
Citation: Magrin, G.; Barna, S.;

Meouchi, C.; Rosenfeld, A.;

Palmans, H. Energy-Loss Straggling

and Delta-Ray Escape in Solid-State

Microdosimeters Used in Ion-Beam

Therapy. J. Nucl. Eng. 2022, 3,

128–151. https://doi.org/10.3390/

jne3020008

Academic Editor: Kimberlee Kearfott

Received: 7 March 2022

Accepted: 30 April 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Energy-Loss Straggling and Delta-Ray Escape in Solid-State
Microdosimeters Used in Ion-Beam Therapy
Giulio Magrin 1,* , Sandra Barna 2, Cynthia Meouchi 3 , Anatoly Rosenfeld 4 and Hugo Palmans 1,5

1 MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; hugo.palmans@medaustron.at
2 Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;

sandra.barna@meduniwien.ac.at
3 Radiation Physics, Technische Universität Wien, 1040 Vienna, Austria; cynthia.meouchi@tuwien.ac.at
4 Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia;

anatoly@uow.edu.au
5 National Physical Laboratory, Teddington TW11 0LW, UK; hugo.palmans@npl.co.uk
* Correspondence: giulio.magrin@medaustron.at

Abstract: Microdosimetry is increasingly adopted in the characterization of proton and carbon ion
beams used in cancer therapy. Spectra and mean values of lineal energy calculated in frequency and
dose are seen by many as the tools which, by complementing dosimetric measurements, allow for the
most complete characterization of the therapeutic radiation fields. The urgency is now to consolidate
the experience and converge to commonly accepted methodologies. In this context, the purpose of
this work is to study the effects of the energy-loss straggling and the delta-ray escape, considering
slab-sensitive volumes; these are, in fact, the typical shapes of solid-state microdosimeters, which are
widely used in investigating light ion therapy beams. The method considers the energy distribution
of delta rays resulting from the collision of the impinging ion and, taking into account the escape,
convolutes it with itself as many times as the expected number of collisions in the sensitive volume
thickness. The resulting distribution is compared to the experimental microdosimetric spectrum
showing a substantially good agreement. The extension of the methodology to a wider range of
ion energy and detector characteristics is instrumental for a detector-independent microdosimetric
assessment of the radiation fields.

Keywords: microdosimetry; ion-beam therapy; energy-loss straggling; delta-ray escape; solid-
state microdosimeters

1. Introduction

In the wake of the rising interest to use proton and carbon ion beams for cancer therapy,
numerous microdosimetric investigations for the characterization of these beam types have
been reported. The reason for these experimental studies is the correlation of lineal energy
spectra with the characteristic increase in biological effectiveness that light ions show at the
end of their path. After several major studies conducted around the world, investigations
are now more mature, collections of lineal energy spectra directly in clinical beams are more
systematic, and the goal has become more ambitious: to provide detector-independent
characterizations of the radiation. This is not an easy task as the microdosimeters used are
different in size, material, shape, and radiation detection processes. Furthermore, there is
no common methodological standard. In this transition phase, it is important to reconsider
the basics and try to give interpretations of the microdosimetric outcomes by referring to
the fundamental quantities and processes of physics.

In this framework, this work studies the influence of energy-loss straggling and delta-
ray escape on microdosimetric spectra collected with slab solid-state detectors under the
radiation of carbon ions. The impact that energy-loss straggling and delta-ray escape have
on microdosimetric spectra was already the subject of Rossi’s pioneering studies [1], and
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a quantitative analysis was proposed more than fifty years ago by Kellerer [2]. However,
no specific references were provided in these investigations to therapeutic ion beams of
energies of hundreds of MeV per nucleon and solid-state microdosimeters, since such
treatment modalities and detectors were, at the time, in their infancy.

In this work, the energy-loss straggling is investigated using recursive auto-convolutions
of the distribution of the energy transferred in the individual collision of an ion and
an electron. This method, originally adopted for spherical gas detectors by Kellerer, is
revisited by considering slab microdosimeters. The procedure is applied to two specific
cases of carbon ion irradiation, with beams of 279.8 MeV·u−1 and 207.8 MeV·u−1 and
a silicon microdosimeter with slab sensitive volume (SV), with a circular cross-section
of 30 µm in diameter and 10 µm in thickness. The computational results are compared
with experimental data collected at those carbon ion energies in the MedAustron ion
therapy center using the so-called “3D mushroom” silicon microdosimeter of the University
of Wollongong with the geometric characteristics mentioned. The electronic collision
distribution provided by Rutherford [3] is modified and simplified to take into account the
limit to the maximum energy of the delta ray, the binding energy of the electrons, and the
effects of delta-ray escape. Two distributions result from this process: the first is used to
estimate the distribution of the energy loss and the second to estimate the distribution of
the energy imparted in microdosimeters.

2. Materials and Methods
2.1. Method: Manipulation of the Collision Distributions

The energy loss straggling is the result of two contributions, one represented by the
probability that the primary particle collides with the electrons of the medium and the
other by the distribution of the energy lost in the single collision. Neglecting nuclear
reactions and Bremsstrahlung and assuming that the binding energy of the electrons
is small, the energy lost by the primary particle crossing the SV equals the sum of the
kinetic energy of the delta electrons created in the collision. Energy loss straggling was
studied in microdosimeters since the 1960s, when only gas detectors (tissue-equivalent
proportional counters, abbreviated as TEPCs) were available. The thickness of the SV
affects the distribution of energy lost and this creates a problem for all those applications
where a univocal specification of the radiation quality is required. Ion-beam therapy is one
of those.

The increasingly widespread use of solid-state microdosimeters for clinical ion beams
requires reconsidering the straggling of energy loss based on the significant differences in
detector characteristics. First of all, solid-state microdosimeters have thicknesses that can
exceed 10 µm as opposed to the 1-micrometer dimension typically simulated by TEPCs.
Secondly, the average energy required to create free charges is of the order of a few electron
volts in solid-state microdosimeters, while in gas detectors, it is about ten times higher.
Moreover, the process of creating a free charge is different in semiconductors and gas.
Finally, the SV of the typical solid-state microdosimeter has the shape of a slab, which
generally has different longitudinal and transversal dimensions, while the TEPCs have
cylindrical or spherical shapes.

Energy loss and energy loss straggling have been extensively studied in the field
of high-energy physics [4–10] and, in microdosimetry, by Kellerer [11,12]. In these two
disciplines, the beam energies and the detector characteristics are quite different. In general,
high-energy physics deals with particles near or above the energy of 1 GeV·u−1 and refers
to detectors whose thickness is of the order of a few millimeters. In microdosimetry, the
detector thickness is of the order of a few micrometers and the energies do not exceed
400 MeV·u−1. The common requirement is that the energy loss in the detectors is negligible
compared to the total energy of the particle passing through them. A parameter that plays a
fundamental role in the evaluation of the energy loss straggling is the number of electronic
collisions per energy deposition event.
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2.1.1. Vavilov’s Distribution

The central element of the studies is the non-relativistic Rutherford cross-section,
which describes the energy transferred in a single collision by the ion and the free electron.
Vavilov’s theoretical approach [6] considers that the energy distribution in a single electron
collision is zero above the energy value єmax and, in the interval 0 < є ≤ єmax, it is defined as:

ωV(ε) =
k0

ε2 . (1)

The constant k0 has the dimension of an energy and, if Equation (1) were not divergent,
would serve as a normalizing factor. Starting from Equation (1), Vavilov provides the
analytical solution for the total energy lost in thin detectors when multiple collisions occur.

