Future experiments can loosen this restriction by using a larger significance level that
increases the number of true positives and false positives and thereby furthers the need for
event discrimination. The overall magnitude of false positives is very large in part because
of noisy ground-truth labeling. A small significance level is chosen to avoid confounding
the machine learning models tested below with a large number of false positives, especially
since the ground truth will not be used moving forward. This further emphasizes the need
to carefully discriminate between SNM transfers and other anomalous measurements in
any downstream analyses.

3.5. Labeling Heuristic

In evaluating the predictive accuracy of the machine learning models described below,
three data subsets must be created: labeled training data, unlabeled training data, and
labeled testing data. First, five months of energy-independent (gross count-rate) data
from six different MINOS nodes are passed through the hypothesis-testing algorithm
with a temporal integration time of one-minute. This provides a collection of spectra for
timestamps at which the gross count rate was deemed anomalous (i.e., the null hypothesis
was rejected). For this and all downstream tasks, the background is removed from the
anomalous spectrum by estimation. It is assumed that for each event, a spectrum taken
20 min prior would constitute a typical background distribution absent any radiation events.
This is subtracted from the event spectrum, resulting in a feature vector that notionally
consists of only energy-dependent counts associated with the anomalous event (called the
difference spectrum, illustrated in Figure 3).

Rather than using the ground truth to apply labels to the data, a labeling heuristic
applies an automated “guess” that serves as a noisy label (i.e., with nonzero labeling error)
for each sample. That guess could be a material transfer, 41Ar event, Radon washout, or
other anomalous behavior. The labeling heuristic uses Scikit-learn’s FIND_PEAKS method to
estimate the most prominent peaks in each spectrum. If one of those peaks appears within
an energy range where signatures resulting from shielded radiological material transfers
would be expected, and that peak is sufficiently prominent, the labeling heuristic assigns a
material transfer guess to that sample. If not, a different label may apply. If none of the
peaks are prominent enough to make a definitive guess, the spectrum is not labeled, and
the sample is removed from the collection of anomalies.

In this way, the labeling heuristic applies a noisy label prediction to samples without
relying on ground-truth information. This heuristic itself is not a sufficient model for
discriminating between SNM transfers and other anomalous events because its accuracy is
limited by an intrinsic error rate related to noisy labeling. The labeling heuristic is still better
than random guessing because it applies limited domain knowledge related to expected
behavior from material transfers and the detector response from MINOS. Therefore, these
labels can appropriately be used for training and testing machine learning models because
the uncertainty associated with noisy labeling is propagated to each model and is thus
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invariant when comparing models to each other. Any uncertainty associated with the
labeling heuristic will be propagated to each model trained and tested on the resulting
labels. Therefore, MINOS data can be used to train and compare ML models, avoiding
reliance on ground truth for preparing training data.

The labels are organized for binary classification: material transfer or “other” anomalous
measurement. The labeled corpus is then randomly split into small subsets that approximately
maintain the binary class population ratio. The remaining majority are passed (as unlabeled
data) with their label masked from any models or evaluation techniques. This simulates the
real-world behavior of costly labeling in which it may be difficult to label a large amount of
data, but a smaller amount is still feasible. Labeling these unlabeled data was not necessary
(since the label was not stored) but it ensured that the labeled and unlabeled subsets had similar
distributions of classes. The heuristic is summarized in Figure 7.

Figure 7. The breakdown for sample splits between labeled training, labeled testing, and unlabeled
data from the labeling heuristic. Note that using 5 months and 6 nodes worth of data results in 1991
anomalous measurements, where 814 are discarded since their label could not be resolved by the
heuristic, and the rest are divided proportionally into train, test, and unlabeled subsets.

4. Machine Learning Models
4.1. Supervised
Logistic Regression

Logistic regression serves as the baseline supervised model to be compared with
semi-supervised machine learning. This model minimizes a loss function on labeled data:

min
w,c

1
2

wTw + C
n

∑
i=1

log(exp(−yi(xT
i w + c)) + 1) . (8)

where w is a weight vector that predicts a label from some sample xi with a bias term c.
The model minimizes the disagreement between a predicted label xT

i w and the actual label
yi while minimizing the magnitude of weight values in w (L2 regularization). Logistic
regression requires a fully labeled training corpus and cannot utilize unlabeled data in this
form. Therefore, this model only trains on L. This can be problematic in a costly labeling
regime where labeled data are less voluminous.

4.2. Semi-Supervised
4.2.1. Co-Training with Logistic Regression

This first semi-supervised machine learning model extends the supervised logistic
regression model above to handle unlabeled data. Two supervised logistic regression
models are trained in tandem, passing information gained between each other, called
co-training [18]. The logic is described in Algorithm 1. Each model learns some information
from its training corpus so that it can predict an unlabeled sample, and it trades this
information with its partner model. Ideally, the two models will converge to some increased
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level of accuracy because of shared information learned from each other (observed in
Figure 8).

