
Citation: Tibbetts, J.; Goldblum, B.L.;

Stewart, C.; Hashemizadeh, A.

Classification of Nuclear Reactor

Operations Using Spatial Importance

and Multisensor Networks. J. Nucl.

Eng. 2022, 3, 243–262. https://

doi.org/10.3390/jne3040014

Academic Editor: Dan Gabriel Cacuci

Received: 5 June 2022

Accepted: 13 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Classification of Nuclear Reactor Operations Using Spatial
Importance and Multisensor Networks
Jake Tibbetts 1, Bethany L. Goldblum 1,2,* , Christopher Stewart 1 and Arman Hashemizadeh 1

1 Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
2 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
* Correspondence: bethany@nuc.berkeley.edu

Abstract: Distributed multisensor networks record multiple data streams that can be used as inputs
to machine learning models designed to classify operations relevant to proliferation at nuclear
reactors. The goal of this work is to demonstrate methods to assess the importance of each node
(a single multisensor) and region (a group of proximate multisensors) to machine learning model
performance in a reactor monitoring scenario. This, in turn, provides insight into model behavior, a
critical requirement of data-driven applications in nuclear security. Using data collected at the High
Flux Isotope Reactor at Oak Ridge National Laboratory via a network of Merlyn multisensors, two
different models were trained to classify the reactor’s operational state: a hidden Markov model
(HMM), which is simpler and more transparent, and a feed-forward neural network, which is less
inherently interpretable. Traditional wrapper methods for feature importance were extended to
identify nodes and regions in the multisensor network with strong positive and negative impacts on
the classification problem. These spatial-importance algorithms were evaluated on the two different
classifiers. The classification accuracy was then improved relative to baseline models via feature
selection from 0.583 to 0.839 and from 0.811 ± 0.005 to 0.884 ± 0.004 for the HMM and feed-forward
neural network, respectively. While some differences in node and region importance were observed
when using different classifiers and wrapper methods, the nodes near the facility’s cooling tower
were consistently identified as important—a conclusion further supported by studies on feature
importance in decision trees. Node and region importance methods are model-agnostic, inform
feature selection for improved model performance, and can provide insight into opaque classification
models in the nuclear security domain.

Keywords: machine learning; neural network; hidden Markov model; explainability; nuclear security;
multisensor networks; reactor monitoring

1. Introduction

Nuclear facility monitoring has been a critical aspect of the international nuclear
nonproliferation regime since the Treaty on Non-Proliferation of Nuclear Weapons came
into force in 1970 [1]. Recent advances over the last decade in sensor technology and
data science have created new opportunities to apply machine learning techniques to
the problem of real-time nuclear facility monitoring for nuclear security and safeguard
applications [2–10]. Since nuclear security is a high-stakes domain, data-driven applications
in this area must be both accurate and explainable so that analysts and decision makers
can verify whether systems are operating as intended and trust the validity of model
outputs [11,12].

Multisource machine learning using nonradiological data has potential for applications
in nuclear reactor monitoring to address proliferation detection challenges. Networks of
geographically distributed multisensors can monitor physical, material, electromagnetic,
and pattern-of-life signals that can be used to assess the operational state of a nuclear
facility [3]. Given the gravity of nuclear-security assessments, it is critical that the means by
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which these models translate data inputs into the desired proliferation-relevant signatures
is understandable to users. One vital aspect of model explainability for sensor networks is
an understanding of the relative importance of nodes and regions in a multisensor array
for a given classification task, where a node is a single multisensor and a region is a group
of proximate nodes.

The question of node and region importance is broadly applicable to any predictive
task where sensor networks are being used to generate inputs for machine learning models.
For these predictive tasks, node and region importance can be used to eliminate noisy
features that reduce model performance through feature selection, which is a relevant task
for any machine learning application. Node and region importance can also be combined
with knowledge about the specific problem context to make inferential hypotheses about
the data and the classification models. For example, if a node were identified as having
a strong positive impact on model performance and that node was collocated with a
particular apparatus, one could use domain-specific knowledge about the operation of
that apparatus to hypothesize that there is a causal relationship between the label and the
equipment’s operation, which could be further exploited in future modeling efforts.

The goal of this work is to introduce and demonstrate wrapper methods for spatial
importance in multisensor arrays, where a score is assigned to a given node or region of
the array based upon its impact on model performance. Though wrapper methods have
been extensively applied for feature importance of sensor arrays, this work showcases the
first demonstration of their use for the determination of spatial importance in multisensor
arrays in the context of nuclear reactor monitoring. This was accomplished through the
creation of a hidden Markov model (HMM) and a feed-forward neural network predicting
a nuclear reactor’s operational state trained on features derived from data collected by a
network of 12 geographically distributed Merlyn multisensor platforms deployed at the
High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. These models were
analyzed with feature importance and selection wrapper methods extended to nodes and
regions to assign spatial-importance scores for each model. The classifiers, a structurally
simple HMM and a less algorithmically transparent feed-forward neural network, were
chosen such that the post hoc spatial importance algorithms were examined on models
with different levels of intrinsic interpretability [13,14]. To demonstrate the utility of the
spatial importance algorithms, the node and region importance scores were then leveraged
to improve model performance through feature selection and make inferential hypotheses
about the nuclear facility. The model-agnostic spatial importance algorithms introduced in
this work provide explainable methods that yield insight into the model’s behavior.