For a generic collision distribution,ω(є), (representingωV(є) or any modified collision
distribution discussed below) the condition є = 0 takes into account collisions without
energy losses. The i-th moments of a non-divergent collision distribution ω(є) are given by
the integral:

δi =
∫
εi·ω(ε) dε. (2)

The first moment,
δ1 =

∫
ε·ω(ε) dε. (3)

corresponds to the average energy lost in a single collision. In the non-relativistic approx-
imation, єmax used in Equation (1) is proportional to the kinetic energy of the incident
particle, Ek,i (so єmax = Ek,i·4·me/Mi ≈ Ek,i/459A, where A is the mass number and me and
Mi are the masses of the electron and the incident particle, respectively). The relativistic
approach provides the most accurate solutions, which are used in this work:

єmax =
2meβ

2γ2

1 + 2γme/Mi + (me/Mi)
2 , (4)

where β is the ratio of the speed of the incident particle to the speed of light c, and
γ = (1 − β2)−1/2.

No further corrections of Equation (4) for high and low ion energies are considered
in this investigation. The assumption is to limit the validity of the equation to energies
between 10 MeV·u−1 and 400 MeV·u−1, the latter being the maximum energy of carbon
ions used in clinics.

2.1.2. Kellerer’s Modified Distribution

Kellerer proposed a distribution,ωa(є), to correct the distribution described by Equation (1)
at the lowest energy values according to quantum mechanical calculations [12], taking into
account the binding energy of the electrons. Unlike ωV (є), ωa(є) is not divergent for є
approaching zero. It is important to remember that the distribution ωa(є) describes the
energies of the free electron generated in collisions and not the distribution of energy lost
by the ion in the collision; in particular, the excitation energy is not directly accounted for.
The collision distribution modifications discussed later in Sections 2.1.4 and 2.1.5 use data
extracted from electronic stopping power tables and, therefore, energy loss in excitations is
indirectly considered.

To help visualize the effect of changes on collision distributions, a new representation
is adopted here, which is the energy-weighted collision distribution d(є), obtained from the
general collision distributionsω(є) as follows:

d(ε) = k1·ε·ω(ε), (5)

where k1 is the new normalization factor such that:



J. Nucl. Eng. 2022, 3 131

∫
d(ε)dε = k1

∫
ε·ω(ε)dε = 1, (6)

and therefore k1 = 1/δ1.
The energy є can be represented on a logarithmic scale using the ordinate axis, instead

of d(є), the product є·d(є) to ensure that the area below the curve in a certain interval is
proportional to the collision energy in that interval. Figure 1 is just an example based on
the Kellerer investigation [12], which refers to a 10 MeV proton beam on a 1 µm spherical
site of water (see Section 2.1.5 for further discussion) and shows the effect of Kellerer’s
correction in comparison with Vavilov’s distribution.
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Figure 1. Energy-weighted density distribution of energy loss in a 10 MeV proton–electron collision
in a water target. The dashed red line is based on the modified distribution according to Kellerer
ωa(є) [12]; it takes into account the electron binding energy and is normalized. The solid blue line is
based on the distribution of Equation (1),ωV(є); in this representation, there is no lower limit of the
collision energy and the amplitude is not normalized but adapted to match the modified distribution
at higher values.

2.1.3. Energy Loss and Compound Poisson Process

The numerical procedure for estimating energy loss straggling in the context of micro-
dosimetry was studied by Kellerer [2,11]. It is assumed that the energy lost by the primary
particle coincides with the energy of all the delta electrons generated in the crossing. The
straggling in the energy loss depends on the stochastic processes that regulate the creation
of delta rays, which can be described in terms of Poisson compound distributions.

Distribution of Energy Loss

Let us consider the interaction of the primary ion with the electrons of the target and
focus on two distinguished stochastic processes. First, the probability of undergoing exactly
ν collisions when crossing the volume is described by the Poisson distribution:

p(ν,µ) = e−µ·µν/ν!, (7)

where µ indicates the mean number of primary collisions. Second is the stochastic behavior
of the energy lost in ν electronic collisions. This is obtained starting from the individual
electronic collision distribution, here generally represented as the non-divergentω(є); the
distribution of the energy lost exactly in ν collisions corresponds to the convolution repeated
ν times of the distribution of the single collisions and indicated using the superscript
‘⊗ν’: ω(є)⊗ν. The Poisson compound process, which provides the distribution of the
energy lost in a medium due to different electronic collisions, f(є), is therefore described by
the equation:
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f(ε) = ∑
ν=0

e−µ
µν

ν!
·ω(ε)⊗ν. (8)

In f(є), unlikeω(є), the quantity є represents the sum of the kinetic energy of all the
delta electrons resulting from the collision of the particle. In Equation (8), the termω(є)⊗1

corresponds to the condition of a single collision (ν = 1) which is represented byω(є) itself.
The termω(є)⊗0 refers to the case in which the particle crosses without collisions (є = 0);
the term at the right-hand side of Equation (8) for the case ν = 0 is simply the probability of
no collisions p(0,µ) = e−µ.

For clinical ion beams and SV’s thickness of a few micrometers, a large number of
electron collisions is expected and hundreds of terms in the Poisson part of Equation (8) are
non-negligible; computing the solution f(є) is tedious and unpractical.

A simplification comes from considering the probability of having exactly one collision
in a specific thickness. Let us consider a small thickness in which the probability of
electronic collision is low. In that case, calculating f(є) from Equation (8) is simple as
most values in the Poisson term are close to zero and can be neglected. For instance, at
a thickness d1 corresponding to one collision on average, for ν > 8, all Poisson terms are
lower than 10−7 and can be ignored. Explicitly indicating in the notation the reference
thickness d1, f(є,d1), of Equation (8), is reduced to a sum of only nine terms. For a detector
whose thickness is a multiple, h, of the original thickness d1, the energy loss distribution is
obtained simply by auto-convoluting h times f(є,d1). For an even thinner SV, for instance, a
slab with a thickness, d0, 1024 times smaller than d1, only the Poisson terms corresponding
to ν = 0 and ν = 1 are non-negligible, all others being smaller than one millionth. For
the condition ν = 0 of no collision, p(0,1/1024) = e−1⁄1024. The probability of one collision
(e−1/1024/1024) and can be approximated with [1-p(0,1/1024)]. For this very thin detector,
Equation (8) becomes:

f(ε, d0) ∼=


e−1/1024, ε = 0[

1− e−1/1024
]
·ω(ε), εmin < ε ≤ εmax

0, elsewhere.

(9)

The term єmin corresponds to the minimum energy for which the collision distribution
is defined, and it is discussed in more detail in Section 2.1.4. below. For any detector
whose thickness dm corresponds to the thickness d0 multiplied by an integer number of
times m, the distribution of the energy loss is calculated auto-convoluting m times f (є,d0)
of Equation (9). The use of the auto-convolution is justified if the following assumptions
are fulfilled:

• the probability of having a collision at a certain point is statistically independent of
the probability of prior collisions;

• the energy lost in a single collision is negligible compared to the total energy of the ion;
• the mean energy lost in the thickness dm is the sum of the mean energy lost in each

single sub-element of thickness d0.