Algorithm 1 Co-training

Given: L and U, split L between two logistic regression models (h1 and h2)
while len(U) > 0 do

Train h1 and h2 on their portions of labeled data, L1 and L2
Have h1 predict u1 and h2 predict u2, ‖u1 + u2‖ ≤ ‖U‖/2 sampled from U.
Include u1 in L2 and u2 in L1 with their predicted labels; remove from U.
Repeat training with this newly labeled unlabeled samples

end while
Evaluate on test set

Figure 8. The test accuracy for each co-training model as trained using Algorithm 1. Test accuracy is
defined as the percentage of correctly classified samples in a test set not used in training the models
(refer to Equation (12)). Ideally, both models would converge to a higher accuracy, indicating that
information passed between models was helpful for learning and pattern recognition. A marginal
increase is observed here.

4.2.2. Label Propagation

Label propagation [19] is a transductive approach that acts like a semi-unsupervised
model. This algorithm propagates labels from labeled data, L, to unlabeled data, U.
Propagation is accomplished by comparing distances between data samples, whatever that
notion of distance might be. First, data are arranged as a fully connected graph with edge
weights defined by some kernel. In this experiment, a radial basis function (RBF) is used:

wi,j = exp(−
||xi − xj||2

σ2 ) . (9)

where σ is essentially the standard deviation in the dataset or can be learned as a hyper-
parameter. This is used to create a transition matrix, T, which updates the label matrix,
Y, with dimensions (|L|+ |U|)× C where C is the number of classes (C = 2 for binary
classification). Each row is the probability of that sample being labeled with each respective
class. If, for example, a row was associated with a labeled instance for the first class, its
row would be [1.0, 0.0]. TO reiterate, propagate using Y ← TY, normalize row-wise, and
clamp any labeled rows to conform with their labeled classification instances. Afterward,
an argmax can be applied to classify each row according to the most probable label.

This is guaranteed to converge to a unique solution [19]. Therefore, there is no
training step per se if sufficient propagation iterations have occurred. This is also the only
semi-supervised machine learning algorithm used in this work that is readily available in
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Scikit-learn. Only two other SSML models have been implemented: label spreading and a
self-training classifier.

4.2.3. Convolutional Neural Network

An artificial neural network (ANN) is a form of machine learning model that is
designed around networks of connected neurons consisting of unique activation functions
that train for predictive classification by learning patterns in labeled data. These networks
can be large or deep, which allows them to be flexible in pattern recognition but which
requires copious amounts of data for training. In principle, CNNs are designed to pass
filters over data and to convolve data structures for more robust feature representation.
This operation is also shift invariant, making it effective for nonlinear patterns.

SHADOW [20] is a Python package with loss functions that can be applied to various
neural networks implemented in PyTorch. Originally designed for seismological data,
these loss functions are data agnostic and include semi-supervised functions for processing
unlabeled data in a neural network. Given some model, fθ , the loss function is divided into
two portions:

L( fθ(xl), yl) + αg( fθ , x) . (10)

In this case, fθ is a CNN and can predict a classification label for an instance, xl , and L
compares it to the actual label, yl , where labeled data exist. The model can also be passed
to a consistency-enforcing function, g(·), alongside any data instance (labeled or unlabeled)
and penalizes differences given some perturbation. The consistency-enforcing function is
weighted in the overall loss function by a hyperparameter, α. The loss function, g(·), used
here is exponential averaging adversarial training (EAAT) [20]

g( fθ , x) = d( fθ(x + radv), f
′
θ(x)) , (11)

where d(·) is a distance metric that describes the difference between its two inputs: the
exponential moving average teacher, f

′
θ, and its student, fθ. Here, a small perturbation,

radv, is added to the data. Utilizing the cluster assumption, a sufficiently small perturbation
should not affect the predicted label since samples close together in state space should have
similar classifications. The EAAT algorithm combines virtual adversarial training (VAT) with
mean teacher (MT). Virtual adversarial training chooses perturbations that produce the largest
change in model output to enforce regularization. Mean teacher sets model weights using an
exponential moving average, which is shown to produce more stable predictions.