Section 2 provides a synopsis of the state of the art in machine learning approaches to
reactor power level monitoring at the HFIR facility. Section 3 contains an overview of the
data collection campaigns, the multisensor platform, and the data products, as well as a
description of the baseline machine learning models. The baseline models were trained on
data obtained from the full set of multisensors to predict the nuclear reactor’s operational
state and serve as a reference point for evaluation of the spatial importance algorithms. In
Section 4, the application of feature importance and wrapper methods is reviewed, and
node- and region-importance methods are introduced. Section 5 showcases the application
of node- and region-importance methods to the classification of the reactor’s operational
state using two models with disparate levels of intrinsic interpretability. The analytic results
are then used in conjunction with knowledge about the nuclear facility and decision tree
feature-importance metrics to improve model performance and inform nuclear security
assessments. Concluding remarks are given in Section 6.

2. Previous Power Prediction Analyses at the High Flux Isotope Reactor

Significant prior work has been performed in recent years to apply machine learning
to nuclear reactor power level monitoring at the HFIR facility. For example, Ramirez and
Rao [4] used a correlation coefficient method [5] with gas effluent and radiation measure-
ments to classify reactors’ operational state to greater than 0.90 accuracy. Flynn et al. [6]
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extended this work to predict reactors’ power level using seismic, acoustic, radiological, and
effluent data fed into naive Bayes and random forest classifiers. Using seven reactor power
level classes (i.e., 0%, 10%, 30%, 50%, 70%, 90%, and 100%, defined in terms of fraction of
full power), Flynn et al. showcased an operational state classification accuracy greater than
0.90, with classification performance for intermediate reactor power levels ranging from
0.00 to 1.00 depending upon the selected input features. The analyses indicated that the
inclusion of additional sensing modalities as input features did not consistently result in
improved model predictions for all reactor power-level classes.

Using time-series classification, Parikh et al. [7] predicted reactor power levels at the
HFIR facility via sequential naive Bayes, HMM, and ensemble methods with multimodal
data collected from seismic, acoustic, effluent, electromagnetic, and thermal sensors. The
resulting models were evaluated using a performance metric that more heavily penalized
“more incorrect” predictions (e.g., a 100% power prediction on a true class of 10% power
was more heavily penalized than a 30% power prediction). By evaluating models trained
using all possible combinations of modalities, selection of thermal, electromagnetic, and
effluent features was shown to provide superior classification performance, with the HMM
narrowly outperforming the ensemble approach. The optimal feature set was confirmed
in later work using a forward-selection wrapper method applied over both the feature set
and model type [8].

More recent work by Chai et al. [10] used derived seismoacoustic features in a multi-
stage machine learning model, where the first stage classified data into one of three op-
erational states—off, intermediate, or full power—and the second stage further classified
data assigned to the intermediate category into five reactor power level classes. Logistic
regression, support vector machines, random forests, k-nearest neighbors, and extreme
gradient boosting algorithms were applied at both stages. While the classification of off/full
power data was accomplished with 0.98 accuracy, the transition state power levels were
classified with a minimum accuracy of 0.66. Feature selection performed using an extreme
gradient boosting classifier at the first stage indicated that the top 30 features account for
47% of the total importance.

Rao et al. [9] introduced a multi-stage power level regression model using features
derived from infrared, electromagnetic, and acoustic sensors along with an analytical
model of the secondary coolant system. The reactor power-level estimator demonstrated
improved performance with multimodal inputs relative to single modalities, achieving a
3.47% root-mean-square error under five-fold cross validation.

This work adds to the existing literature via the introduction of spatial importance
methods that can be applied in conjunction with any machine learning model to inform
feature selection and enhance explainability.

3. Dataset and Models

An HMM and feed-forward neural network were trained on data collected by a
network of 12 Merlyn multisensor platforms to predict binary nuclear reactor power state
(off/on) at the High Flux Isotope Reactor at Oak Ridge National Laboratory.

3.1. High Flux Isotope Reactor

Twelve multisensors were deployed around the High Flux Isotope Reactor at Oak
Ridge National Laboratory, an 85 MW research reactor used for nuclear science and en-
gineering experiments, isotope production, and irradiation materials testing [15]. The
multisensor array, depicted in Figure 1, collected data over a time period of approximately
40 weeks. This 40-week period covered approximately six reactor power cycles. which
consisted of a start-up, power generation at steady state for a period of time spanning
approximately one to three weeks, and a shutdown.
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Figure 1. Overhead image of the High Flux Isotope Reactor complex at Oak Ridge National Labora-
tory. Multisensor platforms are mounted at the locations indicated by the yellow circles; the node ID
for each platform is denoted by the circumscribed number. Regions are shaded and identified by letter
with bounding boxes to provide a visual cue. Regions A, B, C, D, and E include the reactor building
and cooling tower, liquid storage tanks, offices near the Radiochemical Engineering Development
Center, target processing facility, and main entrance to the complex, respectively.