The energy lost in the thickness dm is therefore:

f(ε, dm) = f(ε, m·d0) = f(ε, d0)
⊗m. (10)

Mean Energy of a Primary Collision

The number of times that the auto-convolution must be repeated in the target of
thickness dx corresponds to the average number of primary collisions, dµ. This value can
be approximated by the product of the electron density in the material and the volume of
interaction around the primary trajectory:

dµ =
NA·ρ·Z

A
·π
(

b2
max − b2

min

)
·dx , (11)
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where NA is the Avogadro’s number, Z and A are the material atomic number and atomic
weight, ρ is the density, and where b2

max and b2
min are defined in the framework of Bohr’s

theory [13] as the maximum and minimum distance from the trajectory of the particle for
which the interaction causes energy losses:

bmin = 1
4πε0

ze2

γmec2β2

bmax = 1
4πε0

ze2

cβ

√
2

meI ,
(12)

where z is the charge of the ion, ε0 is the dielectric permittivity in a vacuum, and I is the
mean excitation energy. In the case of semiconductors, the mean excitation energy in the
term of bmax is approximated by the amplitude of the bandgap. Dedicated studies should
be carried out to assess the degree of this approximation. The average energy in a primary
collision δ1, is the ratio between the average energy loss in electronic collisions per unit of
length, S = dE/dx, and the average number of primary collisions per unit of length. Using
Equation (11), it results as follows:

δ1 =
dE
dx
·dx
dµ

, (13)

Figure 2 shows the mean value δ1 obtained in a silicon SV as a function of the energy
per nucleon up to the maximum energy of the carbon ions used for therapeutic purposes
(400 MeV·u−1). At energies of a few MeV/u the ion can capture electrons from the medium
it is traversing, thus decreasing its effective charge; in this case, the values provided by
Equation (13) do not correctly represent δ1. At the energy of 400 MeV·u−1, δ1 is 2.5 times
greater than the of W value, indicating that most of the free electrons are not generated
directly by the primary ion but by the delta rays themselves. Consequently, the energy
transferred is also derived, in a considerable way, from non-primary collisions.
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Figure 2. Mean energy of the delta rays produced in a single collision of the primary particle with
the electrons of the medium. The dotted line corresponds to the W-value in silicon.

2.1.4. Kellerer’s Simplification

The modified distribution ωa(є), discussed in Section 2.1.2, takes into account the
binding energy of the electrons. Kellerer [12] proposed an alternative and simplified
distribution,ωb(є), which, although significantly different fromωa(є) at lower values, has
little or no impact on the representation of f(є) if the thickness d is sufficiently high. The
distribution ωb(є) can be expressed similarly to Equation (1), restricting the definition
interval to єmin < є < єmax and forcing it to be zero in the interval 0 < є < єmin.

The value of єmin is experimentally estimated to ensure that δ1 is compatible with the
electronic stopping power. This condition is satisfied if the ratio between the energy δ1,
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estimated from Equation (3) using ωb(є), and the thickness d1, corresponding, on average,
to a single primary collision, coincides with the electronic stopping power, S:

S =
δ1

d1
=

1
d1

∫ εmax

εmin

ε·ω(ε)dε =
k0

d1

∫ εmax

εmin

1
ε

dε =
k0

d1
(ln εmax − ln εmin) (14)

and therefore:

εmin =
εmax

e(d1·S/k0)
(15)

An example from Kellerer [12] justifies this simplification in the case of 10 MeV
protons in water. He compared the effects of choosingωa(є) orωb(є) on Equation (8) for
the estimate of f(є) for various site thicknesses. He showed that the difference is negligible
for thicknesses corresponding, on average, to at least 256 times the average thickness d1.
This phenomenological result can be generalized to other ions and targets since it depends,
almost exclusively, on the number of electronic collisions of the primary ion. The topic is
further discussed and illustrated in Section 2.1.5.

Generalization for Solid-State Detectors

Solid-state detectors have an inherent operating limit of sensitivity. For both silicon
and diamond-based types of microdosimeters currently used [14,15] the equivalent noise
charge exceeds one thousand electrons. From the considerations made in Figure 2, it is
reasonable to hypothesize that, for signals collected above the noise, at least 400 primary
collisions occur. Therefore, due to the low sensitivity of solid-state detectors, f(є,d1) can
always be calculated for ion beams using the simplified distributionωb(є) instead of ωa(є)
and this does not introduce significant distortions.

Useful Parameters

Although the approach adopted in this work to evaluate f(є) is based on numerical
convolutions, it is useful to refer to two parameters described by Vavilov’s analytical
solution. The first is ξ, which is the energy averaged over all impact parameters and can be
considered as an approximation of the average energy lost by the incident particle through
electronic collisions in the thin detector thickness d. According to Hancock et al. [10], it is
expressed as:

ξ =
2π z2e4NAv Z ρ d

me β
2 c2 A

= k2·
z2

β2
Z
A
ρ d (16)

The second parameter of Vavilov’s theory is the ratio κ = ξ/єmax which can be used
as an indication of the shape of the f(є) distribution. For thin detectors and high parti-
cle energies, few collisions take place, and ξ is much smaller than єmax; κ is reasonably
smaller than 0.01 and the energy loss distribution is well represented by the probability
density function of the Landau distribution, i.e., a peak with an asymmetric tail extended
indefinitely towards higher energy values (an example of the typical profile of the Landau
distribution is given in Section 2.2.2). As the thickness of the detector increases, the value
of ξ increases proportionally, and so does κ. Progressively, the peak of the distribution shifts
towards higher energy values approaching єmax. When κ is greater than 0.01, f(є) appears
as the Landau distribution truncated to approximately the value of єmax. For κ≈ 1, the peak
exceeds the position of the tail at єmax; the asymmetry, typical of the Landau distribution,
has almost completely vanished and f(є) results in a quasi-Gaussian distribution. For κ > 10
the distribution f(є) is indistinguishable from a Gaussian.

For typical microdosimetric dimensions and clinical beams, κ ranges from 10−2 to
10+4 for carbon ions and from 10−3 to 10+3 for protons. When the particles enter the
patient’s body, the energies are high (κ << 1), and the energy density function maintains
the (truncated) form of Landau; for the particles forming the Bragg peak, the energies are
low (κ > 1) and the Gaussian shape of the distribution is expected, as shown in Figure 3.
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Figure 3. Value of the parameter κ/d (thick blue lines) and ξ/d (thin red lines) calculated for
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Finally, a useful quantity is the range rmax of the delta rays with maximum energy
єmax; its value can be calculated as a function of the energy of the carbon ions using the
lookup tables in the continuous slowing down approximation (CSDA); ESTAR tables [16]
are used in this work, and the results are shown in Figure 4.
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2.1.5. From Energy Loss to Energy Imparted

Delta rays have large ranges and some of their energy is delivered outside the SV.
Therefore, for high-energy beams, the imparted energy distribution, here referred to as
f′(є), is significantly different from the energy loss distribution f(є). This section discusses
the modifications of the collision distributions, ω′(є), necessary to take into account the
delta-ray escape; the distribution of the imparted energy, f′(є), is obtained by repeating
the auto-convolution of ω′(є) analogously to the process described in Section 2.1.3. The
distribution f′(є) refers only to events with energy deposits due to primary particles. Events
due exclusively to delta rays generated outside the SV are currently ignored; however,
these are experimentally significant, especially for high beam energies and can alter the
distribution, as discussed in Section 3.3.



J. Nucl. Eng. 2022, 3 136

In theoretical microdosimetry, the angular distribution of the delta rays is usually
not taken into account because the trajectories are expected to be isotropic. The same
assumption is made in this investigation. Experimental investigations confirm that the
trajectories of the delta rays are distributed over large solid angles; however, the emission
is not isotropic. The direction normal to the beam axis is populated mainly by low and
medium energy delta rays, while the direction parallel to the beam axis is mainly populated
by high energy delta rays [17].

The probability of escape for delta rays is related to the size of the SVs in which they
are generated. In detectors in the shape of a sphere, cube, or cylinder with a height equal to
the base diameter, a single reference dimension is used to characterize the shape and, in
turn, be related to the escape of the delta rays [18]. For slab detectors, the longitudinal and
transverse dimensions can be different, sometimes drastically different, and this should be
taken into account in relation to the delta ray escape. Solid-state microdosimeters used in
ion beam therapy belong to this category; they are generally used by orienting the largest
face perpendicular to the direction of the beam.

