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Article

Fourth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology for Nonlinear Systems (4th-CASAM-N): I.
Mathematical Framework
Dan Gabriel Cacuci

Center for Nuclear Science and Energy, University of South Carolina, Columbia, SC 29208, USA;
cacuci@cec.sc.edu

Abstract: This work presents the fourth-order comprehensive sensitivity analysis methodology for
nonlinear systems (abbreviated as “4th-CASAM-N”) for exactly and efficiently computing the first-,
second-, third-, and fourth-order functional derivatives (customarily called “sensitivities”) of physical
system responses (i.e., “system performance parameters”) to the system’s (or model) parameters.
The qualifier “comprehensive” indicates that the 4th-CASAM-N methodology enables the exact
and efficient computation not only of response sensitivities with respect to the customary model
parameters (including computational input data, correlations, initial and/or boundary conditions)
but also with respect to imprecisely known material boundaries, caused by manufacturing tolerances,
of the system under consideration. The 4th-CASAM-N methodology presented in this work enables
the hitherto very difficult, if not intractable, exact computation of all of the first-, second-, third-, and
fourth-order response sensitivities for large-scale systems involving many parameters, as usually
encountered in practice. Notably, the implementation of the 4th-CASAM-N requires very little
additional effort beyond the construction of the adjoint sensitivity system needed for computing
the first-order sensitivities. The application of the principles underlying the 4th-CASAM-N to an
illustrative paradigm nonlinear heat conduction model will be presented in an accompanying work.

Keywords: fourth-order adjoint sensitivity analysis methodology; exact expressions for efficient
computation of first-, second-, third-, and fourth-order response sensitivities; large-scale systems

1. Introduction

The computational model of a physical system comprises the following conceptual
components: (a) a well-posed system of that relate the system’s independent variables and
parameters to the system’s state (i.e., dependent) variables; (b) probability distributions,
moments thereof, inequality and/or equality constraints that define the range of variations
of the system’s parameters; and (c) one or several quantities, customarily referred to as
system responses (or objective functions, or indices of performance), which are computed
using the mathematical model. This works presents a new, general-purpose methodology
for computing exactly and efficiently functional derivatives (called “sensitivities”) of results
(“system responses”), predicted by nonlinear mathematical models of systems (physical,
engineering, biological) involving imprecisely known (i.e., uncertain) parameters, including
input data, correlations, initial and/or boundary conditions, as well as manufacturing
tolerances that affect domain of the model’s definition in phase space. This new method
is called the “fourth-order comprehensive sensitivity analysis methodology for nonlinear
systems” (abbreviated as “4th-CASAM-N”) since it enables the hitherto very difficult, if not
intractable, exact computation of all of the first-, second-, third-, and fourth-order response
sensitivities for large-scale systems involving many parameters, as is usually encountered
in practice. The foundation for the material presented in this work is provided by the
first-order adjoint sensitivity analysis procedure for nonlinear systems that was originally
formulated in a general, functional analytic framework by Cacuci [1,2].
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The aims and means of sensitivity theory/analysis are occasionally confused with the
aims and means of optimization theory. The algorithms underlying optimization theory
compute the values at which the first-order derivatives of a response with respect to the
state functions and/or parameters vanish. In contradistinction, sensitivity theory/analysis
aims at computing the response sensitivities to parameters at the nominal values for the
model’s parameters and state functions. Therefore, although both sensitivity analysis
and optimization algorithms evaluate first-order (and occasionally higher-order) response
derivatives with respect to model parameters, these algorithms serve different purposes
and conceptually differ from each other.

Response sensitivities to model parameters, which are computed using the methods of
sensitivity analysis, are needed in many activities, including: (i) determining the effects of
parameter variations on the system’s behavior; (ii) ranking the importance of model param-
eters in influencing the system response under consideration; (iii) quantifying uncertainties
induced in responses by parameter uncertainties (e.g., by using the method of “propagation
of uncertainties”); (iv) prioritizing possible improvements for the system under considera-
tion and possibly reducing conservatism and redundancy; (v) validating the model under
consideration by comparison to experiments, while taking into account both experimental
and model uncertainties; and (vi) performing “predictive modeling” (which includes data
assimilation and model calibration) for the purpose of obtaining best-estimate predicted
results with reduced predicted uncertainties, using, e.g., the methodologies presented
in [3–5] and in references therein.

First-order response sensitivities can be computed by using either statistical or de-
terministic methods; a comparative review of the most popular of these methods was
presented in [6,7]. It is known that sensitivities cannot be computed exactly using statistical
methods; this can only be performed with deterministic methods. Furthermore, for a sys-
tem comprising TP parameters, the computation of the first-order sensitivities by statistical
methods requires O(TP) large-scale computations while the adjoint sensitivity analysis
originally developed by Cacuci [1,2] requires a single large-scale computation per response.

Since nonlinear operators do not admit bona-fide adjoint operators (only a linearized
form of a nonlinear operator admits an adjoint operator), responses of nonlinear models
can depend only on the forward functions. In contradistinction, model responses for linear
systems may involve the solutions of both the forward and the adjoint linear models that
correspond to the respective physical system. Hence, responses for linear systems cannot
always be treated as particular cases of nonlinear systems but there is a need to develop
a dedicated sensitivity analysis methodology for response-coupled forward and adjoint
linear systems. The general methodology for computing arbitrarily high-order sensitivities
for response-coupled linear forward/adjoint systems was developed by Cacuci [8–12]. The
overwhelming impact of the higher-order (i.e., second-, third- and fourth-order) sensitivities
on the model response was illustrated by Fang and Cacuci, in [13] and references therein,
by means of an OECD/NEA reactor physics benchmark modeled by the linear neutron
transport equation and comprising 21,976 uncertain model parameters.

The general mathematical framework for adjoint sensitivity analysis of nonlinear
systems was extended by Cacuci to second-order [14] and third-order [15] sensitivities. The
extension of the adjoint sensitivity analysis methodology to include the computation of
sensitivities of model responses with respect to imprecisely known domain boundaries
was presented in [16]. By extending all of the previous theoretical developments of the
adjoint sensitivity analysis methodology, this work presents the theoretical framework for
the fourth-order comprehensive sensitivity analysis methodology for nonlinear systems
(abbreviated as “4th-CASAM-N”). This work is structured as follows. Section 2 presents the
mathematical formulation of the that would define the computational model of a generic
nonlinear physical system, including the definition of a generic response which depends
on the model’s state variables and parameters, which are considered to be uncertain (i.e.,
not known precisely). Besides initial conditions and correlations, the model parameters are
also considered to include geometrical parameters that describe the system’s boundaries
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and internal interfaces. Section 3 presents the 4th-CASAM-N methodology while Section 4
summarizes the salient features of this novel methodology. The application of the principles
underlying the 4th-CASAM-N is illustrated in an accompanying work [17] by means of a
paradigm nonlinear heat conduction model.

2. Generic Mathematical Modeling of a Nonlinear Physical System

As already mentioned, the computational model of a physical system comprises that
relate the system’s independent variables and parameters to the system’s state variables.
The model parameters usually stem from processes that are external to the system un-
der consideration and are seldom, if ever, known precisely. The known characteristics of
the model parameters may include their nominal (expected/mean) values and, possibly,
higher-order moments or cumulants (i.e., variance/covariances, skewness, kurtosis), which
are usually determined from experimental data and/or processes external to the physical
system under consideration. Occasionally, only inequality and/or equality constraints that
delimit the ranges of the system’s parameters are known. Without loss of generality, the
imprecisely known model parameters can be considered to be real-valued scalar quanti-
ties. These model parameters will be denoted as α1, . . . ,αTP, where TP denotes the “total
number of imprecisely known parameters” underlying the model under consideration. For
subsequent developments, it is convenient to consider that these parameters are compo-
nents of a “vector of parameters” denoted as α , (α1, . . . ,αTP)

† ∈ Eα ∈ RTP, where Eα is
also a normed linear space and where RTP denotes the TP-dimensional subset of the set of
real scalars. The components of the TP-dimensional column vector α ∈ RTP are consid-
ered to include imprecisely known geometrical parameters that characterize the physical
system’s boundaries in the phase space of the model’s independent variables. Matrices will
be denoted using capital bold letters while vectors will be denoted using either capital or
lower-case bold letters. The symbol “,” will be used to denote “is defined as” or “is by
definition equal to”. Transposition will be indicated by a dagger (†) superscript.

