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Abstract: For the EU-DEMO Helium-Cooled Pebble Bed (HCPB) concept, an indirect coupled design
(ICD) with a molten salt (MS) loop as an intermediate heat transport and storage system (IHTS)
is considered for the conceptual design phase. The IHTS with an energy storage decouples the
primary heat transport system (PHTS) that undergoes pulse and dwell power cycles from the power
conversion system (PCS), and thus can provide stable power to the turbine and grid. However,
the maintenance of stable He and MS parameters during transitions from dwell to pulse and vice
versa is challenging for the design of the MS loop, and the real performance of the helium–MS heat
exchanger (He/MS HX) shall be verified. To investigate such components and conditions, a new
R&D infrastructure HELOKA-US (Helium Loop Karlsruhe—Upgrade Storage) is under construction
for the validation of prototypical components and the MS loop operation under stationary and
transitional conditions. This paper provides the design features of Phase 1a of the project and the
simulation results with EBSILON on the power generation phase.

Keywords: HELOKA-US; EU-DEMO; balance of plant; intermediate heat transport and storage
system; indirect coupled design; energy storage system; molten salt; EBSILON; EUROfusion

1. Introduction

One of the main challenges of the European Demonstration Fusion Power Reactor
(EU-DEMO) is being able to achieve long plasma operation and demonstrate the net electric
output in an industrial scale [1–3]. To achieve this goal, DEMO must be more oriented
towards electricity production, hence the Balance of Plant (BoP) must be considered as an
essential system, which is a vital extension to ITER since ITER is not designed to generate
any electrical power [4]. BoP is envisaged to extract the pulsed thermal power generated
by plasma from the PHTS and transport the power to the PCS [5].

The intrinsic challenge of a heat transport chain in a Tokamak-based DEMO plant is
the intermittent fusion plasma operation as a primary heat source to the Plant Electrical
System, in which pulse operation lasts about 7200 s and the dwell operation period lasts
about 600 s, as depicted in Figure 1 [6]. The HCPB-BoP will be capable of providing stable
thermal power to the PCS throughout the intermittent plasma operational phases (pulse
and dwell) and its realization requires an energy storage system (ESS) integrated into the
IHTS.
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Figure 1. DEMO Primary Heat Transfer System power cycle. Reprinted from [6]. 
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performances of the components, the efficiency, integration possibility, and safety. The 
variants are classified as either Direct Coupled Design or Indirect Coupled Design (ICD). 
Among the proposed solutions, the ICD with an large energy storage system (ESS) based 
on commercial systems already operating in concentrating solar power plants are the most 
robust [4] (see Figure 2 from [7]). Thus, this HCPB BoP ICD option was selected as the 
reference variant for the next step of DEMO development, the so-called Conceptual De-
sign Phase. Achievements on the optimization of the BoP system have been reported in 
[5,7–9] comprising the system conceptual design of the IHTS with the molten salt loop 
[8,9] and the principal design of the He/MS heat exchanger (He/MS HX) [7]. The critical 
issue is firstly related to the interface of PHTS and IHTS which are connected with a 
He/MS HX, and between IHTS and PCS which are connected with a MS Steam Generator 
[4]. 
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Figure 1. DEMO Primary Heat Transfer System power cycle. Reprinted from [6].

Various variants of the EU-DEMO BoP are under evaluations focusing on the cycling
performances of the components, the efficiency, integration possibility, and safety. The
variants are classified as either Direct Coupled Design or Indirect Coupled Design (ICD).
Among the proposed solutions, the ICD with an large energy storage system (ESS) based
on commercial systems already operating in concentrating solar power plants are the most
robust [4] (see Figure 2 from [7]). Thus, this HCPB BoP ICD option was selected as the
reference variant for the next step of DEMO development, the so-called Conceptual Design
Phase. Achievements on the optimization of the BoP system have been reported in [5,7–9]
comprising the system conceptual design of the IHTS with the molten salt loop [8,9] and
the principal design of the He/MS heat exchanger (He/MS HX) [7]. The critical issue is
firstly related to the interface of PHTS and IHTS which are connected with a He/MS HX,
and between IHTS and PCS which are connected with a MS Steam Generator [4].
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The main challenges of the thermodynamic and heat transport processes of the IHTS
(ESS) system are:

• The helium inlet temperature to the breeding blanket shall be maintained stable during
both pulse and dwell operation. Since during dwell time PHTS extracts only 1% of the
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full nominal power, the cooling of the PHTS in dwell needs a sensible regulation of
the IHTS-ESS;

• The fast transients of pulse-to-dwell ramp-down and dwell-to-pulse ramp-up that
take place within 100–200 s requires fast response of the ESS [10];

• Not only the normal power generation modes throughout pulse and dwell phases
shall be functional, but also the preparation, standby, and shutdown modes shall be
considered;

• The heat transfer characteristics, fabrication, and material fatigue feature of the He/MS
HX shall be assessed in industrial and experimental trials.