Escape-Modified Energy Distributions of Electronic Collisions

To account for the escape of the delta rays, the distributionωb(є) should be changed to
a new collision distributionω′(є). Let us focus on the escape of delta rays and their effect at
higher energies of the collision distribution. For high-energy beams, some delta rays have
a much larger range than the size of the SV and escape is certain. For instance, the range in
silicon of a 400 keV delta ray is 1 mm, as shown in Figure 4; the energy imparted by those
delta rays into the SV of a few micrometers is only a small fraction of the total energy. On
the other hand, delta rays with energies of the order of 1 keV have ranges less than 1 µm and
a negligible probability of escaping the SV. It is realistic to think that the new distribution
ω′(є) has a gradual decrease to zero with respect to the original distributionsωv(є) orωa(є)
in the region, where the range is comparable with the detector size. The dashed red line
in Figure 5 illustrates the behavior of the energy-weighted escaped-modified distribution
obtained fromω′(є).
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In a more rigorous approach, Monte Carlo simulations should be used to take into
account the emission angles of the delta rays, ranges, and collision position.
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Simplification of the Escape-Modified Distributions

An approximate solution can be used to take into account the escape of the delta
rays. Instead of the smooth transition ofω′(є) shown in Figure 5, the simplified collision
distribution,ω′′(є), is truncated to a chosen value of the energy єt, which is significant in
terms of delta ray escape. Figure 5 shows the drastic simplification provided by choosing
ω′′(є) instead ofω′(є). For energies lower than 4 keV,ω′′(є) coincides with the distribution
ωb(є) discussed in Section 2.1.4. This approximation of a sharp cut is very similar to
standard practice in cavity integrals for ion chambers using restricted stopping powers
with an electron production cut. With a natural (and approximate) choice, it is assumed
that єt corresponds to the energy having a range coinciding with half of the transversal
dimension of the SV. The result is a rectangular distribution; the graphical comparison
between the two distributionsω′(є) andω′′(є) (represented in terms of energy-weighted
distributions) is shown in Figure 5 using a dashed red line and a solid blue line, respectively.

The distribution of the imparted energy f′′(є) is evaluated by repeating the auto-
convolution process that is described before in Section 2.1.3 forω′′(є).

Further Considerations on the Energy Imparted and on the Escape of the Delta Rays

The energy imparted to the detector due to multiple collisions also depends on the
transit of the delta rays inside and outside the walls of the SV. Two geometries are discussed,
assuming that, in the region where the detector is positioned, the irradiation of the primary
particles is uniform and unidirectional and the lineal energy transfer (LET) is constant.

Let us first focus on an ideal slab infinitely extended laterally so that the delta rays
exit and re-enter only through the front and rear faces, see Figure 6a. Those delta rays
that enter the SV are generated by the same primary particle that passes through the SV
and are almost simultaneous. The energy subtracted from the escape of the delta rays is
compensated, stochastically, by the inflow of energy due to the external delta rays. Perfect
equilibrium occurs only when the radiation field is uniform and the wall effects in the
microdosimeter are negligible. The latter condition is satisfied only if the material and
the density of the SV are the same surrounding material. For solid-state microdosimeters,
this condition is only approximate; while the back wall and the side walls are of the same
material, often the front face of the microdosimeter is free or sealed with a layer of plastic
materials. Since the number of primary events has not changed, the average energy per
event of primary particles, ε1, is also unchanged. However, the profile of the imparted
energy distribution is actually influenced by the transit of delta rays. What is expected
is the decrease of events at highest energies compensated by the increase of events at
lowest energies.

In the second case, a plate with limited lateral extension is considered in which the
conditions of equilibrium of particles and energy are satisfied, see Figure 6b.

In this case, part of the energy is imparted by the delta rays which are generated by
primary particles which do not cross the SV. Moreover, in this case, the equilibrium between
the energy ejected and injected into the volume by the delta rays is also stochastically
maintained. However, delta rays that are not synchronized with any primary event in the
detector generate new events (represented by the delta ray “f” in Figure 6b). The total
number of events is then increased. This corresponds to a decrease in the average energy
deposited per event ε1. Events due solely to delta rays populate the lowest energy part
of the spectrum. In the scanned ion beams, local irradiation inhomogeneity is likely to
occur particularly at the boundary of the irradiated volume. If this happens, there is no
equilibrium of particles or energy, and the number of primary and secondary particles may
be non-uniform in space.
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2.2. Method: Numerical Evaluations
2.2.1. Electronic Collision Distribution

For the numerical evaluation, the exact representation of the probability density func-
tion of energy losses in the individual collisions must be replaced by a discrete distribution.
The distributionωb(є), corrected and simplified to take into account the binding energy of
the electrons as discussed above, is replaced by its representation in discrete valuesωb,i.
This process is based on the following considerations:

• The maximum value єmax is obtained as a result of the formula for the relativistic
solution in Equation (4), considering the energy of the primary ion;

• The value of єmin used in the discrete distribution is obtained using the approximate
process according to Equation (14). This ensures that the calculated energy transferred
per unit length matches the values provided by the selected electronic stopping power
tables. The probability of collision in the interval 0 < є < єmin is given by the value P(0);

• The energy increment ∆i, in the discrete representation ofωb,i, is chosen to be constant
and equal to єmin;

• The value of δ1 calculated using the discrete sum:

δ1 =
єmax

∑
εmin

εi·ωb,i·∆i, (17)

• must be equal to the exact solution calculated with Equation (3). To ensure this, the
value ofωb,i for the i-th bin is not calculated at the edge of the bin (єi or єi+1) but at a
point within the interval (єi, єi+1) at a distance ∂є. Therefore, the discrete values,ωb,i,
approximating the analytic function,ωb(є), are obtained as:

ωb,i = ωb(єi + ∂є). (18)
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• The value of ∂є is chosen as the value that equals the values of δ1 calculated numerically
and exactly:

δ1 =
єmax

∑
εmin

εi·ωb(єi + ∂є)·єmin =
∫ єmax

εmin

ε·ωb(ε) dε, (19)

• whereωb(єi + ∂є) = 1/(єi + ∂є)2 and, from Equation (1),ωb(є) = k0/є2 in the interval
of energies (єmin,єmax). Therefore,

єmin·
єmax

∑
εmin

εi

(єi + ∂є)2 = k0(ln εmax − ln εmin). (20)

• The discrete distribution is normalized also taking into account the valueωb,0 which
refers to the condition of no collision. Therefore:

єmax

∑
0
ωb,i·∆i = 1. (21)

2.2.2. Energy-Loss Distribution

Once the energy limits of the discrete distribution (єmin and єmax), the values of the
discrete distribution (ωb,i), the increment (Di), and the displacement (∂є) have been defined,
the discrete distribution of energy loss fi(єi) is evaluated by the numerical convolution
process described in Equation (10). The mean energy lost in a thickness corresponding,
on average, to µ collisions is ε = µ·δ1. This also corresponds to the first moment of the
energy-loss distribution in Equation (3). Under typical microdosimetric conditions, the
number of collisions, µ, is of the order of tens of thousands. The total number of bins in
which the distribution is represented, corresponding to the ratio єmax/єmin, can reach one
million at the highest energies. To limit the computation time, care must be taken when
setting the precision parameters for the convolutions.

Let us first take into account the energy lost in the electronic collision which is repre-
sented by a discrete distribution, (ωb,0, ωb,1, . . . ωb,i, . . . ), which approximates the con-
tinuous distributionωb(є). The energy loss straggling for thicknesses that double at each
step is represented by the successive convolutions calculated using Equations (9) and (10).
An example of the numerical convolutions representing energy loss straggling at vari-
ous thicknesses is shown in Figure 7 for a 25 MeV·u−1 carbon ion beam in a silicon SV
(єmin = 0.55 eV and єmax = 55.4 keV).