The generic nonlinear model is considered to comprise TI independent variables which will
be denoted as xi, i = 1, . . . , TI, and which are considered to be components of a TI-dimensional
column vector denoted as x , (x1, . . . , xTI)

† ∈ RTI , where the sub/superscript “TI” denotes
the “total number of independent variables”. The vector x ∈ RTI of independent variables is
considered to be defined on a phase-space domain which will be denoted as Ω(α) and which
is defined as follows: Ω(α) , {−∞ ≤ λi(α) ≤ xi ≤ ωi(α) ≤ ∞; i = 1, . . . , TI}. The lower
boundary point of an independent variable is denoted as λi(α) and the corresponding
upper boundary point is denoted asωi(α). A typical example of boundaries that depend on
both geometrical parameters and material properties are the “boundaries facing vacuum”
in models based on diffusion theory, where conditions are imposed on the “extrapolated
boundary” of the respective spatial domain. The “extrapolated boundary” depends both
on the imprecisely known physical dimensions of the problem’s domain and also on the
medium’s properties, such as atomic number densities and microscopic transport cross
sections. The boundary of Ω(α), which will be denoted as ∂Ω(α), comprises the set of
all of the endpoints λi(α), ωi(α), i = 1, . . . , TI, of the respective intervals on which the
components of x are defined, i.e., ∂Ω(α) , {λi(α) ∪ ωi(α), i = 1, . . . , TI}.

A nonlinear physical system can be generally modeled by means of coupled which
can be represented in operator form as follows:

N[u(x),α] = Q(x,α), x ∈ Ωx(α). (1)

The quantities which appear in Equation (1) are defined as follows:
1. u(x) , [u1(x), . . . , uTD(x)]

† is a TD-dimensional column vector of dependent
variables; the abbreviation “TD” denotes “total number of dependent variables”. The
functions ui(x), i = 1, . . . , TD denote the system’s “dependent variables” (also called
“state functions”); u(x) ∈ Eu, where Eu is a normed linear space over the scalar field F of
real numbers.
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2. N[u(x);α] , [N1(u;α), . . . , NTD(u;α)]† denotes a TD-dimensional column vector.
The components Ni(u;α), i = 1, . . . , TD are operators (including differential, difference,
integral, distributions, and/or finite or infinite matrices) acting (usually) nonlinearly on the
dependent variables u(x), the independent variables x, and the model parameters α. The
mapping N(u;α) is defined on the combined domains of the model’s parameters and state
functions, i.e., N : D ⊂ E→ EQ , where D = Du ⊕Dα, Du ⊂ Eu, Dα ⊂ Eα, E = Eu ⊕ Eα.

3. Q(x,α) , [q1(x;α), . . . ., qTD(x;α)]† is a TD-dimensional column vector which rep-
resents inhomogeneous source terms, which usually depend nonlinearly on the uncertain
parameters α. The vector Q(x,α) is defined on a normed linear space denoted as EQ, i.e.,
Q ∈ EQ.

The equalities in this work are considered to hold in the weak (“distributional”)
sense. The right sides of Equation (1) and of other various to be derived in this work
may contain “generalized functions/functionals”, particularly Dirac distributions and
derivatives thereof.

Boundary and/or initial conditions must also be provided if differential operators
appear in Equation (1). In operator form, these boundaries and/or initial conditions are
represented as follows:

B[u(x);α; x]−C(x,α) = 0, x ∈ ∂Ωx(α). (2)

where the column vector 0 has TD components, all of which are identically zero, i.e.,

0 , [ζ1, . . . , ζTD]; ζi ≡ 0, i = 1, . . . , TD. (3)

In Equation (2), the components Bi(u;α), i = 1, . . . , TD of
B(u;α) , [B1(u;α), . . . , BTD(u;α)]† are nonlinear operators in u(x) and α, which are
defined on the boundary ∂Ωx(α) of the model’s domain Ωx(α). The components Ci(x;α),
i = 1, . . . , TD of C(x,α) , [C1(x;α), . . . , CTD(x;α)]† comprise inhomogeneous boundary
sources which are nonlinear functions of α.

Solving Equations (1) and (2) at the nominal parameter values, denoted as
α0 ,

[
α0

1, . . . ,α0
i , ..,α0

TP
]†, provides the “nominal solution” u0(x), i.e., the vectors u0(x)

and α0 satisfy the following:

N
[
u0(x);α0

]
= Q

(
x,α0

)
, x ∈ Ωx, (4)

B
[
u0(x);α0; x

]
−C
(

x,α0
)
= 0, x ∈ ∂Ωx

(
α0
)

. (5)

The superscript “0” will be used throughout this work to denote “nominal values”.
The results computed using a mathematical model are customarily called “model

responses” (or “system responses” or “objective functions” or “indices of performance”).
In general, a function-valued (i.e., operator-type) response R[u(x);α] can be represented
by a spectral expansion in multidimensional orthogonal polynomials or Fourier series of
the form:

R[u(x);α] = ∑
m1

. . .∑
mTI

cm1 ...mTI [u(x);α]Pm1(x1)Pm2(x2) . . . PmTI (xTI), (6)

where the quantities Pmi (xi), i = 1, . . . , TI denote the corresponding spectral functions (e.g.,
orthogonal polynomials or Fourier exponential/trigonometric functions) and where the
spectral Fourier coefficients cm1 ...mTI [u(x);α] are defined as follows:

cm1 ...mTI [u(x);α] ,

ω1(α)∫
λ1(α)

. . .

ωi(α)∫
λi(α)

. . .

ωTI(α)∫
λTI(α)

R[u(x);α]Pm1(x1) . . . Pmi (xi) . . . PmTI (xTI)dx1 . . . dxi . . . dxTI (7)
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The coefficients cm1 ...mTI [u(x);α] can themselves be considered as “model responses”
since the spectral polynomials Pmi (xi) are perfectly well known while the expansion co-
efficients will contain all of the dependencies (directly or indirectly—through the state
functions) of the respective response on the imprecisely known model parameters. This
way, the sensitivity analysis of an operator-valued response R[u(x);α] can be reduced to
the sensitivity analysis of the scalar-valued responses cm1 ...mTI [u(x);α].

A measurement of a physical quantity that depends on the model’s state functions
and parameters can be considered to be a response denoted as Rp[u(x);α], which is to

be evaluated at x = xp(α), where xp(α) ,
[

xp
1 (α), . . . xp

k (α), . . . , xp
TI(α)

]†
denotes the

location in the phase space of the specific “measurement point”. Such a measurement (or
measurement-like) response can be represented mathematically as follows:

Rp[u(x);α] ,

ω1(α)∫
λ1(α)

. . .