The interaction of the different systems must be investigated and optimized. Here, the
expertise of KIT on helium system operation (HELOKA-HP [11] and KATHELO [12]), as
well as the expertise in the high-temperature molten salt field (LIVE [13,14]) are favorably
combined within the HELOKA-US project. The conceptual design and technical specifica-
tion of the Phase 1 components are completed. Engineering layout design and construction
will be started very soon.

The construction conception the HELOKA-US facility is presented in Section 2. The
design features and operational modes are described in Section 3, including the loop
design and components as well as the operation modes considered. Section 4 provides the
numerical simulations performed to establish the conceptual design of HELOKA-US as in
Phase 1. Finally, the conclusions and coming steps are providing in Section 5.

2. Construction Conception of the Project

The new-build HELOKA-US system bears the aim to investigate the HCPB BoP ICD
concept with a molten salt loop as the IHTS with ESS function for the helium-cooled DEMO
variant. The power scaling is 1:1000 of one of the eight PHTS circuits, corresponding to
260 kW of nominal power. The total height of the molten salt loop is about 9 m, which is
about 1

4 of the DEMO IHTS vertical dimension. The whole experimental facility will be
built in two phases, as depicted in Figure 3.
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First, the tags of the loops and system and tags of the component in the ES are given
in Table 1.
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Table 1. Tags of loops/system and tags of component in HELOKA-US.

Tag Loop/System Tag Component

ES molten salt Energy Storage loop HE Electrical heater

NS Nitrogen cover gas System HT Heat tracing

WCS HELOKA Water Cooling System HX Heat exchanger

WHT High-pressure water loop LP Pipeline

HE-HL HELOKA- High pressure Loop PP Pump

TK Tank

VI Insolation Valve

VR Relief valve

Phase 1: The energy storage (ES) loop using HITEC as molten salt coupled with the
HELOKA-HP helium loop will be built. This phase is split in two sub-phases: Phase 1a and
Phase 1b. The heating source in Phase 1a is an electrical heater supplying 260 kW power,
while in Phase 1b, the heated helium from HELOKA-HP will provide the heat source via
a He/MS HX, which replaces the electrical heater used in Phase 1a. The heat sink in both
Phases 1a and 1b is the HELOKA, an intermediate high-temperature high-pressure water
loop (WHT) that is coupled with a water-cooling system (WCS) in normal pressure. A WHT
can be operated up to 46 bar, and thus ensures a waterside coolant temperature range of
160–220 ◦C, which is above the solidification temperature (142 ◦C) of the HITEC molten salt.

Phase 2: The ES loop will be coupled to a representative DEMO-PHTS helium circuit
driven by a scaled-down DEMO prototypical blower.

The coupling of the HELOKA-HP loop, ES loop, WHT system, and WCS at the
completion of Phase 1b is depicted in Figure 4. HELOKA-HP, WHT, and WCS are existing
infrastructure, as well as the power supply system and the data acquisition and control
system, which are the infrastructure of HELOKA-HP. The main focus for Phase 1a is the
design and building of the ES and cover gas (N2) system (NS), the coupling between ES
and WHT with a new built MS/water heat exchanger, as well as the coupling WHT-WCS
with a water/water heat exchanger. The ES loop and WHT system are connected with
NS, which serves as cover gas and pressure regulation for the ES loop and for the pressure
control for the WHT system.

J. Nucl. Eng. 2022, 3, FOR PEER REVIEW 4 
 

 

Table 1. Tags of loops/system and tags of component in HELOKA-US. 