The curve f(є,d0) is indicated in the figure as (A) and all the first nine auto-convolutions
show the trend of Rutherford’s cross-section, i.e., proportional to 1/є2. The distribution (B),
after ten auto-convolutions, refers to the thickness corresponding, on average, to a single
primary collision. By increasing the thickness of the SV, the probability of “non-collision”
decreases and progressively, a peak is formed as in distribution (C). The spectra show a
decline that occurs at approximately the value єmax, with a very slight dependence on the
order of the auto-convolutions. For the distribution (C), κ is of the order of 10−3, and the
distribution can be considered as a typical Landau distribution since the ratio between
the values of the distribution at the peak and the fall is greater than 106. Continuing with
the convolutions, this ratio progressively decreases. For the distribution (D), the peak
amplitude is only one hundred times larger than the amplitude at the fall. The parameter κ
assumes a value of the order of 0.2 and the truncation in the Landau distribution begins
to be visible also in the linear representation. As the thickness further increases, the peak
gradually shifts to the right side, reaching and exceeding єmax. For the distribution (E), the
parameter κ is above unity and the profile approximates a Gaussian distribution.
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Figure 7. (a) The recursive convolutions of the discrete energy loss distribution calculated for
25 MeV·u−1 carbon ions in silicon. The curve (A) corresponds to f(є,d0) of Equation (9). All other
distributions are represented with grey dashed lines corresponding to f(є,d0) convoluted a number
of times increasing to the power of two. Some distributions, emphasized with solid blue lines
correspond to the following: (B) energy loss distribution f(є,d1), corresponding, on average, to one
electronic collision (µ = 1); (C) Landau-shaped distribution (µ = 24); (D) energy loss distribution
(µ = 212) showing a truncation at values slightly higher than єmax; (E) energy loss distribution (µ = 215)
showing a quasi-Gaussian behavior. (b) Distributions (B–E) represented in linear scale with arbitrary
units.

In thicker detectors, when κ ≥ 10, the numerical solution based on convolutions can
be replaced with an approximated analytical solution in the Gaussian form evaluated
according to Seltzer and Berger [9] as:

f(ε) ≈ 1

ξ

√
2π
κ

(
1− β2/2

)e
−[ (ε−ε)

2
2

κ

ξ2(1−β/2)
]

(22)

• where the variance is given by σ2 = ξ2

κ

(
1− β2/2

)
.

2.2.3. Energy-Imparted Distribution

Let us consider the case of a slab detector with limited lateral extension (a few tens
of micrometers) for which the escape of delta rays must be taken into account to evaluate
the distribution of energy imparted. Using the simplification described in Section 2.1.5, the
effect of the delta-ray escape results in the new distributionω′′(є) obtained by estimating
the appropriate threshold energy єt. The values of the elements ω′′i coincide with the
values of the elements ωb,i in the interval єmin ≤ є ≤ єt and are zero for є > єt. The
discrete distribution of ω′′i is used for the estimation of the imparted energy distribution.
Obviously, the normalization is lost and sum of allω′′i is less than one. The first moment δ1

′′

is obtained by using the elementsω′′i in Equation (19). On average, the ratio between the
total energy imparted (µ·δ1

′′) and total energy loss (µ·δb,1) is independent of the thickness
of the SV and it is simply given by (δ1

′′/δb,1).
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Similarly to what is described in Section 2.1.5, the imparted energy distribution f′′i(є)
is obtained from successive convolutions of the modified collision distributionω′′i.

The effect of different threshold energies єt on the distribution f′′i(є) is displayed in
Figure 8. By decreasing the value of єt, the energy-imparted distributions rapidly approach
a Gaussian distribution as the number of collisions increases. In the energy loss distribution,
the long tail remains visible also for thicknesses corresponding, on average, to more than
one thousand primary collisions.
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Figure 8. Energy loss straggling distribution f′(є) for 300 MeV carbon ions in 4.5-micrometer silicon
target (solid red line) and effects on the energy imparted distribution when the delta ray above the
energy of 16.6 keV (dashed black line), 11.7 keV (dashed dark grey line), and 5.5 keV (dashed light
grey line) are excluded.

As the energy of the primary particles decreases, єmax also decreases, and, in turn, the
range of the delta rays decreases and approaches the size of the microdosimeter. At the same
time, the number of primary collisions per unit of length increases. The lower the energy of
the primary particle, the more the distribution profile resembles a Gaussian distribution.

2.3. Material: The Ion Beam and the Microdosimeter

Microdosimetric spectra were collected at the MedAustron ion therapy center using
a silicon microdosimeter and carbon ion beams of nominal energy 213.4 MeV·u−1 and
284.7 MeV·u−1. The silicon microdosimeters used in this work are based on the concept of
high-resistivity p-type silicon on insulator (p-SOI) and were developed at the Center for
Medical Radiation Physics (CMRP) of the University of Wollongong, Australia [19,20]. The
SV of the microdosimeter used in this investigation has a thickness of 10 µm and a circular
cross-section with a diameter of 30 µm. A fixed (non-scanned) pencil beam with a quasi-
Gaussian profile in both transversal directions and full width at half maximum of 6 mm is
directed toward the center of the detector. Before reaching the microdosimeter, the beam
passes through a layer of RW3 polystyrene with a water-equivalent thickness of 4.5 mm.
The effect is a degradation of the nominal ion energies which results, according to the
ICRU reference tables [21], in 207.8 MeV·u−1 and 279.8 MeV·u−1, respectively. According
to SRIM reference tables [22], the resulting energies are 207.7 MeV·u−1 and 279.9 MeV·u−1,
respectively. The relative energy uncertainty of the beam is assumed to be 1% of the
energy. It is important to note that, in the context of ion beam therapy, the study of
monoenergetic beams is not a limit when passive systems are also used to spread out
the energy. Indeed, more recent systems are characterized by beams that are actively
scanned in three dimensions and the complex irradiation of tumors can be broken down
into individual contributions from monoenergetic beams.
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The signal from the detector is first processed with the charge-preamplifier and a
shaping amplifier made at Wollongong University and incorporated into the microdosime-
ter holder, producing a bipolar pulse with a shaping time of 3 µs. The shaped pulses
are directed to the multi-channel analyzer of the company ORTEC, model 928 MCB, and
processed using ORTEC’s Maestro software. Standard procedures for linearity corrections
of the electronic chain are followed [23]. Calibration is performed based on the ion-edge
method [24–26] using the ICRU tables [21] as a reference and correcting the maximum
reference value of the electronic stopping power for the thickness of 10 µm of silicon [23].
The count rate is maintained between 1200 and 5700 counts per second to minimize the
probability of pulse pile-up. The electronic noise spectra are collected before and after
the irradiation; the noise distribution is assumed to be Gaussian and centered at zero and
shows a five-standard-deviation width corresponding to 0.8 keV·µm−1.

3. Results
3.1. Energy-Loss Distribution

For the specified mono-energetic ion-beam energy, material, and thickness, the values
of єmax, bmin and bmax, єmin, and dn/dx, are calculated from Equations (4), (11), (15) and
(12), respectively. The value of the electronic stopping power, S is evaluated by linear
interpolation of the tabulated values for carbon ions in silicon. The mean energy in the
collisions between primary particle and electron of the medium δ1 and the mean number
of collisions in the site µ are evaluated using Equations (11) and (12), respectively. Table 1
reports the collision parameters evaluated for a silicon microdosimeter with thickness of
10 µm.

Table 1. Collision parameters for carbon ions on a silicon microdosimeter with thickness of 10 µm.