ωTI(α)∫
λTI(α)

F[u(x);α; x]δ
[

x1 − xp
1 (α)

]
. . . δ

[
xTI − xp

TI(α)
]
dx1 . . . dxTI (8)

where the function F[u(x);α; x] denotes the mathematical dependence of the measurement
device on the model’s dependent variable(s), and where the quantity δ

[
xi − xp

i (α)
]

denotes
the Dirac delta functional. The measurement’s location in phase space, xp(α), may itself be
afflicted by measurement (experimental) uncertainties. Hence, it is convenient to consider
the components of xp(α) to be included among the components of the vector α of model
parameters, even though xp(α) appears only in the definition of the response but does not
appear in Equations (1) and (2), which mathematically define the physical model. Thus, the
physical “system” is defined to comprise both the system’s computational model and the
system’s response. In most cases, the coordinates xp

k (α), k = 1, . . . , TI will be independent
(albeit uncertain) model parameters, in which case ∂xp

k (α)/∂αn = 1, i f αn ≡ xp
k and

∂xp
k (α)/∂αn = 0, i f αn 6= xp

k .
The representations shown in Equations (6)–(8) indicate that model responses can be

fundamentally analyzed by considering the following generic integral representation:

R[u(x);α] ,

ω1(α)∫
λ1(α)

. . .

ωTI(α)∫
λTI(α)

S[u(x);α; x]dx1 . . . dxTI (9)

where S[u(x);α] is suitably differentiable nonlinear function of u(x) and of α. It is im-
portant to note that the components of α not only include parameters that appear in the
defining the computational model per se, i.e., in Equations (1) and (2), but also include
parameters that specifically occur only in the definition of the response under consideration.

It is also important to note that the system’s definition domain, Ω(α), in phase space
is considered to be imprecisely known, subject to uncertainties in the components of the
vector of model parameters α. Therefore, the system domain’s boundary, ∂Ω(α), as well as
the model response R[u(x);α], will be affected by the boundary uncertainties that affect
the endpoints λi(α), ωi(α), i = 1, . . . , TI. Such boundary uncertainties stem most often
from manufacturing uncertainties.

3. The Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for
Nonlinear Systems (4th-CASAM-N)

The starting point for building the mathematical framework of the novel 4th-CASAM-
N is provided by the mathematical framework of the “first-order comprehensive adjoint
sensitivity analysis methodology for nonlinear systems” presented in [16] which considered
that the domain’s boundaries are also subject to uncertainties, thus generalizing all previous
work on first-order adjoint sensitivity analysis. The 1st-CASAM-N is briefly reviewed
in Section 3.1. Section 3.2 presents the 2nd-CASAM-N, which generalizes the material
presented in [9,14,15]. Section 3.3 presents the 3rd-CASAM-N, comprising original material
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that provides the basis for the development of the 4th-CASAM, which is presented in
Section 3.4.

3.1. The First-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear
Systems (1st-CASAM-N)

The model and boundary parameters α are considered to be uncertain quantities,
having unknown true values. The nominal (or mean) parameter vales α0 are consid-
ered to be known, and these will differ from the true values by quantities denoted as
δα , (δα1, . . . , δαTP), where δαi , αi − α0

i . Since the forward state functions u(x) are
related to the model and boundary parameters α through Equations (1) and (2), it follows
that the variations δα in the model and boundary parameters will cause corresponding
variations v(1)(x) , [δu1(x), . . . , δuTD(x)]

† around the nominal solution u0(x) in the for-
ward state functions. In turn, the variations δα and v(1)(x) will induce variations in the
system’s response. Cacuci [1,2] has shown that the most general definition of the sensi-
tivity of an operator-valued model response R(e), where e , (α, u) ∈ E, to variations
h ,

(
δα, v(1)

)
in the model parameters and state functions in a neighborhood around

the nominal functions and parameter values e0 ,
(
α0, u0) ∈ E, is given by the first-order

Gateaux (G) variation, which will be denoted as δR
(
e0; h

)
and is defined as follows:

δR
(

e0; h
)
,
{

d
dε

[
R
(

e0 + εh
)]}

ε=0
, lim
ε→0

R
(
e0 + εh

)
−R

(
e0)

ε
(10)

for a scalar ε ∈ F and for all (i.e., arbitrary) vectors h ∈ E = Eα × Eu in a neighborhood(
e0 + εh

)
around e0 =

(
α0, u0) ∈ E. The G variation δR

(
e0; h

)
is an operator defined

on the same domain as R(e) and has the same range as R(e). The G variation δR
(
e0; h

)
satisfies the relation: R

(
e0 + εh

)
− R

(
e0) = δR

(
e0; h

)
+ ∆(h), with lim

ε→0
[∆(εh)]/ε = 0.

The existence of the G variation δR
(
e0; h

)
does not guarantee its numerical computability.

Numerical methods most often require that δR
(
e0; h

)
is linear in h ,

(
δα; v(1)

)
in a

neighborhood
(
e0 + εh

)
around e0 =

(
u0,α0) ∈ E. Formally, the necessary and sufficient

conditions for the G variation δR
(
e0; h

)
of a nonlinear operator R(e) to be linear and

continuous in h in a neighborhood
(
e0 + εh

)
around e0 =

(
α0, u0) and therefore admit a

total first-order G derivative, are as follows:

(i) R(e) satisfies a weak Lipschitz condition at e0, namely:∥∥∥R
(

e0 + εh
)
−R

(
e0
)∥∥∥ ≤ k

∥∥∥ε(e0
)∥∥∥, k < ∞ (11)

(ii) R(e) satisfies the following condition

R
(

e0 + εh1 + εh2

)
−R

(
e0 + εh1

)
−R

(
e0 + εh2

)
+ R

(
e0
)
= o(ε); h1, h2 ∈ E; ε ∈ F. (12)

In practice, the relation provided in Equations (11) and (12) are seldom used directly
since the computation of the expression on the right side of Equation (10) reveals if the
respective expression is linear (or not) in h ,

(
δα, v(1)

)
and, hence, in v(1)(x). Numerical

methods (e.g., Newton’s method, and variants thereof) for solving Equations (1) and (2) also
require the existence of the first-order G derivatives of original model, in which case the com-
ponents of the operators which appear in these must also satisfy the conditions provided in
Equations (11) and (12). Therefore, the conditions provided in Equations (11) and (12) are
henceforth considered to be satisfied by the operators which underly the physical system
modeled by Equations (1) and (2), as well as by the model responses.

When the first-order G differential δR
(
e0; h

)
satisfies the conditions provided in

Equations (11) and (12), it can be written in the following form:
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δR
(

e0; h
)
≡
{
δR
[
u(x);α; v(1)(x); δα

]}
α0

=

{
∂R(u;α)

∂u

}
α0

v(1)(x) +
{

∂R(u;α)
∂α

}
α0
δα, (13)

where
∂[ ]

∂u
v(1)(x) ,

TD

∑
i=1

∂[ ]

∂ui(x)
δui(x) (14)

∂[ ]

∂α
δα ,

TP

∑
i=1

∂[ ]

∂αi
δαi (15)

This, the quantities ∂R(u;α)/∂u and ∂R(u;α)/∂α in Equation (13) denote the partial
G derivatives of R(e) with respect to u and α, evaluated at the nominal parameter values
(and hence also nominal values of the state functions). The notation { }α0 will be used in
this work to indicate that the quantity enclosed within the bracket is to be evaluated at the
respective nominal parameter and state functions values. The quantity {∂R(u;α)/∂α}α0δα

is called the “direct-effect term” because it arises directly from parameter variations δα.
The direct-effect term can be computed once the nominal values e0 =

(
u0,α0) are available.

The quantity {∂R(u;α)/∂u}α0v(1)(x) is called the “indirect-effect term” because it arises
indirectly, through the variations in the state functions (which are caused through the
model by parameter variations). The indirect-effect term can be quantified only after
having determined the variations v(1)(x) in terms of the variations δα.