Tag Loop/System Tag Component 
ES molten salt Energy Storage loop  HE Electrical heater 
NS Nitrogen cover gas System HT Heat tracing 

WCS HELOKA Water Cooling System  HX Heat exchanger  
WHT High-pressure water loop LP Pipeline 

HE-HL HELOKA- High pressure Loop PP Pump 
  TK Tank 
  VI Insolation Valve 
  VR Relief valve 

Phase 1: The energy storage (ES) loop using HITEC as molten salt coupled with the 
HELOKA-HP helium loop will be built. This phase is split in two sub-phases: Phase 1a 
and Phase 1b. The heating source in Phase 1a is an electrical heater supplying 260 kW 
power, while in Phase 1b, the heated helium from HELOKA-HP will provide the heat 
source via a He/MS HX, which replaces the electrical heater used in Phase 1a. The heat 
sink in both Phases 1a and 1b is the HELOKA, an intermediate high-temperature high-
pressure water loop (WHT) that is coupled with a water-cooling system (WCS) in normal 
pressure. A WHT can be operated up to 46 bar, and thus ensures a waterside coolant tem-
perature range of 160–220 °C, which is above the solidification temperature (142 °C) of the 
HITEC molten salt. 

Phase 2: The ES loop will be coupled to a representative DEMO-PHTS helium circuit 
driven by a scaled-down DEMO prototypical blower. 

The coupling of the HELOKA-HP loop, ES loop, WHT system, and WCS at the com-
pletion of Phase 1b is depicted in Figure 4. HELOKA-HP, WHT, and WCS are existing 
infrastructure, as well as the power supply system and the data acquisition and control 
system, which are the infrastructure of HELOKA-HP. The main focus for Phase 1a is the 
design and building of the ES and cover gas (N2) system (NS), the coupling between ES 
and WHT with a new built MS/water heat exchanger, as well as the coupling WHT-WCS 
with a water/water heat exchanger. The ES loop and WHT system are connected with NS, 
which serves as cover gas and pressure regulation for the ES loop and for the pressure 
control for the WHT system. 

 
Figure 4. HELOKA-US main systems and their interfaces at the Phase 1b. 

  

Figure 4. HELOKA-US main systems and their interfaces at the Phase 1b.



J. Nucl. Eng. 2022, 3 465

3. Design Features and Operational Modes of HELOKA-US
3.1. Molten Salt Properties

The HITEC salt with molar ratio of KNO3:NaNO3:NaNO2 in 44:7:49 is selected as the
heat transfer fluid for the ES loop following the DEMO HCPB BoP ICD specifications. Its
chemical and physical behavior is well-studied in the field of concentrated solar power
plants [15–17]. The strongest argument for the HITEC is its low solidification temperature
of 142 ◦C, which enables it to be used as a heating source of low coolant temperature, e.g.,
in the steam generator. The HITEC is chemically stable under N2 gas at least up to 465 ◦C
and can even be applied briefly at higher temperatures up to 538 ◦C.

3.2. Loop Design and Components

ES loop: The Pipe and Instrumentation Diagram of the HELOKA-US is depicted in
Figure 5. A two-tank system in direct connection with the main loop is applied. A list of
the main components in the ES loop is given as follows:

• Two tanks (TK): ES-TK-01 and ES-TK-02 (DN450, each tank, ~0.8 m3);
• Two pumps (PP): ES-PP-01 and ES-PP-02 (2.5 m3/h, total developed head: 15–20 m);
• One external electrical heater (HE): ES-HE-01 (~260 kW);
• One internal electrical heater in ES-TK-01: ES-HE-02 (~30 kW);
• Six control valves (VC): ES-VC-01 to ES-VC-06 (DN25, DN33, DN40);
• Eight isolation valves (VI): ES-VI-01 to ES-VI-08;
• Two MS separators (SE) above the tanks: ES-SE-01 and ES-SE-02;
• Pipelines (LP): ES-LP-01 to ES-LP-14 (total ~40 m, DN32 in main loop, DN25 in side

piping, material stainless steel 1.4571);
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Besides the visible components in Figure 5, the ES loop is equipped with the following
periphery installations:

• Instrumentation on temperature, pressure, flowrate, and level sensors in the tanks;
• Trace heaters on all ES equipment and piping (max. temperature 300 ◦C);
• High-temperature thermal insulation;
• Data acquisition and control system in hardware and software of the ES and NS systems.