Parameter Unit
Carbon Ions

279.8/MeV·u−1 207.8/MeV·u−1

κ, (relativistic estimation) 2.23 × 10−2 3.82 × 10−2

ξ¸ approximation of the mean
total energy lost, through

electronic collisions,
in the detector

keV 15.69 19.34

єmax,
maximum delta-ray energy

(relativistic estimation)
eV 7.04 × 105 5.06 × 105

єmin,
minimum delta-ray energy eV 6.41 × 10−1 6.34 × 10−1

δ1, mean collision energy
of the ion and electron

in the medium
eV 8.91 8.62

dµ/dx, mean number
of primary collisions

per unit of length
nm−1 2.81 3.461

µ, mean number of primary
collisions in the SV 2.81 × 104 3.46 × 104

d1, mean distance between
primary collisions nm 3.56 × 10−1 2.89 × 10−1

Sel/r, mass electronic
stopping power from

ICRU lookup tables [21]
keV·µm−1 10.79 12.86

Sel/r, mass electronic
stopping power from

SRIM lookup tables [22]
keV·µm−1 10.43 12.45
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Starting with f(є,d0), the distribution f(є,d1) is computed, according to Equation (10), as
f(є,d1) = f(є,d0)⊗10. For the carbon ion energy of 207.8 MeV·u−1, a total of (1024·µ) = 35,450,880 con-
volutions of f(є,d0) should be performed. This number can be reduced to just 32 convolutions.
In the procedure used to reduce the number of convolutions, it is useful to consider the
number (1024·µ/2) and use its binary representation: 1 0000 1110 0111 1000 0000 0000.
First, twenty-five auto-convolutions (corresponding to the number of binary digits) are
recursively estimated. Then, the results of the 12th, 13th, 14th, 15th, 18th, 19th, 20th, and
25th convolutions (corresponding to the binary digits with value 1) are, in turn, convoluted;
considering the properties of the auto-convolutions, an approximation can be made by
excluding the convolutions below the 16th from this process, which would affect the final
result by less than one-thousandth.

In the following, the use of the symbol y, which generally refers to lineal energy,
is extended, in a somewhat arbitrary way, to the distributions of energy loss and to the
distributions of energy imparted, indicating the energy loss per unit of length as yloss and
the energy imparted per unit length as yimp.

Figure 9a represents on a logarithmic scale the sequence of convolutions relevant for
the estimation of the density distribution of the energy loss. Figure 9b shows the result yloss
of the convolution process for the 207.8 MeV·u−1 carbon ions traversing a 10-micrometer-
thick silicon SV. This energy loss per unit length can be seen as the microdosimetric
spectrum under the ideal circumstance that the delta-ray escape is negligible; it is given
at density 1 g·cm−3 as it is done in general for lineal energy spectra [27]. As the value
κ = 0.04 suggests, the distribution is represented by a truncated Landau function: the
smooth truncation is visible in the figure at approximately 27 keV·µm−1.
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Figure 9. (a) Logarithmic representation of the most significant auto-convolutions; the curves, with
peaks moving from left to right, are the 12th, 13th, 14th, 15th (dashed light grey) 18th, 19th, 20th, 25th,
and (dashed blue) auto-convolutions; the solid red curve represents the energy loss distribution in a
10-µm-thick silicon SV of 207.8 MeV·u−1 carbon ions. (b) The same distribution represented in linear
scale and terms of energy loss per unit of length; for comparison, the corresponding value of LET is
indicated (dotted blue line).

For the primary particle energy of 279.8 MeV·u−1, the required 28,765,184 convolutions
are reduced to a total of 34 convolutions, 24 recursive auto-convolutions plus 10 addi-
tional convolutions (using the corresponding binary representation 1101 1011 0111 0110
0000 0000).
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3.2. Energy-Imparted Distribution

To represent the imparted energy, the procedure based on recursive auto-convolutions
described in Section 2.2.3 is performed starting from the modified collision distribution,ω′′i.

The delta-ray escape is evaluated according to the procedure in Section 2.1.5 selecting
as a threshold, єt, the energy of the electron whose range in silicon corresponds to the
radius of the SV cross-section. For a silicon SV with a circular cross-section of 30 µm in
diameter, the reference range is then 15 µm. Using ESTAR tables [16], this value of the
range is obtained at the energy єt = 37.95 keV. The convolution process described in the
previous section is repeated for the truncated collision distributionω′i.

The result is shown in Figure 10 in terms of energy loss per unit length and energy
imparted per unit length. The curves referring to the energy imparted use the normal-
ization adopted for the energy loss. On the left side, until the peaks are reached, the two
distributions are overlapping. The difference in the area under the curves represents the
fraction of particles that are not accounted for because of the delta ray escape.
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Figure 10. (a) Distribution of the energy loss (dashed red line) and energy imparted (blue solid line)
by primary particles per unit of length calculated for 207.8 MeV/u carbon ion energy in silicon target
with thickness of 10 µm and diameter of 30 µm. (b) Energy imparted per unit of length for the two
beam energies of 207.8 MeV/u and 279.8 MeV/u; the data referring to energy imparted are calculated
using a threshold for the delta-ray energy at 37.95 keV.

3.3. Comparison with Experimental Data

Microdosimetric spectra, collected at the energies of 207.8 MeV·u−1 and 279.8 MeV·u−1,
are represented in Figure 11. The spectra are calibrated in lineal energy using the edge
method described in the literature [24–26] and referring to the electronic stopping power
tables for carbon ions in silicon from ICRU [21]. The imparted energy distribution evalu-
ated according to Section 3.2 for the two carbon ion energies is also displayed in Figure 11.
The microdosimetric spectra are reported in the less usual way, with f(y) as a function
of lineal energy represented in linear scale, instead of the typical y·d(y) distributions in
semi-logarithmic scale. In Figure 11, the values of the normalized spectrum are scaled by
the factor b, with 0 < b < 1, to provide an overlap with the distribution of energy imparted
per unit of length.

Experimental data show the dual role played by delta rays in the formation of a
microdosimetric spectrum.



J. Nucl. Eng. 2022, 3 145

J. Nucl. Eng. 2022, 3, FOR PEER REVIEW 18 
 

 

(a) (b) 

Figure 10. (a) Distribution of the energy loss (dashed red line) and energy imparted (blue solid line) 
by primary particles per unit of length calculated for 207.8 MeV/u carbon ion energy in silicon target 
with thickness of 10 µm and diameter of 30 µm. (b) Energy imparted per unit of length for the two 
beam energies of 207.8 MeV/u and 279.8 MeV/u; the data referring to energy imparted are calculated 
using a threshold for the delta-ray energy at 37.95 keV. 

3.3. Comparison with Experimental Data 
Microdosimetric spectra, collected at the energies of 207.8 MeV·u-1 and 279.8 MeV·u-1, 

are represented in Figure 11. The spectra are calibrated in lineal energy using the edge 
method described in the literature [24–26] and referring to the electronic stopping power 
tables for carbon ions in silicon from ICRU [21]. The imparted energy distribution evalu-
ated according to Section 3.2 for the two carbon ion energies is also displayed in Figure 
11. The microdosimetric spectra are reported in the less usual way, with f(y) as a function 
of lineal energy represented in linear scale, instead of the typical y·d(y) distributions in 
semi-logarithmic scale. In Figure 11, the values of the normalized spectrum are scaled by 
the factor b, with 0 < b < 1, to provide an overlap with the distribution of energy imparted 
per unit of length. 