In particular, the first-order Gateaux differential
{
δR
[
u(x);α; v(1)(x); δα

]}
α0

of the

generic response R(u,α) defined in Equation (9) has the following expression:{
δR
[
u(x);α; v(1)(x); δα

]}
α0

,

 d
dε

ω1(α
0+εδα)∫

λ1(α0+εδα)

. . .
ωTI(α

0+εδα)∫
λTI(α0+εδα)

S
(

u0 + εv(1),α0 + εδα; x
)

dx1 . . . dxTI


= {δR[u(x);α; δα]}dir +

{
δR
[
u(x);α; v(1)(x)

]}
ind

,

(16)

where the “indirect-effect” term
{
δR
[
u(x);α; v(1)(x)

]}
ind

comprises all dependencies on

v(1)(x) and is defined as follows:

{
δR
[
u(x);α; v(1)(x)

]}
ind

,

ω1(α
0)∫

λ1(α0)

. . .

ωTI(α
0)∫

λTI(α0)

{
∂S(u;α; x)

∂u

}
α0

v(1)(x)dx1 . . . dxTI , (17)

and where the “direct-effect” term {δR[u(x);α; δα]}dir comprises all dependencies on δα
and is defined as follows:

{δR[u(x);α; δα]}dir ,
TP

∑
j1=1

{
R(1)[j1; u(x);α]

}
dir
δαj1 , (18)

with

{
R(1)[j1; u(x);α]

}
dir

,

{
ω1(α)∫
λ1(α)

. . .
ωTI(α)∫
λTI(α)

∂S(u;α;α)
∂αj1

dx1 . . . dxTI

}
α0

+
TI
∑

j=1

ω1(α)∫
λ1(α)

. . .
ωj−1(α)∫
λj−1(α)

ωj+1(α)∫
λj+1(α)

. . .
ωTI(α)∫
λTI(α)

S
[
u
(

x1, .,ωj(α), ., xNx

)
;α
] ∂ωj(α)

∂αj1
dx1 . . . dxTI


α0

−
TI
∑

j=1

ω1(α)∫
λ1(α)

. . .
ωj−1(α)∫
λj−1(α)

ωj+1(α)∫
λj+1(α)

. . .
ωTI(α)∫
λTI(α)

S
[
u
(

x1, ., λj(α), ., xNx

)
;α
] ∂λj(α)

∂αj1
dx1 . . . dxTI


α0

.

(19)
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The first-order relationship between the vectors v(1)(x) and δα is determined by
taking the G differentials of Equations (1) and (2). Thus, applying the definition of the G
differential to Equations (1) and (2) yields the following:{

d
dε

N
[
u0 + εv(1)(x);α0 + εδα

]}
ε=0

=

{
d
dε

Q
(

x,α0 + εδα
)}
ε=0

, (20)

{
d
dε

B
[
u0 + εv(1)(x);α0 + εδα

]}
ε=0
−
{

d
dε

C
(

x,α0 + εδα
)}
ε=0

= 0. (21)

Carrying out the differentiations with respect to ε in Equations (20) and (21), and
setting ε = 0 in the resulting expressions yields the following:{

V(1)(u;α)v(1)(x)
}
α0

=
{

q(1)(u;α; δα)
}
α0

, x ∈ Ωx, (22)

{
b(1)

V

(
u;α; v(1); δα

)}
α0

= 0, x ∈ ∂Ωx

(
α0
)

. (23)

In Equations (22) and (23), the superscript “(1)” indicates “1st-Level” and the various
quantities which appear in these are defined as follows:

V(1)(u;α) ,
{

∂N(u;α)
∂u

}
,


∂N1
∂u1

. . . ∂N1
∂uTD

...
. . .

...
∂NTD

∂u1
· · · ∂NTD

∂uTD

; (24)

q(1)(u;α; δα) ,
∂[Q(α)−N(u;α)]

∂α
δα ,

TP

∑
j1=1

s(1)V (j1; u;α)δαj1 ; (25)

s(1)V (j1; u;α) ,
∂[Q(α)−N(u;α)]

∂αj1
; (26)

{
b(1)

V

(
u;α; v(1); δα

)}
α0

,
{

∂B(u;α)
∂u

v(1)
}

α0
+

TP

∑
j1=1

b(1)
V (j1; u;α)δαj1 ; (27)

b(1)
V (j1; u;α) ,

∂[B(u;α)−C(α)]

∂αj1
. (28)

The system comprising Equations (22) and (23) is called the “1st-Level Variational
Sensitivity System” (1st-LVSS). In order to determine the solutions of the 1st-LVSS that
would correspond to every parameter variation δαj1 , j1 = 1, . . . , TP, the 1st-LVSS would
need to be solved TP times, with distinct right sides for each δαj1 , as follows:{

V(1)(u;α)v(1)(j1; x)
}
α0

=
{

s(1)V (j1; u;α)
}
α0

; j1 = 1, . . . , TP; x ∈ Ωx, (29)

{
∂B(u;α)

∂u
v(1)(j1; x)

}
α0

= b(1)
V (j1;α; u); j1 = 1, . . . , TP; x ∈ ∂Ωx

(
α0
)

. (30)

Subsequently, the solutions v(1)(j1; x) could be used, in turn, in Equation (17) to com-
pute the indirect-effect term corresponding to each parameter variation δαj1 , j1 = 1, . . . , TP,
to obtain the following contribution from the indirect-effect term to the respective partial
sensitivity of the response with respect to the parameter αj1 :

{
δR
[

j1; u(x);α; v(1)(j1; x)
]}

ind
,


ω1(α)∫
λ1(α)

. . .

ωTI(α)∫
λTI(α)

[
∂S(u;α; x)

∂u
v(1)(j1; x)

]
dx1 . . . dxTI


α0

. (31)
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Adding the contribution from the indirect-effect term obtained in Equation (31) to
the contribution from the direct-effect term provided in Equation (18) yields the following
expression for the sensitivity (i.e., partial G derivative) ∂R[u(x);α]/∂αj1 of the response
R[u(x);α] to the parameter αj1 , j1 = 1, . . . , TP:

∂R[u(x);α]
∂αj1

=
{

R(1)[j1; u(x);α]
}

dir
+
{
δR
[

j1; u(x);α; v(1)(j1; x)
]}

ind
. (32)

The quantities ∂R[u(x);α]/∂αj1 are independent of the parameter variations δαi1 and
represent the first-order partial sensitivities (first-order partial G derivatives) of the response
R(e) with respect to each of the model parameters αj1 , j1 = 1, . . . , TP, evaluated at the
nominal values e0 =

(
α0, u0). Computing the response sensitivities by using the solutions

v(1)(j1; x), j1 = 1, . . . , TP, of the 1st-LVSS requires TP large-scale forward computations
in order to determine the functions v(1)(j1; x), j1 = 1, . . . , TP. Since most problems of
practical interest are characterized by many parameters (i.e., α has many components) and
comparatively few responses, it becomes prohibitively expensive to solve repeatedly the
1st-LVSS in order to determine the functions v(1)(j1; x), j1 = 1, . . . , TP. Even though the
1st-LVSS contains first-order parameter and state-functions variations, it is called “first-
level” (rather than “first-order”) in anticipation of determining second-order sensitivities,
which will use “second-level” forward and adjoint systems. These “second-level” systems
will not be called “second-order” because they will not contain second-order parameter
and/or state-function variations, but will also contain only first-order variations, even
though they will be used for determining second-order sensitivities. Similar terminology,
i.e., “third-level” (as opposed to “third-order”) forward/adjoint systems, will be used for
determining the third-order sensitivities, and so on.