The external electrical heater, ES-HE-01, enclosed in a dashed frame in Figure 5, will
be replaced by the optimized He/MS HX (ES-HX-01) in Phase 1b. The general design
temperature and design pressure of the ES loop are 550 ◦C and 0.6 MPa, respectively. An
internal electrical heater in the tank ES-TK-01 is foreseen for the initial heat-up phase to
melt the HITEC salt up to operational temperature. For maintenance operations, drainage
piping connecting tanks, pumps, and valves are included but not shown in the Figure 5
for simplicity. A port for melt sampling and a material test section are also foreseen
downstream of the He/MS HX (ES-LP-10).

The ES loop comprises three bypasses (ES-LP-05, ES-LP-06 and ES-LP-07) for exper-
imental purposes, ramp-up/down, and maintenance. The functions of the bypasses are
described in detail:

• Fine-tuning of MS flow in order to maintain stable MS and He temperatures during
steady states of pulse and dwell, as well as during the ramp-up and ramp-down
transients. The bypass ES-PP-05 from the tank ES-TK-01 to the pump ES-PP-01 is
especially effective to regulate a small MS flow through ES-LP-04 to the He/MS HX in
the dwell phases, when only 1% of the nominal power will be extracted;

• Enabling different flow paths during startup, shutdown, and standby phases.

WHT: The design temperature and pressure of the high-temperature high-pressure
water system, whose interface to the ES loop is shown at the right side in Figure 5, are
220 ◦C and 4.6 MPa, respectively.

Dimension and Location

The HELOKA-US platform is built at 4 m level to provide space and adequate height
for HELOKA-US components. The platform aligns to the exiting HELOKA-HP platform
to allow connections to He and cooling water sources. The arrangement of the new
components is depicted in Figure 6. For the latter Phase 1b, the He-MS HX will be located
at 8.5 m on the existing HELOKA-HP platform. The allocation of the components considers
the connection to the water and helium sources, the KIT operational safety requirements,
and maintenance space. The two tanks are in a slim geometry with a height of about 5 m to
approach the tank height in DEMO HCPB ESS as closely as possible. The two tanks include
additional volume to allow margins of experimental operation and to simulate the heat
transfer inertia in the whole DEMO HCPB IHTS piping system.
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3.3. Operation Modes

With the loop configuration in HELOKA-US is able to simulate and investigate both
conditioning modes and power generation modes conceptualized in DEMO as shown in
Figure 7. Figure 8 interprets the HELOKA-US preparation/maintenance modes and normal
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power general modes with the transient routes. The operation modes inside the red frame
indicate frequent and fast transitions among the modes. The temperature levels of cold
standby and hot standby I are about 200 ◦C and 270 ◦C, respectively. In the hot standby II
mode, addressing the preparation for the first pulse operation, the MS in tank ES-TK-01 is
heated up to 465 ◦C and the hot leg is heated up to 290 ◦C.

J. Nucl. Eng. 2022, 3, FOR PEER REVIEW 8 
 

 

Figure 7. Figure 8 interprets the HELOKA-US preparation/maintenance modes and nor-
mal power general modes with the transient routes. The operation modes inside the red 
frame indicate frequent and fast transitions among the modes. The temperature levels of 
cold standby and hot standby I are about 200 °C and 270 °C, respectively. In the hot 
standby II mode, addressing the preparation for the first pulse operation, the MS in tank 
ES-TK-01 is heated up to 465 °C and the hot leg is heated up to 290 °C. 

 
Figure 7. DEMO operational modes including all states and transitions. P2D: pulse-to-dwell transi-
tion, D2P: dwell-to-pulse transition. 

 
Figure 8. Operation modes in HELOKA-US. P2D: pulse-to-dwell transition, D2P: dwell-to-pulse 
transition. 

In Figures 9 and 10, the temperature and mass flow of MS in pulse and dwell modes 
are depicted, respectively. The functions of pulse and dwell modes are briefly described 
as follows: 

Figure 7. DEMO operational modes including all states and transitions. P2D: pulse-to-dwell transi-
tion, D2P: dwell-to-pulse transition.

J. Nucl. Eng. 2022, 3, FOR PEER REVIEW 8 
 

 

Figure 7. Figure 8 interprets the HELOKA-US preparation/maintenance modes and nor-
mal power general modes with the transient routes. The operation modes inside the red 
frame indicate frequent and fast transitions among the modes. The temperature levels of 
cold standby and hot standby I are about 200 °C and 270 °C, respectively. In the hot 
standby II mode, addressing the preparation for the first pulse operation, the MS in tank 
ES-TK-01 is heated up to 465 °C and the hot leg is heated up to 290 °C. 