There are a few relevant points of interest at the facility visible in Figure 1. The main
reactor building is at the center of the facility between Nodes 5, 6, and 8. The reactor’s
cooling tower is to the immediate right of Node 9. The Radiochemical Engineering Devel-
opment Center (REDC) [16] is positioned between Nodes 4, 5, and 10, where irradiation
targets are fabricated and processed. There are some liquid storage tanks immediately
above Node 8. The main entrance to the facility is along the road where Nodes 1, 2, and 12
are deployed.

Regions were further identified at the nuclear facility based upon their relationship to
particular points of interest and their relative distance to other nodes. General descriptions
of the defined regions are shown in Table 1. The bounding boxes in Figure 1 provide
approximate visual cues for each region and should not be interpreted as indicators of the
sensing range of the multisensors.

Table 1. Region Descriptions.

Region Nodes Description

A 6, 7, 9 Reactor Building and Cooling Tower
B 8 Liquid Storage Tanks
C 4, 5 Offices near the REDC Facility
D 3, 10, 11 Target Processing Facility
E 1, 2, 12 Main Entrance to Complex

3.2. Merlyn Multisensor Platform

The Merlyn multisensor platform was used to collect nonradiological multisource
data at a rate of 16 Hz. The Merlyn was designed by Special Technologies Laboratory, an
organization within the Nevada National Security Site complex of facilities. A mockup of
the Merlyn is shown in Figure 2.
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Figure 2. Digital mockup of the Merlyn multisensor platform and weatherproof enclosure.

The platform was built with a BeagleBone Black mainboard [17], an ATmega328P-based
Arduino UNO breakout board [18], a ROHM SensorShield EVK-003 sensor package [19],
and supporting hardware related to power distribution and data storage. The sensors
housed on each Merlyn used in this work are listed in Table 2.

Table 2. Merlyn sensors used for modeling.

Modality Sensor

Acceleration (3-axis) Kionix KX-224-1053 [20]
Ambient Light ROHM RPR-0521RS [21]
Magnetic Field (3-axis) ROHM 1422AGMV [22]
Pressure (Barometric) ROHM BM1383AGLV [23]
Temperature ROHM BD1020HFV [24]

3.3. Data Products

To create the input data used for modeling, a series of preprocessing transformations
were applied to the raw data streams collected by the Merlyn multisensors. First, each
data stream was linearly interpolated such that measurements from different multisensors
were assigned aligned timestamps. Since the data were recorded at 16 Hz and reactor
operational state changes at a relatively slow rate, linear interpolation provides a reasonable
approximation of the true measurement of the physical signal of interest for a given
timestamp. After interpolation, the temperature and pressure data were background-
subtracted using weather data collected from a nearby National Oceanic and Atmospheric
Administration (NOAA) facility [25]. This mitigated potential confounding trends in the
pressure and temperature features related to weather phenomena. Then, significant outliers
were removed from each data stream by excluding spurious non-physical data larger than
four mean average deviations to eliminate obvious measurement errors. After this, the x,
y, and z components of the magnetometer and accelerometer for each multisensor were
combined into a single data stream by taking the L2 norm of the individual coordinate
components to obtain the vector magnitudes. Then, the mean and variance over 10 min
time segments were taken for each data stream. This was a feature engineering step that
increased the set of features to include both the average of and variability in the measured
data for each sensing modality. Finally, the means and variances were standardized by
taking the z-score of each data point so that features with different units of measurement
were aligned to a common scale. This resulted in 120 features consisting of 60 means and
60 variances from 12 Merlyn multisensors over five sensing modalities and 39,745 total
samples over the 40-week time series.
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The multisensors experienced occasional periods of outage due to maintenance, power
failures, and faulty components. These outages were treated as data that were missing
completely at random [26] for preprocessing purposes. Missing data were substituted with
the mean over the entire data stream time series, and an additional feature in the form of a
“missing” flag for each data point set as 1 if the data were missing and 0 otherwise. This
brought the total to 132 features consisting of 60 means, 60 variances, and 12 flags.

Information about nuclear reactor operational state was provided by the reactor
operators in the form of core power output measured by diagnostic sensors in the primary
coolant loop, which record data over the course of normal operations. A strict inequality at
0 MW to identify “reactor on” events would mislabel a substantial fraction of the data due
to the measurement error of the diagnostic sensor. Instead, a boundary at 10% of maximum
steady-state power (8.5 MW) was applied as this is the first of several partial-power holds
during the normal HFIR startup procedure. Any potential discrepancies introduced in
the labeling procedure based upon this assumption impact < 0.1% of samples. These
categorical ground truth data were used to interpolate reactor power state for each 10 min
time segment corresponding to the samples on a fill-forward basis. Since the reactor
transition states rarely occur over the 40-week time series, as can be seen in Figure 3,
fill-forward interpolation adequately models the true reactor operational state for a given
10 min time segment.