In practice, both labeled and unlabeled data are processed by a CNN, optimized using
stochastic gradient descent (SGD) with a cross-entropy loss function, and employs the
cluster assumption to better probe the decision boundary for classification. The initial
neural network architecture for this model is based on an example structure for handling
MNIST data [21], which comprise a collection of 2D images of handwritten digits. Instead
of accepting 2D image inputs, the model here accepts 1D spectra. Figure 9 shows the initial
CNN architecture prior to hyperparameter optimization. As the loss function is minimized,
the model is optimized by maximizing the classification of labeled instances and enforcing
consistency among unlabeled data (see Figure 10). The loss decreases over the training
period. However, the variability—or noise—over epochs shows that certain instabilities
may prevent further loss minimization or outright convergence.
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Figure 9. The base (prior to hyperparameter optimization) architecture for the CNN used by SHADOW

EAAT. This consists of two convolution layers with max pooling and dropout, resulting in a repre-
sentation that is passed to linear, connected layers ending in a binary classification prediction. This
was offered as an example architecture for analyzing MNIST data by SHADOW [21], adjusted for
accepting 1D spectra rather than 2D images.

(a) Loss Curve (b) Test Accuracy

Figure 10. The results of training for the best SHADOW model found via hyperparameter optimization.
(a) The results of the loss function optimized during training: cross-entropy loss with EAAT optimized
using SGD. (b) Accuracy on test data for every epoch. Accuracy notionally increases as the model is
optimized, with early stopping resulting in a test accuracy greater than 70%.
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5. Results

Hyperparameter optimization was implemented using the HYPEROPT [22] software
package. This method uses Bayesian inference to explore the hyperparameter state space
and to find the model parameters that maximize classification accuracy. Hyperparameters
are chosen in a direction of expected accuracy increase. The loss function for optimization
is the error rate, which HYPEROPT attempts to minimize. Different hyperparameters are
chosen over 100 tuning epochs. The resulting performance ranges are shown in Table 1.
Local minima are possible for more complex models, but convergence typically occurs well
before 100 tuning epochs.

Table 1. Hyperparameter optimization balanced accuracy results.

Model Worst (%) Best (%)

Logistic Regression 63.9 67.7

Co-training 56.1 71.8

Label Propagation 55.1 77.1

SHADOW EAAT 48.4 70.9

The following metrics for binary classification—relating correctly classified instances,
true positives (TP) and true negatives (TN), to misclassifications, false positives (FP) and
negatives (FP)—are used in evaluating a model’s performance:

Accuracy =
TP + TN

TP + FP + TN + FN

Balanced Accuracy =
1
2
(

TP
TP + FN

+
TN

TN + FP
)

Precision =
TP

TP + FP

Recall =
TP

TP + FN
.

(12)

Balanced accuracy (balanced for different class populations) will be used as a concise
measure for comparing models. Several feature vector normalization options were also
tested to maximize accuracy. Label propagation benefited from input features that were
not normalized, since it measures distances between samples. Therefore, any notional
distance exhibited by data samples would be affected by normalization, reducing label
propagation’s performance. SHADOW significantly benefited from normalization against
the distribution’s mean and standard deviation, since the neural network’s loss function
is sensitive to large feature magnitudes. K-fold cross-validation was studied on logistic
regression and co-training to ensure that there was no accuracy biasing because of random
train–test splits. No appreciable difference was noted from different random splits.

Confusion matrices for each model’s best balanced accuracy score (from Table 1) can
be seen in Figure 11. The models, in order of increasing maximum balanced accuracy
achieved, are: logistic regression, SHADOW, co-training, and label propagation. None
of the models tested predicted more false positives than false negatives, leading each to
have a higher precision than recall. Co-training and SHADOW, despite having comparable
balanced accuracy scores, have exceptionally low recall (and very high precision) due
to numerous false negatives, and only a handful of false positives. False positives are
arguably less impactful than false negatives (i.e., recall is more important than precision)
since detecting all instances of SNM transfers is the desired objective. In practice, the level
of tolerance for false positives and false negatives is influenced by the needs of an end-user.
A policy could be designed that weights these factors in model optimization or guides the
deployment choice from a selection of trained models.
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Figure 11. Confusion matrices on test datasets for each machine learning model. Note that the scores
above for each confusion matrix are its respective balanced accuracy. SNM, class label 0, represents a
positive, and other, class label 1, represents a negative.

Several possible explanations exist for each model’s accuracy. Logistic regression
performs the worst of all four methods, suggesting that it is not generalizable to the test
dataset. That is, this model has relatively simple complexity but is still capable of learning a
decision boundary within the limited labeled training dataset. A more complex supervised
model, such as a multilayer perceptron (MLP), could possibly generalize, but these methods
are typically data hungry. This illustrates the challenge of using supervised models in this
regime because a large, labeled data corpus is required to achieve high performance, but
collecting such a dataset is costly (perhaps infeasible).

Co-training achieves a higher balanced accuracy because it utilizes previously unused
unlabeled data. However, the increase in accuracy is likely limited by the structure of the
data algorithm used. The authors of this method state that the two sets of labeled data,
L1 and L2, must exhibit conditional independence. That is, X1 ⊥ X2 | Y, i.e., each subset
contains predictive information for the classification but not for its counterpart. This is
enforced so that each model learns different information to share. If L1 and L2 do not
exhibit conditional independence, convergence to a higher accuracy is not guaranteed.