In most practical situations, the number of model parameters significantly exceeds the
number of functional responses of interest, i.e., TR � TP, so it would be advantageous
to perform just TR (rather than TP) computations. The goal of the “1st-order compre-
hensive adjoint sensitivity analysis methodology for nonlinear systems (1st-CASAM-N)”
is to compute exactly and efficiently the “indirect effect term” defined in Equation (17)
without needing to compute explicitly the vectors v(1)(j1; x), j1 = 1, . . . , TP. The qualifier
“comprehensive” is meant to indicate that that the 1st-CASAM-N considers that the inter-
nal and external boundaries ∂Ωx(α) of the phase-space domain depend on the uncertain
model parameters α and are thereby imprecisely known, subject to uncertainties. Thus,
the 1st-CASAM-N represents a generalization of the pioneering works by Cacuci [1,2] that
conceived the “adjoint sensitivity analysis methodology”, in which the domain boundary
was considered to be perfectly well known, free of uncertainties. The fundamental ideas
underlying the 1st-CASAM-N are as conceived by Cacuci [1,2], aiming at eliminating the
appearance of the vectors v(1)(j1; x) from the expression of the indirect-effect term defined
in Equation (17). This elimination is achieved by expressing the right side of Equation (17)
in terms of the solutions of the “1st-Level Adjoint Sensitivity System (1st-LASS)”, the
construction of which requires the introduction of adjoint operators. Adjoint operators can
be defined in Banach spaces but are most useful in Hilbert spaces. Since real Hilbert spaces
provide the natural mathematical setting for computational purposes, the derivations
presented in this section are set in real (as opposed to complex) Hilbert spaces, without
affecting the generality of the concepts presented herein. Thus, the spaces Eu and EQ are
henceforth considered to be self-dual Hilbert spaces and will be denoted as H1(Ωx). The
inner product of two vectors u(a)(x) ∈ H1 and u(b)(x) ∈ H1 will be denoted as

〈
u(a), u(b)

〉
1
,

and is defined as follows:

〈
u(a), u(b)

〉
1
,


ω1(α)∫
λ1(α)

. . .

ωTI(α)∫
λTI(α)

[
u(a)(x)·u(b)(x)

]
dx1 . . . dxTI


α0

(33)
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where the dot indicates the “scalar product of two vectors” defined as follows:

u(a)(x)·u(b)(x) ,
TD
∑

i=1
u(a)

i (x)u(b)
i (x). It is important to note that the inner product defined in

Equation (33) is continuous in α, i.e., it holds at any value particular value of α, including
at the nominal parameter values α0.

The construction of the 1st-LASS commences by noting that the vector v(1)(x) itself is
independent of the index j1 = 1, . . . , TP, since

v(1)(x) =
TP

∑
j1=1

v(1)(j1; x). (34)

The next step is to form the inner product of Equation (22) with a vector
a(1)(x) ,

[
a(1)1 (x), . . . , a(1)TD(x)

]
∈ H1, where the superscript “(1)” indicates “1st-Level”:{〈

a(1)(x), V(1)(u;α)v(1)(x)
〉

1

}
α0

=
{〈

a(1)(x), q(1)(u;α; δα)
〉

1

}
α0

. (35)

Using the definition of the adjoint operator in H1(Ωx), the left side of Equation (35) is
transformed as follows:{〈

a(1), V(1)(u;α)v(1)
〉

1

}
α0

=
{〈

A(1)(u;α)a(1), v(1)
〉

1

}
α0

+

{[
P(1)

(
u;α; a(1); v(1)

)]
∂Ωx

}
α0

, (36)

where
[

P(1)
(

u;α; a(1); v(1)
)]

∂Ωx
denotes the associated bilinear concomitant evaluated on

the space/time domain’s boundary ∂Ωx
(
α0) and where A(1)(u;α) is the operator adjoint

to V(1)(u;α), i.e., A(1)(u;α) ,
[
V(1)(u;α)

]∗
. The symbol [ ]∗ will be used in this work to

indicate “adjoint” operator. In certain situations, it might be computationally advantageous
to include certain boundary components of

[
P(1)

(
u;α; a(1); v(1)

)]
∂Ωx

into the components

of A(1)(u;α).
The domain of A(1)(u;α) is determined by selecting appropriate adjoint boundary

and/or initial conditions, which will be denoted in operator form as:{
b(1)

A

(
u; a(1);α

)}
α0

= 0, x ∈ ∂Ωx

(
α0
)

. (37)

The above boundary conditions for A(1)(u;α) are usually inhomogeneous, i.e.,
b(1)

A (0; 0;α) 6= 0, and are obtained by imposing the following requirements:
1. They must be independent of unknown values of v(1)(x) and δα;
2. The substitution of the boundary and/or initial conditions represented by

Equations (23) and (37) into the expression of
{[

P(1)
(

u;α; a(1); v(1)
)]

∂Ωx

}
α0

must cause

all terms containing unknown values of v(1)(x) to vanish.
Constructing the adjoint initial and/or boundary conditions for A(1)(u;α) as de-

scribed above and implementing them together with the variational boundary and/or
initial conditions represented by Equation (23) into Equation (35) reduces the bilinear con-

comitant
{[

P(1)
(

u;α; a(1); v(1)
)]

∂Ωx

}
α0

to a quantity that will contain boundary terms

involving only known values of δα, α0, u0, and ψ(1); this quantity will be denoted by{[
P̂(1)

(
u;α; a(1); δα

)]
∂Ωx

}
α0

. In general, the boundary terms represented by{[
P̂(1)

(
u;α; a(1); δα

)]
∂Ωx

}
α0

do not vanish automatically. In certain cases, however,{[
P̂(1)

(
u;α; a(1); δα

)]
∂Ωx

}
α0

may vanish automatically or it may be forced to vanish by
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considering appropriately constructed extensions of the adjoint operator A(1)(α, u); how-

ever, such extensions are seldom needed in practice. Since
{[

P̂(1)
(

u;α; a(1); δα
)]

∂Ωx

}
α0

is

linear in δα, it can be expressed in the following form:[
P̂(1)

(
u;α; a(1); δα

)]
∂Ωx

=
TP
∑

j1=1

[
∂P̂(1)

(
u;α; a(1)

)
/∂αj1

]
δαj1 .

Implementing the forward and adjoint boundary and/or initial conditions given in
Equations (23) and (37) into Equation (36) transforms the later into the following relation:{〈

A(1)(u;α)a(1), v(1)
〉

1

}
α0

=
{〈

a(1), V(1)(u;α)v(1)
〉

1

}
α0
−
{[

P̂(1)
(

u;α; a(1); δα
)]

∂Ωx

}
α0

, (38)

Replacing the quantity V(1)(α; u)v(1) in the first term on the right side of Equation (38)
by the right side of Equation (22) yields the following relation:{〈

A(1)(u;α)a(1), v(1)
〉

1

}
α0

=
{〈

a(1), q(1)(u;α; δα)
〉

1

}
α0
−
{[

P̂(1)
(

u;α; a(1); δα
)]

∂Ωx

}
α0

. (39)

The definition of the function a(1)(x) will now be completed by requiring that the left
side of Equation (39) is the same as the indirect-effect term defined in Equation (17), which
is achieved by imposing the following relationship:{

A(1)(u;α)a(1)(x)
}
α0

= {∂S(u;α)/∂u}α0 , s(1)A [u(x);α], x ∈ Ωx, (40)

while satisfying the adjoint boundary conditions represented by Equation (37). The sub-
script “A” attached to the source term on the right side of Equation (40) indicates “adjoint”.
Since the source s(1)A [u(x);α] may contain distributions (e.g., Dirac delta functions and
derivatives thereof), the equality in Equation (40) is considered to hold in the weak sense.
The well-known Riesz representation theorem ensures that the relationship in Equation (40)
holds uniquely.