Figure 3. Reactor operational state of HFIR during the 40-week data collection period.

3.4. Data Partitioning

Given the temporal autocorrelation of the data, an assumption of independence
between samples is incorrect, and therefore, the data set cannot be partitioned into training
and testing sets using stratified sampling. Instead, the method of nested cross-validation
was used [27]. In nested cross-validation, the time series is first partitioned into n time
segments. These segments are organized into n − 1 train/test splits by assigning the ith
split the 0, . . . , i segments as training data and the i + 1th segment as the test data set,
where i = 1, . . . , n − 1. The training and testing scores for a given model are then taken
as an average over the n − 1 splits. A variant of nested cross-validation used in this work
also inserts a buffer between the training and testing partitions to eliminate potential
bias introduced by temporal autocorrelation across the training and testing partitions [28].
While this choice of data partitioning is nonrandom and can therefore introduce bias in
estimating the true training and testing scores, this bias is likely smaller than the bias
introduced by the presence of temporally autocorrelated samples in both the training and
testing sets. Additionally, averaging performance metrics over each split produce estimates
that mitigate nonrandom bias [27], although the extent of this mitigation is unknown.

The 40-week time series was split into four approximately equal-sized segments of
10,000 contiguous samples (the 4th segment contains 9745 samples), which correspond to
approximately 10 weeks each. This size was chosen such that the train and test partition
in each split contained one or more transitions between nuclear reactor power state while
keeping the segments similarly sized. The proportion of “reactor on” data points in
each train and test set, respectively, is 0.55 and 0.48, 0.54 and 0.4, and 0.48 and 0.46.
Hyperparameter optimization, which would reduce the number of test partitions from
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three to two for nested cross-validation and therefore increase bias in the estimates of the
test scores, was not performed. A buffer of one week was placed between each training and
testing partition to mitigate bias introduced by temporal autocorrelation. The approximate
partitions for each of the three train/test splits are shown in the illustration in Figure 4. The
scores reported in the following sections are averaged over the three splits.

Figure 4. Nested train–test split over the 40-week time series. The time series was partitioned into
four segments, and three temporal splits were constructed using walk-forward validation and an
expanding window. A one-week buffer was maintained between the test and train sets.

3.5. Baseline Modeling Efforts

An HMM and a feed-forward neural network were trained and evaluated on the
full feature set to generate the baseline performance of each model. TensorFlow [29],
Scikit-learn [30], and HMMLearn [31] were used in conjunction with custom algorithms to
perform the analyses in this work.

HMMs are stochastic state-space models [32]. They follow the first-order Markovian
assumption that the state of a system at time t + 1 depends only on the state at time t
and is independent of all preceding states. HMMs are fully defined by three parameters:
initial hidden state probabilities, hidden-state transition probabilities, and class-conditional
probability distributions.

For this problem, the HMM used two hidden states to represent the reactor’s oper-
ational status. It was assumed that the observations followed a multivariate Gaussian
distribution to model the emissions from each hidden state. The HMM was trained by
calculating the three parameters directly from the training data using maximum-likelihood
estimation. Similar to calculating priors in Gaussian Discriminant Analysis, the initial
hidden state probabilities were calculated by counting the frequency of each hidden state.
Similarly, the hidden state transition probabilities were calculated by counting the fre-
quency of each hidden state transition between timesteps. The class-conditional probability
distributions were calculated by estimating a multivariate Gaussian distribution for each
hidden state. Predictions with this HMM for testing were obtained using the Viterbi algo-
rithm [33]. Given a sequence of observations from the testing set, the Viterbi algorithm
uses dynamic programming to calculate the sequence of hidden states with the highest
likelihood. The HMM trained on all the features achieved an accuracy of 0.583. A plot of
the predicted classes versus the actual classes over the three test partitions are shown for
the HMM in Figure 5.

Feed-forward neural networks are deep-learning models used widely in machine
learning [34]. They consist of an input layer, a user-specified number of hidden layers
with user-specified widths, and an output layer. The number of neurons at the input layer
of a neural network classifier is the same as the number of input features, whereas the
output layer contains as many neurons as the number of classes, each corresponding to
one of the possible classes. In this work, each layer is fully connected to the next. When
input data are presented to the neural network, they are propagated through each layer,
where they are weighted, summed, biased, and passed along to the next layer through a
non-linear activation function. Using non-linear activation functions and hidden layers,
neural networks can approximate arbitrary functions [35].
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Figure 5. True reactor operational state (blue line) and that predicted by the baseline HMM (orange
data points) for each of the three test set partitions. For Partition 1, the HMM predicted “reactor on”
for all inputs. The model achieved an average accuracy across the three test partitions of 0.583.