The data passed here are not necessarily conditionally independent. Only radiation
data are used, and the measurements of all nodes are combined into one corpus. Two
measurements from the same detector, and even for the same event, could be present in the
training data for both models, breaking independence. Any increase in performance from
training could be the result of information passed between models that is from different
detectors and events. Co-training’s accuracy could be increased by enforcing conditional
independence and by carefully separating detectors between models. A more powerful
implementation would utilize data fusion, a natural extension of MINOS. For example,
one model could be trained on seismo-acoustic data, and one model could be trained on
radiation measurements, both of which are coincident on SNM transfers but conditionally
independent of each other.
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Label propagation achieves the highest recall among the four models used (with the
largest number of true positives classified). This is likely because label propagation is the
only model to consider the geometric or distance relationship between data points, thus
indicating that pattern information could be embedded in the data manifold. A manifold
pattern also suggests some feature importance, or low-dimensional representation, which
leads to eventual classifications. This agrees with physical intuition that radiation signatures
are energy-dependent and should be unique between transfers of shielded radiological
material and other types of radiation events.

Finally, SHADOW’s performance was surprisingly the lowest among the semi-supervised
models. SHADOW’s CNN has many hyperparameters that can be further optimized,
including the architecture of the network itself. The MNIST structure used here might
not lend itself to spectral data. Rather, a network architecture such as those used for
frequency/audio data could be used. The loss function may be too difficult to minimize for
high-variance data such as radiation spectra. Training indicated that SHADOW can optimize
to many local minima in its state space. Different loss functions could be applied, including
different semi-supervised functions, that may train with more stability or converge to an
optimal decision boundary. Overall, a CNN still requires significant amounts of data to
train an accurate classifier. Despite the inclusion of unlabeled data, more labeled (and
unlabeled) data could be required to find an effective decision boundary.

6. Conclusions

Nuclear material transfer detection methods that reduce computing and domain
costs while maintaining detection performance can be an important component toward
advancing nuclear nonproliferation. Models using SSML can alleviate the high cost of
labeling radiation samples while still utilizing otherwise unused unlabeled data to build
robust ML models for the detection of SNM transfers. The work presented here applied
an anomaly-detection algorithm to analyze radiation data collected at the MINOS testbed
and to distinguish radiation events from background. A labeling heuristic was designed
to study the effects of noisy labeling on training data to reduce the reliance on ground
truth or on unreliable prior knowledge. All the semi-supervised models tested performed
with higher accuracy than a supervised logistic regression benchmark, indicating that
it is possible to utilize labeled and unlabeled data in SSML models for detecting and
characterizing SNM transfers. The increased accuracy of SSML models suggests that there
is still valuable classification information about the data distribution present in unlabeled
data. This warrants more detailed work to study the effects of learning on unlabeled data
using more advanced systems of SSML techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

MCNP Monte Carlo N-Particle transport code
DAGMC Direct Accelerated Geometry Monte Carlo
OBB oriented bounding box
IAEA International Atomic Energy Agency
NNSA National Nuclear Security Administration
DOE Department of Energy
NRC Nuclear Regulatory Commission
ETI Constortium for Enabling Technology and Innovation
ORNL Oak Ridge National Laboratory
MINOS Multi-Informatics for Nuclear Operating Scenarios
REDC Radiochemical Engineering Development Center
HFIR High-Flux Isotope Reactor
NPP nuclear power plant
LEU low enriched uranium
HEU highly enriched uranium
NPT Treaty on the Non-Proliferation of Nuclear Weapons
AEA Atomic Energy Act of 1954
SNM special nuclear material
SQ significant quantity
SME subject-matter expert
NaI sodium iodide
ROC receiver operating characteristic
KUT potassium–uranium–thorium
ROI region of interest
FWHM full-width half-maximum
SSL self-supervised learning
SSML semi-supervised machine learning
CNN convolutional neural network
ML machine learning
SGD stochastic gradient descent
MLP multilayer perceptron
OOD out of distribution
iid independently and identically distributed
ERM empirical risk minimization
MSE mean square error
BP backpropagation
SVD singular value decomposition
PDF probability distribution function
RBF radial basis function
ANN artificial neural network
DL deep learning
NLP natural language processing
EAAT exponential averaging adversarial training
MT mean teacher
VAT virtual adversarial training
SPRT sequential probability ratio test
SOTA state of the art
SimCLR Simple Framework for Contrastive Learning of Visual Representations
PCA principal component analysis
t-SNE t-distributed stochastic neighbor embedding
SVM support vector machine
TSVM transductive support vector machine
S3VM semi-supervised support vector machine
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