 
Figure 11. Comparison of the distributions of imparted energy per unit of length (showed in Figure 
10b) of 207.8 MeV·u−1 (blue solid line) and 279.8 MeV·u−1 (red solid line) with the experimental mi-
crodosimetric spectra obtained for the carbon-ion energies of 207.8 MeV·u−1 (blue dots) and 279.8 
MeV·u−1 (red dots) in a 10-µm-thick, 30-µm-diameter silicon microdosimeter. The letters A, B, C, 

Figure 11. Comparison of the distributions of imparted energy per unit of length (showed in
Figure 10b) of 207.8 MeV·u−1 (blue solid line) and 279.8 MeV·u−1 (red solid line) with the experi-
mental microdosimetric spectra obtained for the carbon-ion energies of 207.8 MeV·u−1 (blue dots)
and 279.8 MeV·u−1 (red dots) in a 10-µm-thick, 30-µm-diameter silicon microdosimeter. The letters
A, B, C, and D identify particular points of the distribution useful for discussing the results. The
experimental values below A for the 279.8 MeV·u−1 beam (and below C for the 207.8 MeV·u−1) are
dimmed to emphasize the different ionization sources hypothesized in the text.

First, the escape of the delta rays determining the reduction of the tail at the highest
energies, illustrated already in Figure 10a, is confirmed by the experimental data. In fact,
there is a clear overlap between the calculated distributions with the experimental spectrum
above point C for the energy of 207.8 MeV·u−1 and above the point A for the energy of
279.8 MeV·u−1.

Secondly, pulses due solely to delta rays populate the lower values of the spectrum,
as shown in Figure 11 under points A and C in the two experimental curves. The ions
responsible for the formation of this part of the spectrum are often referred to as “touchers”
in microdosimetry.

For a monoenergetic beam and a known thickness of the detector, the rightmost part
of the microdosimetric spectrum (above the point A and C in the two cases) are univocally
correlated to the energy of the beam. Once the geometry of the SV and the beam energy are
known, the energy loss distribution can be re-calculated numerically and, in this way, it is
possible to indirectly evaluate the LET.

In the calibration of the distributions, the same electronic stopping power tables at the
energies of 207.8 MeV·u−1 and 279.8 MeV·u−1 were used. The overlap of the experimental
and computed peaks, shown in Figure 11, provides an indication of the correctness of the
calibration and, in turn, of the consistency of the electronic stopping power values from the
lookup tables with the experimental results over a broad energy span.

The profile of the imparted-energy distribution at the lowest values can be re-created
starting from the experimental spectrum; for instance, for the spectrum referring to the
energy of 207.8 MeV·u−1 in Figure 11, a quasi-Gaussian distribution interpolating the data
in the interval A-B can be used to extrapolate the part below the point A (and similarly
can be done for the 279.8 MeV·u−1 energy spectrum below the point C). This extrapolation
can be used as a boundary line that divides those events where only delta ray energy
is deposited, from the events in which the primary particles cross the sensitive volume.
The spectra thus obtained provide an estimate of the relative fluency and relative dose
contributions for the two different types of events.
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3.4. Mean Values

The characterization in terms of radiation quality of the radiation fields is done often
using the mean values either of lineal energy or of LET. The mean values of LET in track and
dose are indicated as LT and LD, respectively. In the following discussion, the symbol y is
used in relation to all the distributions discussed above; in particular, the energy loss per
unit length is indicated as yloss and the energy imparted per unit length is indicated as yimp.
The additional subscripts, ‘F’ and ‘D’, indicate the mean values calculated in frequency and
dose, respectively. The beam is considered to be mono-energetic.

3.4.1. Mean Values of Energy Loss per Unit Length

In the distribution of the energy loss, the delta ray escape is not taken into account.
As discussed in Sections 2.1.4 and 2.2.1, the value of єmin is chosen precisely to ensure that
the energy lost, per unit length, by the primary ions in electronic collisions coincides with
the stopping power (see Equation (14)). Therefore, yloss,F, by construction, is equal to LT.
However, yloss,D is not a correct estimator of LD, as can be deducted directly considering
that, in the example, yloss,F < yloss,D while, being a monoenergetic beam, LT = LD. In the
specific condition of no delta-ray escape, the difference between yloss,D and LD can be
quantified by expressing the relative variance of lineal energy, Vy,loss, as a function of all
other relative variances as discussed by Kliauga et al. [28]:

Vy,loss = VL + V` + V`·VL + VS + Vexp (23)

where VL refers to LET, V` to the chord length, vs. to the energy-loss straggling, and Vexp
to the experimental factors. No further discussion is provided here as to the source of these
variances and how they relate to the radiation and detector characteristics; these can be
found in the references cited. Considering an ideal mono-energetic beam, the variance of
VL is zero. In the approximation that all ion tracks crossing a slab detector have the same
length, the variance V` is also negligible. Furthermore, since the energy loss distribution is
purely computational, experimental uncertainty contributions should not be considered.
Therefore, the only relative variance terms remaining in Equation (23) are Vy,loss and VS.
The first can be represented as Vy,loss = ( yloss,D/ yloss,F − 1) as can be deducted from the
definition of the variance of the distribution. The second, as described by Kellerer [12], can
be indicated as VS = δ2/εwhere δ2 is the second moment of the collision distribution from
Equation (3) and ε = δ1·µ is the mean energy lost in the SV. The correlation of variances in
Equation (23) is then reduced to the equation:

Vy,loss
∼= VS

yloss,D
yloss,F

− 1 ∼= δ2
ε .

(24)

Therefore:

yloss,D
∼= yloss,F +

δ2

ε

ε

`
= LD +

δ2

`
. (25)

showing that, for a monoenergetic beam, yloss,D exceeds LD by a non-negative factor.

3.4.2. Mean Values of Energy Imparted per Unit Length

Since the imparted-energy distribution is less populated by events in the high energy
part and more populated in the low energy part, the value of yimp,F is less than the value
yloss,F, and LT. This result is general and can be extended to non-monoenergetic radiation.
However, the result of this example yimp,D < LD is not general.

3.4.3. Mean Values of Lineal Energy

As shown in Figure 11, the experimental microdosimetric spectrum overlaps the
imparted-energy distributions per unit of length except for the presence of the low-energy
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tail. For this reason, the experimental mean values of lineal energy, yF and yD are lower
than the corresponding values yimp,F and yimp,D.

Combining the above results, the correlations between the average frequency quanti-
ties are as follows:

yF ≤ yimp,F ≤ yloss,F = LT. (26)

The validity is general, including non-monoenergetic radiation fields. For the dose-
mean quantities, the condition yD ≤ yimp,D ≤ LD ≤ yloss,D shown in the example can-
not be generalized. The correlations that are valid also for non-monoenergetic radiation
fields are:

yD ≤ yimp,D ≤ yloss,D

LD ≤ yloss,D.
(27)

The experimental lineal energy spectrum cannot be represented below the noise cutoff
level, c. The partial frequency and dose mean values are defined and normalized in the
interval c ≤ y ≤ ∞. They are represented, respectively, by the integrals:

yF,c =
∫ ∞

c y·f(y)dy ,

yD,c =
∫ ∞

c y·d(y)dy.
(28)

These values inevitably overestimate the noise-free mean values of the lineal energy
which would extend over the full interval 0 ≤ y ≤ ∞.

3.4.4. Comparison of Mean Values

The mean values calculated for the distributions and the spectra discussed before are
summarized, in the case of the 207.8 MeV·u−1 carbon-ion beam, in Table 2 and, in the case
of the 279.8 MeV·u−1 carbon ion beam, in Table 3.

In these examples and from the consideration in Sections 3.4.1–3.4.3, it is clear that, for
a monoenergetic beam, the only numerical value which equals LT and LD is yloss,F.