The feed-forward neural network used in this work had an architecture of six hidden
layers with 250, 150, 90, 50, 30, and 20 neurons each with ReLU activation [36] (except
for the last layer, which used softmax activation), used the Adam optimizer with an ini-
tial learning rate of 0.0001 [37], used cross-entropy loss with added L1 regularization set
with the hyperparameter 0.001 to encourage sparsity [38], and ran for 100 epochs. The
feed-forward neural network was trained by initializing the weights and biases to random
values and then determining the optimal weights and biases at each layer using backpropa-
gation [39]. While the traditional gradient-descent training technique was suitable for this
demonstration, non-iterative training approaches may be employed in deployment scenar-
ios to increase training speed while maintaining good generalizability [40,41]. Predictions
were made using this feed-forward neural network by propagating the test set observations
through each layer until it reached the output layer, where the class corresponding to the
neuron with the highest softmax value was chosen as the predicted class.

The feed-forward neural network trained on all the features achieved an accuracy
of 0.811 ± 0.005 averaged over 50 runs with different randomized initial weights. The
statistical uncertainty was determined using standard error to construct a 95% confidence
interval. A plot of the predicted classes versus the actual classes over the three test partitions
is shown for a random trial run of the feed-forward neural network in Figure 6.

Figure 6. True operational state (blue line) of the reactor and that predicted by the baseline feed-
forward neural network (orange data points) for each of the three test set partitions. The model
achieved an average accuracy across the three test partitions of 0.811± 0.005.
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4. Feature Importance and Wrapper Methods

This work next provides a review of the application of feature importance methods
to sensor data and introduces node and region importance methods as a model-agnostic
means to achieve post hoc explainability for multisensor arrays.

4.1. Feature Importance

Node and region importance are closely related to feature importance, which measures
how much individual features contribute to the overall performance of a model. Feature
importance can provide insight into model explainability and aid in feature selection
by distinguishing between features which do and do not contribute to increased model
performance [42,43]. Feature importance has been used in many studies applying machine
learning techniques to data collected by sensors to gain insight into explainability and
feature selection. For example, permutation feature importance was used to measure
sensor importance in a study classifying sitting posture to select a high-performing subset
of features for a random forest model [44]. Gini importance and backward selection on a
k-nearest neighbors model were used to eliminate irrelevant sensors in a study classifying
the quality of a laser weld using features derived from sensor data [45]. Permutation feature
importance was used to find the optimal placement of sensors on a circulation control wing
for aircraft aerodynamics [46]. In addition, mutual information-based feature selection and
genetic algorithm linear discriminant analysis feature selection were used to determine the
most important features derived from sensor data for model-assisted fault detection [47].
More recently, novel feature importance methods based on weight changes were used to
determine the relative importance of traffic features in deep belief networks regressing
vehicle-collision frequency on a highway in Canada [48].

4.2. Wrapper Methods

While there are many feature importance methods designed for specific models such as
out-of-bag permutation feature importance for random forests [49], SVM-RFE for support
vector machines [50], integrated gradients for neural networks [51], and Vi-II/Vi-HI for
deep belief networks [48], this work focuses on a class of feature importance methods
called wrapper methods, which “wrap” around the model to measure the importance of
individual features [52]. The key benefit of wrapper methods is that they can be applied to
any model in any context to measure feature importance. The specific wrapper methods
considered here are Leave One Covariate Out (LOCO) [53] and Forward Feature Selection
(FFS) [42]. In LOCO, the feature importance of the ith feature is measured as the difference
in accuracy between a model trained on a full set of features and a model trained on all
the features except for the ith feature. In FFS, candidate features are iteratively added to
a working set of features by greedily adding the candidate feature, achieving the highest
accuracy for the working set at each iteration. The order in which features are added to the
working set provides a ranking of feature importance.

4.3. Node and Region Importance

Node and region importance extend traditional concepts of feature importance by
directly measuring how much a group of features derived from a node or region, considered
in tandem, contribute to the overall performance of a model. That is, LOCO and FFS may
be defined as wrapper methods for node and region importance by grouping features
derived from single nodes and spatially collocated sets of nodes. More specifically, LOCO
is extended to Leave One Node Out (LONO) by measuring the importance of the ith
node as the difference in accuracy between a model trained on the full set of features
derived from the full set of nodes and a model trained on the full set of features except
for features derived from the ith node. Leave One Region Out (LORO), Forward Node
Selection (FNS), and Forward Region Selection (FRS) are similarly defined. Although initial
efforts in measuring the importance of a group of features have been made for models such
as random forests [54], multilayer perceptrons [55], support vector machines [56], and least
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squares regression [57], the spatial importance algorithms introduced in this work provide
a means for measuring node and region importance that can be applied to any model.

While it is possible to measure node and region importance by measuring the im-
portances of the individual constituent features and adding them together, it has been
shown that the importance of a group of features is given by the sum of the importances
of the individual features only if the features are uncorrelated, which is unrealistic for
many practical settings [54]. Feature covariance is especially relevant for data collected by
multisensor networks where there are many potential sources of correlation. For example,
there is correlation between different but related sensing modalities on a single node and
between the same sensing modality across two different, nearby nodes. Given this fact,
node and region importance provide strong advantages over measuring the importances of
individual features and considering the individual importances in a group when evaluating
the impact of a given node or region on a classification problem. A limitation remains in
that node and region correlations are likely to result in nodes and regions contributing
different amounts of information to the classification problem when considered jointly
versus in isolation [58]. While covariates may be identified through pairwise, iterative
analyses, there is a combinatorial explosion in the required number of trials, rendering
such approaches intractable in the general case.