The results obtained in Equations (38)–(40) are now replaced in Equation (17) to obtain
the following expression of the indirect-effect term as a function of a(1)(x):{

δR
[
u(x);α; v(1)(x)

]}
ind

=
{〈

a(1), q(1)(u;α; δα)
〉

1

}
α0
−
{[

P̂(1)
(

u;α; a(1); δα
)]

∂Ωx

}
α0

≡
{
δR
[
u(x);α; a(1)(x); δα

]}
ind

,
TP
∑

j1=1

{
R(1)

[
j1; u(x); a(1)(x);α

]}
ind
δαj1 ,

(41)

where, for each j1 = 1, . . . , TP, the contribution of the indirect-effect term to the sensitivity
of the response with respect to the parameter αj1 is given by{

R(1)
[

j1; u(x); a(1)(x);α
]}

ind
,
{〈

a(1)(x), s(1)V (j1; u;α)〉1 − ∂P̂(1)
(

u;α; a(1)
)

/∂αj1

}
α0

=

{
ω1(α)∫
λ1(α)

. . .
ωTI(α)∫
λTI(α)

a(1)(x)· ∂[Q(α)−N(u;α)]
∂αj1

dx1 . . . dxTI −
∂P̂(1)(u;α;a(1))

∂αj1

}
α0

.
(42)

As the identity on the right side of Equation (41) indicates, the desired elimina-
tion of all unknown values of v(1)(x) from the expression of the indirect-effect term{
δR
[
u(x);α; v(1)(x)

]}
ind

is accomplished. Instead of depending on v(1)(x), the indirect-

effect term
{
δR
[
u(x);α; v(1)(x)

]}
ind

now depends on the adjoint function a(1)(x) ∈ H1.
Replacing in Equation (16) the result obtained in Equation (41) together with the

expression provided (18) for the direct-effect term yields the following expression{
δR
[
u(x);α; v(1)(x); δα

]}
α0

= {δR[u(x);α; δα]}dir +
{〈

a(1), q(1)(u;α; δα)
〉

1

}
α0

−
{[

P̂(1)
(

u;α; a(1); δα
)]

∂Ωx

}
α0

.
(43)



J. Nucl. Eng. 2022, 3 48

The expressions of the first-order response sensitivities
{

∂R[u(x);α]/∂αj1
}
α0 of the re-

sponse R[u(x);α] with respect to the parametersαj1 are obtained identifying in Equation (43)
the quantities that multiply the respective parameter variations δαj1 , j1 = 1, . . . , TP. This
identification yields the following expressions for the first-order response sensitivities{

∂R[u(x);α]/∂αj1
}
α0 , j1 = 1, . . . , TP, computed at the model’s nominal parameter and

state function values:{
∂R[u(x);α]/∂αj1

}
α0 ,

{
R(1)

[
j1; u(x); a(1)(x);α

]}
ind

+
{

R(1)[j1; u(x);α]
}

dir

=

{
ω1(α)∫
λ1(α)

. . .
ωTI(α)∫
λTI(α)

a(1)(x)· ∂[Q(α)−N(u;α)]
∂αj1

dx1 . . . dxTI −
∂P̂(1)(u;α;a(1))

∂αj1

}
α0

+

{
ω1(α)∫
λ1(α)

. . .
ωTI(α)∫
λTI(α)

∂S(u;α;α)
∂αj1

dx1 . . . dxTI

}
α0

+
TI
∑

j=1

ω1(α)∫
λ1(α)

. . .
ωj−1(α)∫
λj−1(α)

ωj+1(α)∫
λj+1(α)

. . .
ωTI(α)∫
λTI(α)

S
[
u
(
x1, .,ωj(α), ., xNx

)
;α
] ∂ωj(α)

∂αj1
dx1 . . . dxTI


α0

−
TI
∑

j=1

ω1(α)∫
λ1(α)

. . .
ωj−1(α)∫
λj−1(α)

ωj+1(α)∫
λj+1(α)

. . .
ωTI(α)∫
λTI(α)

S
[
u
(

x1, ., λj(α), ., xNx

)
;α
] ∂λj(α)

∂αj1
dx1 . . . dxTI


α0

.

, R(1)
[

j1; u(x); a(1)(x);α
]
; j1 = 1, . . . , TP.

(44)

As indicated by Equation (44), each of the first-order sensitivities R(1)
[

j1; u(x); a(1)(x);α
]

of the response R[u(x);α] with respect to the model parameters αj1 (including boundary
and initial conditions) can be computed inexpensively after having obtained the function
a(1)(x) ∈ H1, using just quadrature formulas to evaluate the various inner products involv-
ing a(1)(x) ∈ H1 in the expression of the indirect-effect term obtained in Equation (42). The
function a(1)(x) ∈ H1 is obtained by solving numerically Equations (37) and (40), which
is the only large-scale computation needed for obtaining all of the first-order sensitivities.
Equations (37) and (40) will be called the first-level adjoint sensitivity system (1st-LASS),
and its solution, a(1)(x) ∈ H1(Ωx), will be called the first-level adjoint function. It is very im-
portant to note that the 1st-LASS is independent of parameter variation δαj1 , j1 = 1, . . . , TP,
and therefore needs to be solved only once, regardless of the number of model parameters
under consideration. Furthermore, since Equation (40) is linear in a(1)(x)ψ(2)

1,i1
(x), solving it

requires less computational effort than solving the original Equation (1), which is nonlinear
in u(x).

3.2. The Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear
Systems (2nd-CASAM-N)

The 2nd-CASAM-N relies on the same fundamental concepts as introduced in [14],
but the 2nd-CASAM-N also enables the computation of response sensitivities with respect
to imprecisely known domain boundaries, thus including all possible types of uncertain
parameters. Fundamentally, the second-order sensitivities are defined as the “1st-order sen-
sitivities of the 1st-order sensitivities”. This definition stems from the inductive definition
of the second-order total G differential of correspondingly differentiable function, which is
also defined inductively as “the total 1st-order differential of the 1st-order total differential”
of a function.

The computation of the second-order sensitivities R(1)
[

j1; u(x); a(1)(x);α
]

requires the
prior computation of the original forward function u(x) and the first-level adjoint function
a(1)(x). For each j1 = 1, . . . , TP, the first-order sensitivities R(1)

[
j1; u(x); a(1)(x);α

]
will be

assumed to satisfy the conditions stated in Equations (11) and (12). Under these condi-
tions, the first-order total G differential

{
δR(1)

[
j1; u(x); a(1)(x);α; v(1)(x); δa(1)(x); δα

]}
α0
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of R(1)
[

j1; u(x); a(1)(x);α
]

will exist in a neighborhood around the nominal values of the
parameters and state functions and will have, by definition, the following expression, for
each j1 = 1, . . . , TP:{

δR(1)
[

j1; u(x); a(1)(x);α; v(1)(x); δa(1)(x); δα
]}

α0

,
{

d
dεδR(1)

[
j1; u(x) + εv(1)(x); a(1)(x) + εδa(1)(x);α+ εδα

]}
ε=0

,
{
δR(1)

[
j1; u(x); a(1)(x);α; δα

]}
dir

+
{
δR(1)

[
j1; u(x); a(1)(x);α; v(1)(x); δa(1)(x)

]}
ind

,

(45)

where {
δR(1)

[
j1; u(x); a(1)(x);α; δα

]}
dir

,
{

∂R(1)[j1;u(x);a(1)(x);α]
∂α δα

}
α0

=
TP
∑

j2=1

∂R(1)[j1;u(x);a(1)(x);α]
∂αj2

δαj2 ,
(46)

and {
δR(1)

[
j1; u(x); a(1)(x);α; v(1)(x); δa(1)(x)

]}
ind

,
TD
∑

i=1

∂R(1)[j1;u(x);a(1)(x);α]
∂ui(x)

δui(x) +
TD
∑

i=1

∂R(1)[j1;u(x);a(1)(x);α]
∂a(1)i (x)

δa(1)i (x)

,
{

∂R(1)
[

j1; u(x); a(1)(x);α
]
/∂u

}
α0

v(1)(x)

+
{

∂R(1)
[

j1; u(x); a(1)(x);α
]
/∂a(1)

}
α0
δa(1)(x).