 
Figure 7. DEMO operational modes including all states and transitions. P2D: pulse-to-dwell transi-
tion, D2P: dwell-to-pulse transition. 

 
Figure 8. Operation modes in HELOKA-US. P2D: pulse-to-dwell transition, D2P: dwell-to-pulse 
transition. 

In Figures 9 and 10, the temperature and mass flow of MS in pulse and dwell modes 
are depicted, respectively. The functions of pulse and dwell modes are briefly described 
as follows: 

Figure 8. Operation modes in HELOKA-US. P2D: pulse-to-dwell transition, D2P: dwell-to-pulse
transition.

In Figures 9 and 10, the temperature and mass flow of MS in pulse and dwell modes
are depicted, respectively. The functions of pulse and dwell modes are briefly described as
follows:
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Figure 9. Pulse flat top mode in ES loop.
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Figure 10. Dwell flat bottom mode in ES loop.

Pulse flat top: ES-HE-01 simulates the heat source of the helium with 260 kW. The
bypass ES-LP-05 with the valve ES-VC-04 regulates the precise demand on the MS inlet
and outlet temperatures in ES-HE-01. Duration: about 7200 s.

Dwell flat bottom: The ES-HE-01 power level is 2.6 kW and it is cooled by a small
stream of MS from ES-TK-02. The bypass ES-LP-05 regulates the inlet and outlet MS
temperatures through ES-HE-01. MS from the ES-HE-01 is directed to bypass ES-LP-07 and
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is merged in the upstream of ES-HX-02 so that the MS in ES-TK-01 remains at 465 ◦C and
not below. The duration is 600 s.

4. Simulation Activity

The simulation activity for the DEMO HCPB BoP ICD conceptual design was and is
currently being performed using the industrial tool EBSILON [8,9]. EBSILON@Professional
is a calculation tool for the conceptual design of the power plant performance [18]. A
preliminary simulation of the HELOKA-US MS loop power generation phase was carried
out, as shown in Figure 11. For the dynamic simulation of the transient processes, a model
based on the tool MODELICA/DYMOLA is being set up [19]. The first calculation on the
HELOKA-US pulse operation was carried out, and the simulation of the other operational
modes will be followed.
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5. Conclusions

HELOKA-US, a mockup of the EU-DEMO HCPB BoP ICD with a HITEC molten salt
energy storage system, will be under construction at KIT after the conceptual design of the
facility has been completed. The new experimental facility will take profit of the available
existing helium, water, and data acquisition/control infrastructure from HELOKA-HP.
Supported by different simulation tools, the optimized component arrangement and size
can represent the DEMO HCPB IHTS-ESS, even if its power and volume scaling is of about
1:1000. Additional volume in the molten salt tanks simulates typical DEMO HCPB BoP
ICD peculiarities, such as the long MS pipes in the IHTS.

The designed configuration of the HELOKA-US molten salt loop can not only provide
stable power to the PCS throughout pulse and dwell operations, but also realize diverse
preparation and maintenance modes. Furthermore, the molten salt loop enables the flexi-
bility and sensibility in regulation and control that reacts to the rapid transients such as
pulse-to-dwell and dwell-to-pulse.

The preparation of the experimental hall hosting the facility started in 2021 and ended
with the construction of the structural platform by mid-2022 together with the infrastructure
extension in KIT Building 660. The erection of the MS loop and all related components and
systems as in Phase 1a are planned for 2023. The results of the experimental campaign are
planned in early 2024.
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Abbreviations

BoP Balance of Plant IHTS Intermediate Heat Transfer System.
DEMO DEMOnstration power plant KIT Karlsruhe Institute of Technology
D2P Dwell-to-Pulse transient MS Molten Salt, HITEC ™ in HELOKA-US
ESS Energy Storage System P2D Pulse-to-Dwell transient
HCPB Helium-Cooled Pebble Bed (Blanket) PCS Power Conversion System
HCPB BOP ICD HCPB Indirect Coupling Design variant of Balance of Plant PHTS Primary Heat Transfer System
HE Helium
HELOKA Helium Loop Karlsruhe
HELOKA-US HELOKA—Upgrade Storage system
HELOKA-HP HELOKA High temperature high pressure Helium Loop
HITEC Commercial mark of a nitrite/nitrate molten salt
HX Heat Exchanger
ICD Indirect Coupling Design
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