5. Analysis and Results

Next, the performance of the spatial importance algorithms is evaluated by addressing
the question of which nodes and regions of the multisensor network are the most important
for enabling the accurate prediction of nuclear reactor operational state.

5.1. Hidden Markov Model

Figure 7 is a plot of the accuracy differences obtained through LONO analysis applied
to the HMM. The differences in accuracy between the model trained on the full set of
features and the model trained on all the features except for those derived from the ith
node are ordered from top to bottom in order of highest positive accuracy difference (i.e.,
most important) to largest negative accuracy difference (i.e., most confounding). From this
plot, it can be seen that Node 9 had a strong positive impact on model accuracy. On the
other hand, Node 2 had a strong negative impact on model accuracy.

Figure 7. LONO analysis applied to the HMM. Nodes are sorted from most (top) to least (bottom)
important. While most nodes have a moderate impact on model accuracy, Node 9 stands out as the
most important to the classification problem and Node 2 as significantly confounding.

Figure 8 is a plot of the accuracy differences obtained through LORO analysis applied
to the HMM. From this plot, Region A was identified as having a strong positive impact on
model accuracy, whereas Regions E and C were identified as having negative impacts on
model accuracy.
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Figure 8. LORO analysis applied to the HMM. Regions are sorted from most (top) to least (bottom)
important. Region A was identified as having a strong positive impact on model accuracy, whereas
Regions E and C were identified as having negative impacts on model accuracy.

Figure 9 is a plot of the accuracy obtained after adding each node to the working set
of nodes during FNS analysis applied to the HMM. The nodes are ordered by importance
as determined based on node selection into the working set during the execution of the
algorithm (i.e., the node that provides the highest accuracy is selected at each iteration).
From this plot, it can be seen that Node 6 was the most important node. Conversely, Nodes
5, 4, and 2 were ranked of lowest importance in this analysis. Additionally, model accuracy
decreased when Nodes 5, 4, and 2 were selected, which indicates that these nodes have a
negative impact on model accuracy. Interestingly, the two most important nodes (Nodes 6
and 9) and four least important nodes (Nodes 2, 4, 5, and 7) are similarly identified in the
FNS and LONO analyses.

Figure 9. FNS analysis applied to the HMM. Nodes are arranged left to right in order of decreasing
importance. After information was added from three nodes, additional nodes provided negative
contributions to model accuracy.

Figure 10 is a plot of the accuracy obtained after each region was added to the working
set of regions during FRS analysis applied to the HMM. From this plot, Region A was
ranked most important, whereas Regions C and E were ranked of least importance. In the
case of the latter, their selection resulted in decreased model accuracy, indicating that these
regions have a negative impact on model accuracy.

Figure 10. FRS analysis applied to the HMM. Regions are arranged left to right in order of decreasing
importance. After information was added from three regions, the inclusion of data from additional
regions decreased model accuracy.

These analyses offer valuable insight relevant to feature selection. After evaluating
all the models from these four analyses, it can be seen from the FNS analysis that model
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performance can be increased significantly by only training on features derived from Nodes
6, 9, and 1. An HMM trained only on this subset of nodes resulted in a test accuracy of
0.839, which is a significant improvement over the baseline accuracy of 0.583. Plots of
the predicted classes versus the actual classes over the three test data partitions for the
improved HMM are shown in Figure 11.

Figure 11. True reactor operational state (blue line) and that predicted by the HMM (green data
points) using only data from the three most important nodes identified by the FNS algorithm (i.e.,
Nodes 1, 6, and 9). The model achieved an average accuracy across the three test partitions of 0.839,
representing a significant improvement over baseline performance.

5.2. Feed-Forward Neural Network

Figure 12 is a plot of the accuracy differences obtained through LONO analysis applied
to the feed-forward neural network. For both the baseline full feature set and the feature
set with all the features except for those derived from the ith node, the process of training
and evaluating a model was repeated for 50 trials to determine the statistical uncertainty in
the assessment. A 95% confidence interval was determined using standard error for the
accuracy differences for each excluded node. From this plot, Nodes 6 and 9 were identified
as having positive impacts on model accuracy, whereas Node 7 had a strong negative
impact on model accuracy. Similarly, Figure 13 is a plot of the accuracy differences obtained
through LORO analysis applied to the feed-forward neural network. From this plot, it can
be seen that Region A had a strong positive impact on model accuracy.

Figure 12. LONO analysis applied to the feed-forward neural network. Nodes are sorted from most
(top) to least (bottom) important. Nodes 6 and 9 were identified as having positive impacts on model
accuracy whereas Node 7 had a strong negative impact on model accuracy.
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Figure 13. LORO analysis applied to the feed-forward neural network. Regions are sorted from most
(top) to least (bottom) important. Region A demonstrated a strong positive impact on model accuracy.