(47)

In Equation (45), the quantities
{
δR(1)

[
j1; u(x); a(1)(x);α; v(1)(x); δa(1)(x)

]}
ind

and{
δR(1)

[
j1; u(x); a(1)(x);α; δα

]}
dir

denote, respectively, the indirect-effect term and the

direct-effect term. The direct-effect term
{
δR(1)

[
j1; u(x); a(1)(x);α; δα

]}
dir

comprises all
dependencies on the vector δα of parameter variations and, in view of Equation (44), has
the following expression obtained by using Equation (44):

∂R(1)[j1;u(x);a(1)(x);α]
∂αj2

= ∂
∂αj2

{
ω1(α)∫
λ1(α)

. . .
ωTI(α)∫
λTI(α)

∂S(u;α;α)
∂αj1

dx1 . . . dxTI

}

+ ∂
∂αj2

{
ω1(α)∫
λ1(α)

. . .
ωTI(α)∫
λTI(α)

a(1)(x)· ∂[Q(α)−N(u;α)]
∂αj1

dx1 . . . dxTI −
∂P̂(1)(u;α;a(1))

∂αj1

}

+
TI
∑

j=1

∂
∂αj2

ω1(α)∫
λ1(α)

. . .
ωj−1(α)∫
λj−1(α)

ωj+1(α)∫
λj+1(α)

. . .
ωTI(α)∫
λTI(α)

S
[
u
(
x1, .,ωj(α), ., xNx

)
;α
] ∂ωj(α)

∂αj1
dx1 . . . dxTI


−

TI
∑

j=1

∂
∂αj2

ω1(α)∫
λ1(α)

. . .
ωj−1(α)∫
λj−1(α)

ωj+1(α)∫
λj+1(α)

. . .
ωTI(α)∫
λTI(α)

S
[
u
(
x1, ., λj(α), ., xNx

)
;α
] ∂λj(α)

∂αj1
dx1 . . . dxTI

,

f or j1, j2 = 1, . . . , TP.

(48)

The indirect-effect term
{
δR(1)

[
j1; u(x); a(1)(x);α; v(1)(x); δa(1)(x)

]}
ind

comprises all

dependencies on the vectors v(1)(x) and δa(1)(x) of variations in the state functions u(x)
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and a(1)(x), respectively. The components of the indirect-effect term have the following
expressions obtained by using Equation (44):

∂R(1)[j1;u(x);a(1)(x);α]
∂ui

=
ω1(α)∫
λ1(α)

. . .
ωTI(α)∫
λTI(α)

∂2S(u;α;α)
∂ui∂αj1

dx1 . . . dxTI

+
ω1(α)∫
λ1(α)

. . .
∫ωTI(α)
λTI(α)

a(1)(x)· ∂[Q(α)−∂N(u;α)/∂ui ]
∂αj1

dx1 . . . dxTI −
∂2 P̂(1)(u;α;a(1))

∂ui∂αj1

+
TI
∑

j=1

ω1(α)∫
λ1(α)

. . .
ωj−1(α)∫
λj−1(α)

ωj+1(α)∫
λj+1(α)

. . .
ωTI(α)∫
λTI(α)

∂S[u(x1,.,ωj(α),.,xNx );α]
∂ui

∂ωj(α)

∂αj1
dx1 . . . dxTI

−
TI
∑

j=1

ω1(α)∫
λ1(α)

. . .
ωj−1(α)∫
λj−1(α)

ωj+1(α)∫
λj+1(α)

. . .
ωTI(α)∫
λTI(α)

∂S[u(x1,.,λj(α),.,xNx );α]
∂ui

∂λj(α)

∂αj1
dx1 . . . dxTI ,

f or j1 = 1, . . . , TP; i = 1, . . . , TD;

(49)

and

∂R(1)[j1;u(x);a(1)(x);α]
∂a(1)i

= ∂

∂a(1)i

{
ω1(α)∫
λ1(α)

. . .
ωTI(α)∫
λTI(α)

a(1)(x)· ∂[Q(α)−N(u;α)]
∂αj1

dx1 . . . dxTI

}
,

f or j1 = 1, . . . , TP; i = 1, . . . , TD.

(50)

The direct-effect term
{
δR(1)

[
j1; u(x); a(1)(x);α; δα

]}
dir

can be computed immedi-

ately while the indirect-effect term
{
δR(1)

[
j1; u(x); a(1)(x);α; v(1)(x); δa(1)(x)

]}
ind

can be

computed only after having determined the vectors v(1)(x) and δa(1)(x). The vector v(1)(x)
is the solution of the 1st-LVSS defined by Equations (22) and (23). On the other hand,
the vector δa(1)(x) is the solution of the G differentiated 1st-LASS. Thus, taking the G
differential of Equations (37) and (40) yields the following system of equations for δa(1)(x):{

V(2)
21

(
u; a(1);α

)
v(1)(x) + V(2)

22 (u;α)δa(1)(x)
}
α0

=
{

q(2)
2

(
u; a(1);α; δα

)}
α0

, x ∈ Ωx, (51){
δb(1)

A

(
u; a(1);α; v(1); δa(1); δα

)}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (52)

where

V(2)
21

(
u; a(1);α

)
,

∂
[
A(1)(u;α)a(1)

]
∂u

− s(1)[u(x);α]
∂u

; (53)

V(2)
22 (u;α) , A(1)(u;α) (54)

q(2)
2

(
u;α; a(1); δα

)
,

s(1)[u(x);α]
∂α

δα−
∂
[
A(1)(u;α)a(1)(x)

]
∂α

δα; (55)

δb(1)
A

(
u; a(1);α

)
,

∂b(1)
A

(
u; a(1);α

)
∂u

v(1)(x) +
∂b(1)

A

(
u; a(1);α

)
∂a(1)

δa(1)(x) +
∂b(1)

A

(
u; a(1);α

)
∂α

δα (56)

Although Equations (51) and (52) are coupled to the 1st-LVSS, they can be solved
sequentially, after having obtained the solution v(1)(x) of the 1st-LVSS. Formally, the
functions v(1)(x) and δa(1)(x) are obtained by solving the following second-level varia-
tional sensitivity system (2nd-LVSS), which is obtained by concatenating the 1st-LVSS to
Equations (51) and (52):{

VM(2)
[
2× 2; U(2)(2; x);α

]
V(2)(2; x)

}
α0

=
{

Q(2)
V

[
2; U(2)(2; x);α; δα

]}
α0

, x ∈ Ωx, (57){
B(2)

V

[
2; U(2)(2; x); V(2)(2; x);α; δα

]}
α0

= 0[2], 0[2] , [0, 0]†, x ∈ ∂Ωx

(
α0
)

(58)
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The argument “2” which appears in the list of arguments of the vector U(2)(2; x) and
the “variational vector” V(2)(2; x) in Equations (57) and (58) indicates that each of these
vectors is a two-block column vector, with each block comprising a column vector of
dimension TD, defined as follows:

U(2)(2; x) ,

(
u(1)(x)
a(1)(x)

)
; V(2)(2; x) , δU(2)(2; x) ,

(
v(2)(1; x)
v(2)(2; x)

)
,

(
v(1)(x)
δa(1)(x)

)
. (59)

Thus, the (column) block vector U(2)(2; x) has a total of 2× TD components; evidently,
the (column) block vector V(2)(2; x) also has a total of 2× TD components. In the relatively
simple case regarding the components of either the vector U(2)(2; x) or the vector V(2)(2; x),
the numbers “1” and “2” could also be used as subscripts, but such a subscript notation
would become unwieldy for the higher-level (adjoint) functions, which will be introduced
in the sections to follow below. The superscript “(2)” which appears in the notation of the
vectors U(2)(2; x) and V(2)(2; x) indicates “2nd-level”. Henceforth, such “higher-level” (i.e.,
level higher than first) variational and adjoint functions/vectors will be denoted using
bold capital letters. The argument “2” in the expression 0[2] , [0, 0]† indicates that the
quantity 0[2] is a two-block column vector comprising two vectors, each of which has TD
components, all of which are zero-valued, as defined in Equation (3). Thus, the column
vector 0[2] has a total of 2× TD components, all of which are identically zero.