Table 2. Track-average and dose-average LET, frequency-mean and dose mean lineal energy for
experimental spectra, energy-imparted distributions, and energy loss distributions referring to a
207.8 MeV/u carbon-ion beam in the silicon slab microdosimeter.

yF
(keV·µm−1)

yD
(keV·µm−1)

LT
(keV·µm−1)

LD
(keV·µm−1) LT/ yF LD/ yD

LET 1 12.85 12.85
ya, 2 4.93 8.82 2.61 1.46

yimp, 3 10.31 10.46 1.25 1.23
yloss, 12.83 14.49 1 0.89

1 from ICRU stopping power table. 2 above the cutoff c = 0.8 keV·µm−1. 3 renormalized after excluding delta rays
with energies above 35 keV.

Table 3. Track-average and dose-average LET, frequency-mean and dose-mean lineal energy for
experimental spectra, energy imparted distributions, and energy loss distributions referring to a
279.8 MeV/u carbon-ion beam in the silicon slab microdosimeter.

yF
(keV·µm−1)

yD
(keV·µm−1)

LT
(keV·µm−1)

LD
(keV·µm−1) LT/ yF LD/ yD

LET 1 10.79 10.79
yc, 2 4.55 7.46 2.37 1.44

yimp, 3 8.45 8.60 1.28 1.25
yloss, 10.78 13.05 1 0.83

1 from ICRU Stopping power table. 2 above the cutoff c = 0.8 keV·µm−1. 3 renormalized after excluding delta rays
with energies above 35 keV.
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The cutoff value c has a high relevance on the evaluation of the mean lineal energies.
For example, for the spectrum of 207.8 MeV·u−1, assuming a value c = 8 keV·µm−1, the
yc,F and yc,D result in 10.30 keV·µm−1 and 10.48 keV·µm−1 respectively, rather close
to the homologous values of the imparted energy. Similarly, assuming for the spec-
trum of 279.8 MeV·u−1 the cutoff c = 6 keV·µm−1, the values of yc,F and yc,D become
8.44 keV·µm−1 and 8.65 keV·µm−1, respectively.

4. Discussion

This work studies energy straggling and delta ray escape for carbon ion beams and
their correlations with the SV geometry of microdosimetric detectors. For two energies,
279.8 MeV·u−1 and 207.8 MeV·u−1, the distributions of energy loss per unit of length and
energy imparted per unit length are computed numerically considering the effects of the
energy loss straggling and the delta-ray escape. Excluding the lowest part of the spectrum,
which is related to the energy imparted from the delta rays generated outside the SV, the
comparison of the evaluated and the experimental spectra shows a satisfactory agreement.

At the highest values of the spectrum, the profile of the distribution of the energy
imparted per unit of length is obtained excluding the contribution of those delta rays whose
range exceeds the transverse radius of the SV. Although simplistic, this is a satisfactory
choice as confirmed by the agreement between the computed and experimental data. This
choice, being based on the geometry of the SV, does not require any free parameters in the
computations and this is an added advantage. However, more sophisticated evaluations
of delta-ray escape can be performed which may provide a better agreement between
the distributions.

At the lowest values of the spectrum, the tail due to the delta rays generated outside
the SV is a source of distortions. The problem arises from the impossibility of determining,
below the threshold due to the electronic noise, the profiles of the experimental spectrum
which is largely populated of events deriving from the delta rays. To overcome this problem
partially, a mitigation strategy is proposed in the outlook section below.

It is important to consider two uses of microdosimetry that are proposed in the context
of ion beam therapy.

First, the microdosimeters as seen as tools that provide the experimental base for the
determination of LF and LyD. This investigation provides, for that aspect, somewhat
conclusive results for middle and high energies monoenergetic beams. In fact, as shown
comparing Figures 10 and 11, the interval of the experimental spectrum between the point
A and the peak for the beam energy of 279.8 keV·µm−1 (and analogously the experimental
spectrum between the point C and the peak for the beam energy of 207.8 keV·µm−1) can
be used to univocally identify the ion-beam energy; as long as the irradiation penetrating
the target can be considered as monoenergetic, the value of the energy identifies univocally
the mean LET values. However, these results cannot be extended to the case of non-
monoenergetic beams or for microdosimetric spectra collected in the Bragg peak.

The second use considers microdosimeters as the tools that provide the most complete
characterization of the different radiation qualities of the therapeutic ion beams. This study
provides a computational method to distinguish two components of the spectrum of a
mixed radiation field, the partial spectrum due exclusively to delta rays and the partial
spectrum due to primary ions.

4.1. LET Estimation

The lineal energy spectra and mean values, collected using microdosimeters with SVs
of the order of the cell’s nucleus size, are representative of the energy interaction of the
ionizing particles with a biological target.

The fact that the values of yF and yD are different from the respective values LT
and LD is well known and reported in literature. Empirical multiplication factors, which
depend on the shape of the SV but not on the energy of the primary ions, were used to
compensate for the discrepancies between the values of yF and yD and the values of LT
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and LD, respectively. This study showed how the microdosimetric spectra are the complex
result of events due to delta rays and primary ions and how these contributions vary with
the energy of the beam; the use of the simple empirical multiplication factor therefore
seems to be an oversimplification.

The evaluation of the lineal energy mean values is highly dependent on the cutoff limit
imposed by the electromagnetic noise on the microdosimetric spectra. An example illus-
trates how the evaluation of yF and yD, moving the noise cutoff value from 0.8 keV·µm−1

to 6 keV·µm−1, results to an increase of yF by 85% and of yD by 16%. This is a critical
point since different solid-state detectors have very different noise cutoff values and this
inevitably leads to large discrepancies. Additionally, the study shows how the role played
by the energy carried out by the escaping delta ray and by the energy injected from external
delta rays is rather complex and evolves with the ion energy and the size of the SV.

It is expected that, by progressively decreasing the energy of the beam, the fraction
of the escaping delta rays is reduced and, consequently, the distribution of the energy
imparted is more similar to the distribution of energy losses. In the experimental spectrum,
the tail at low lineal energies becomes less pronounced. Gradually, the number of primary
collisions per unit of length increases and the spectrum approaches a Gaussian distribution
whose full width at half maximum becomes, in relative terms, narrower and narrower.
Under these conditions, the average frequency value of the lineal energy yF approximates
LT (and yD approximates LD).

The discrepancies between microdosimetric-based and LET-based parameters are less
important if the overall radiation of the clinical target is considered. In fact, in typical
treatment sessions, the mitigation effects due to the use of multiple portals and the variety
of particle energies that contribute to the planned dose of the tumor target must be taken
into account. Virtually all the target subvolumes are irradiated, at least partially, with the
low-energy radiation of the Bragg peak region where LET and lineal energy are comparable.

4.2. Outlook

This investigation is part of a more extensive study on the characterization of thera-
peutic ion beams in terms of lineal energy [23] and these topics will be the subject of future
analysis. Computational evaluation of energy loss straggling and the delta-ray escape is an
important element for the quantitative re-consideration of several topics discussed since
microdosimetry began investigating therapeutic ion beams with solid-state detectors.

Some methods have been proposed to reconstruct the part of the spectrum below the
noise cutoff using extrapolations. For the beam energies comparable with those considered
in this investigation, a computational procedure can be used instead to integrate the missing
information of the dose distribution d(y). Under the assumption of energy equilibrium, the
area under the two energy-weighted distributions of the energy loss and the experimental
energy imparted, d(є), is the same. Therefore, the excess area of the energy loss distribution
at the highest values of the spectra must be compensated by an equal area in the lower part
where the energy-weighted experimental spectrum exceeds the energy-weighted energy-
loss distribution. A rigorous analysis is needed that takes into account the impact of all the
terms including the effects of the simplification in the delta-ray escape, the limits of the
assumption of energy equilibrium, and the impact of the increase of the number of events
in frequency spectra due to the influx of delta rays. Furthermore, an analytical approach
could be envisaged for calculating the spectrum of the injected electron slowing down. All
these investigations go beyond the scope of this work and are the subject of subsequent
systematic studies.
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