Figure 14 is a plot of the accuracy obtained after adding each node to the working set of
nodes during FNS analysis applied to the feed-forward neural network. The performance
of a candidate node was taken as the average over 50 trials with randomized initial weights.
The 95% confidence interval for each selected candidate node is shown in the plot. From
this analysis, Node 6 was ranked most important. Node 7 was ranked of least importance as
it was selected last. Additionally, the selection of Node 7 resulted in a significant accuracy
decrease after its addition into the working set, indicating that it has a negative impact on
model accuracy.

Figure 14. FNS analysis applied to the feed-forward neural network. Nodes are arranged left to right
in order of decreasing importance. After information was added from seven nodes, the inclusion of
data from additional nodes decreased model accuracy.

Figure 15 is a plot of the accuracy obtained after adding each region to the working
set of regions during FRS analysis applied to the feed-forward neural network. From
this analysis, Region A was ranked as most important. Additionally, an analysis of the
candidate scores from the first iteration of the FRS analysis shown in Table 3 demonstrates
that Region A had a significantly higher impact on model accuracy in comparison to other
regions.

Figure 15. FRS analysis applied to the feed-forward neural network. Regions are arranged left
to right in order of decreasing importance. Region A was identified as most important to the
classification problem.

Similar to the improved HMM, the FNS analysis demonstrates that model performance
can be increased by only training on features derived from Nodes 6, 10, 1, 8, 4, 5, and 12. A
feed-forward neural network trained 50 times with different randomized initial weights
on this subset of nodes resulted in an average test accuracy of 0.884 ± 0.004, where the
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error bars represent a 95% confidence interval. This provides a statistically significant
improvement over the baseline average test accuracy of 0.811± 0.005. Plots of the predicted
classes versus the actual classes over the three test partitions for the improved feed-forward
neural network are shown in Figure 16.

Table 3. Candidate scores from the first iteration of FRS analysis.

Region Accuracy

A 0.795 ± 0.002
B 0.556 ± 0.007
C 0.500 ± 0.002
D 0.478 ± 0.002
E 0.586 ± 0.006

Figure 16. True reactor operational state (blue line) and that predicted by the feed-forward neural
network (green data points) using data from only the seven most important nodes, as identified using
the FNS algorithm. A marginal improvement in classification performance was achieved relative to
the baseline model.

5.3. Discussion

These analyses offer valuable insight regarding operations at the HFIR facility as
well as to the performance of the spatial importance algorithms. For example, Nodes 6
and 9 as well as Region A were identified as having strong positive impacts on model
accuracy for both the HMM and feed-forward neural network. The corresponding area
contains the reactor cooling tower, pointing to a potential causal relationship between the
cooling tower and reactor operational state. This result is consistent with basic nuclear
engineering principles: power generation on a megawatt-or-greater scale, which includes
nearly all research reactors (1 to a few MW), HFIR (85 MW), and reactors used for com-
mercial power generation (1–3 GW), necessitates operation of a significant cooling system
for the conveyance and removal of heat from the reactor core [59]. This is traditionally
accomplished using a primary coolant loop to remove heat from the fuel elements and
a secondary loop that receives heat—but not coolant—via a heat exchanger to provide
defense-in-depth containment against radioisotope emissions. While the pumps driving the
primary system are collocated with the core, the secondary pumps are often located away
from the containment building, instead residing near the heat-rejection apparatus (e.g., the
iconic hyperbolic cooling towers), where they are easier to access for maintenance. These
secondary pumps produce signals intrinsically related to, but distinct from, the reactor core,
such as local magnetic fields that may be recorded by the magnetometer and vibrations
that may be detected by the accelerometer. The heat rejection into the environment also
produces local temperature perturbations that may be sensed by the thermometer. In short,
node and region importance analyses, combined with knowledge of the HFIR facility and
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nuclear reactor operations, provide justification for a causal relationship between cooling
tower operations and the nuclear reactor’s operational state.

Further exploration of this hypothesis was carried out using a decision tree [60], an
inherently explainable and relatively simple machine learning model in comparison to a
neural network. Using features derived solely from Node 9, the Gini importance of each
feature was evaluated to obtain an importance metric that quantifies the overall information
gain from a feature throughout the tree, with higher scores implying greater importance
of the feature to the model predictions. The decision tree achieved a mean accuracy of
0.743 over the test partitions (significantly less than the average accuracy of the neural
network, 0.884 ± 0.004, achieved by training on features collected at seven nodes). The
average Gini importances for each feature over the test partitions are shown in Table 4. The
magnetic field variance was observed to be significantly more important than the other
features, followed by acceleration mean and pressure mean, respectively. These importance
scores further support the conjecture regarding the physical indicators associated with the
secondary pumps and fans at the HFIR cooling tower.

Table 4. Average Gini importances for Node 9 features in a decision tree model, ranked from most to
least important.

Node 9 Feature Average Gini Importance

Magnetic Field Variance 0.639
Acceleration Mean 0.145
Pressure Mean 0.107
Acceleration Variance 0.052
Magnetic Field Mean 0.020
Pressure Variance 0.012
Ambient Light Mean 0.005
Ambient Light Variance 0.005
Temperature Mean 0.005
Temperature Variance 0.003
Missing Flag 0.002

Additionally, Nodes 2, 4, and 5, Region C (an area with office buildings), and Region
E (the main entrance to the facility) were identified as having negative impacts on model
accuracy in the analyses applied to the HMM. These are areas of high foot and vehicle
traffic, suggesting that foot and vehicle traffic may produce noise in the data, which reduces
the accuracy of the HMM. Foot and vehicle traffic produce vibrations that may be recorded
by the accelerometer and—for vehicles—transient distortions to the local magnetic field
that may be detected by the magnetometer. There is no clear relationship between foot and
vehicle traffic in these areas and nuclear reactor operational state at HFIR. This suggests
that foot and vehicle traffic may negatively affect the performance of the HMM predicting
the nuclear reactor’s operational state. This likely did not affect the feed-forward neural
network model performance due to the L1 regularization applied to the loss function,
which encouraged sparsity in the model parameters and suppressed noise.

In addition to gains arising from feature selection, another potential explanation for
the improved HMM performance when using select nodes is suggested by the differences
in predictions on the test partitions between the baseline and improved HMM. That is, the
baseline model transitioned between states (except when it only predicted one class) much
more often than the improved model transitioned between states. It is possible that the
class-conditional probabilities overwhelmed the values contributed by the transition matrix
when calculating the predicted state in the baseline HMM. This outcome is consistent with
results found in Bayes classifiers trained on high-dimensional data [61]. Given that this
issue is mitigated as the dimensionality of the data decreases, the removal of nodes may
have significantly reduced the rate of transitions and increased overall accuracy in the
improved HMM.
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Node 7 was identified, using both LONO and FNS analysis, as having a strong
negative impact on model accuracy in the feed-forward neural network. A long outage
period occurred at Node 7 during the data collection campaign (Weeks 22–40) due to a
component failure, which likely impacted its importance ranking. In the same way in which
it has been shown that perturbations in test data sets can dramatically change predictions
in adversarial scenarios for neural networks [62], the sensor outage on Node 7 during
the evaluation of the second and third test sets, which affected a significant number of
features, could have dramatically changed the performance of the model. This issue might
be mitigated by a more sophisticated method of filling in the missing data, such as nearest
neighbor [63] or kriging [64] approaches.

As with most other forward- or backward-selection interpretation methods, feature
correlation represents a potential source of bias that may impact assessments of node
and region importance [58]. As such, spatial importance assessments were made based
upon the application of multiple complementary methods in conjunction with the known
physical causal relationships between cooling tower operations and reactor power level.
While a robust node and region ranking assessment would require a thorough multivariate
correlation analysis [65], it is notable that the most important nodes and regions identified
in this work are consistent across models and methods. That is, for both the HMM and
feed-forward neural network and using both the leave-one-out and forward-selection
approaches, Nodes 6 and 9 and Region A were consistently identified as important.

6. Summary and Conclusions

Using data collected by a multisensor network, node and region importance methods
were demonstrated on a problem predicting a nuclear reactor’s operational state with a
hidden Markov model and a feed-forward neural network. First, base models were created,
and then these models were analyzed using node and region importance, and finally the
models were improved with feature selection.

The accuracy of the HMM was increased from 0.583 to 0.839 through feature selection
informed by node and region importance. Node and region importance analyses also
demonstrated that the HMM was potentially sensitive to noise in the data produced by
high foot and vehicle traffic and/or the high dimensionality of the data, which reduced
model performance. Similarly the accuracy of the feed-forward neural network was
increased from 0.811 ± 0.005 to 0.884 ± 0.004 through feature selection, where the error
bars are representative of a 95% confidence interval produced by training and evaluating a
feed-forward neural network for 50 trials with different randomized initial weights and
averaging the results. The results from node and region importance analyses suggested
the feed-forward neural network was sensitive to a sensor outage caused by a sensor
component failure that reduced model performance when missing data were filled in with
a mean over the time series and an additional “missing” flag. Additionally, node and
region importance provided evidence of a potential causal relationship between reactor
operational state and cooling tower operations at the facility, increasing understanding of
the problem context and the predictive models.

The node and region importance methods outlined herein can be applied in any
context where sensors are deployed over a spatial area to record data streams used to
build predictive machine learning models. Since they are extensions of wrapper methods,
they can be applied to any machine learning model, whether it be for classification or
regression, without loss of generality. These methods can be used to identify nodes and
regions with strong positive and negative impacts on accuracy, which can in turn be used
to enhance insight into the problem context, better understand the models generated from
sensor network data, and improve model performance through feature selection. While
the ability to achieve a robust feature ranking is limited by variable correlation across
nodes and regions, consistency across different models and methods can provide strong
evidence to support inferential hypotheses regarding the physical systems. Node and region
importance helps nontechnical users such as policymakers and analysts better trust the



J. Nucl. Eng. 2022, 3 259

predictions and understand the limitations of an otherwise opaque model applied to sensor
network data by providing insight into which nodes and regions drive model performance.
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