To distinguish block vectors from block matrices, two capital bold letter are used (and
will henceforth be used) to denote block matrices, as in the case of “the second-level” “vari-
ational matrix” VM(2)

[
2× 2; u(2)(x);α

]
. The “2nd-level” is indicated by the superscript

“(2)”. Subsequently in this work, levels higher than second will also be indicated by a
corresponding superscript attached to the appropriate block vectors and/or block matrices.
The argument “2× 2”, which appears in the list of arguments of VM(2)

[
2× 2; u(2)(x);α

]
,

indicates that this matrix is a 2× 2-dimensional block matrix comprising four matrices,
each with of dimensions TD× TD, having the following structure:

VM(2)
[
2× 2; U(2)(2; x);α

]
,

(
V(1) 0
V(2)

21 V(2)
22

)
. (60)

Thus, the matrix VM(2)
[
2× 2; u(2)(x);α

]
has a total of (2× TD)2 components (or

elements). The other quantities which appear in Equations (57) and (58) are also two-block
vectors, with the same structure as V(2)(2; x), and are defined as follows:

Q(2)
V

[
2; U(2)(2; x);α; δα

]
,

 q(2)
V

(
1; U(2)(2; x);α; δα

)
q(2)

V

(
2; U(2)(2; x);α; δα

)  ,

(
q(1)(u;α; δα)

q(2)
2

(
u; a(1);α; δα

) ); (61)

B(2)
V

[
2; U(2)(2; x); V(2)(2; x);α; δα

]
,

 b(2)
V

[
1; U(2)(2; x); V(2)(2; x);α; δα

]
b(2)

V

[
2; U(2)(2; x); V(2)(2; x);α; δα

]


,

 b(1)
V

(
u(1);α; δu(1); δα

)
δb(1)

A

[
U(2)(2; x); V(2)(2; x);α; δα

]
.

(62)

Solving the 2nd-LVSS requires TP2 large-scale computations, which is unrealistic
to perform for large-scale systems comprising many parameters. The 2nd-CASAM-N
circumvents the need for solving the 2nd-LVSS by deriving an alternative expression
for the indirect-effect term defined in Equation (47), in which the function V(2)(2; x) is
replaced by a second-level adjoint function which is independent of variations in the
model parameter and state functions. This second-level adjoint function will satisfy a
second-level adjoint sensitivity system (2nd-LASS), which will be constructed by using
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the 2nd-LVSS as the starting point, following the same principles outlined in Section 3.1
The 2nd-LASS will be constructed in a Hilbert space which will be denoted as H2(Ωx)
and which comprises as elements block vectors of the same form as V(2)(2; x). Thus,

a generic vector in H2(Ωx), denoted as Ψ(2)(2; x) ,
[
ψ(2)(1; x),ψ(2)(2; x)

]†
∈ H2(Ωx),

comprises two components of the form ψ(2)(1; x) ,
[
ψ
(2)
1 (1; x), . . . ,ψ(2)

TD(1; x)
]†
∈ H1(Ωx)

andψ(2)(2; x) ,
[
ψ
(2)
1 (2; x), . . . ,ψ(2)

TD(2; x)
]†
∈ H1(Ωx), each of which are TD-dimensional

column vectors; hence, Ψ(2)(2; x) is a (2× TD)-dimensional column vector.

The inner product of two vectors Ψ(2)(2; x) ,
[
ψ(2)(1; x),ψ(2)(2; x)

]†
∈ H2(Ωx) and

Φ(2)(x) ,
[
ϕ(2)(1; x),ϕ(2)(2; x)

]†
∈ H2(Ωx) in the Hilbert space H2(Ωx) will be denoted

as
〈

Ψ(2)(2; x), Φ(2)(x)
〉

2
and defined as follows:

〈
Ψ(2)(2; x), Φ(2)(x)

〉
2
,

2

∑
i=1

〈
ψ(2)(i; x),ϕ(2)(i; x)

〉
1

(63)

The inner product defined in Equation (63) is continuous in α in a neighborhood of
α0. Using the definition of the inner product defined in Equation (63), construct the inner

product of Equation (57) with a vector A(2)(2; x) ,
[
a(2)(1; x), a(2)(2; x)

]†
∈ H2(Ωx) to

obtain the following relation:{〈
A(2)(2; x), VM(2)

[
2× 2; u(2)(x);α

]
V(2)(2; x)

〉
2

}
α0

=
{〈

A(2)(2; x), Q(2)
V

[
2; u(2)(x);α; δα

]〉
2

}
α0

.
(64)

The inner product on the left side of Equation (64) is now further transformed by using
the definition of the adjoint operator to obtain the following relation:{〈

A(2)(2; x), VM(2)
[
2× 2; U(2)(2; x);α

]
V(2)(2; x)

〉
2

}
α0

=
{〈

V(2)(2; x), AM(2)
[
2× 2; U(2)(2; x);α

]
A(2)(2; x)

〉
2

}
α0

+

{[
P(2)

(
U(2); A(2); V(2);α

)]
∂Ωx

}
α0

,

(65)

where the adjoint matrix-valued operator AM(2)
[
2× 2; u(2)(x);α

]
is defined as follows:

AM(2)
[
2× 2; U(2)(2; x);α

]
,
[
VM(2)

(
2× 2; U(2)(2; x);α

)]∗
=


[
V(1)∗

]† [
V(2)∗

21

]†

0
[
V(2)∗

22

]†

 (66)

The matrix AM(2)
[
2× 2; u(2)(x);α

]
comprises (2× 2) block matrices, each with di-

mensions TD2, thus comprising a total of (2× 2)TD2 components (or elements).

In Equation (66), the quantity
{[

P(2)
(

U(2); A(2); V(2);α
)]

∂Ωx

}
α0

denotes the corre-

sponding bilinear concomitant on the domain’s boundary, evaluated at the nominal values
for the parameters and respective state functions. The definition domain of the adjoint
(matrix-valued) operator AM(2)

[
2× 2; U(2)(2; x);α

]
is specified by requiring the function
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A(2)(2; x) ,
[
a(2)(1; x), a(2)(2; x)

]†
∈ H2(Ωx) to satisfy adjoint boundary/initial conditions

denoted as follows:{
B(2)

A

[
2; U(2)(2; x); A(2)(2; x);α

]}
α0

= 0[2], x ∈ ∂Ωx

(
α0
)

. (67)

The second-level adjoint boundary/initial conditions represented by Equation (67)
are determined by requiring that: (a) they must be independent of unknown values of
V(2)(2; x); and (b) the substitution of the boundary and/or initial conditions represented

by Equations (58) and (67) into the expression of
{[

P(2)
(

U(2); A(2); V(2);α
)]

∂Ωx

}
α0

must

cause all terms containing unknown values of V(2)(2; x) to vanish.
Implementing the second-level (forward and adjoint) boundary/initial conditions,

namely Equations (58) and (67) into Equation (65), will transform the later into the follow-
ing form: {〈

V(2)(2; x), AM(2)
[
2× 2; U(2)(2; x);α

]
A(2)(2; x)

〉
2

}
α0

=
{〈

A(2)(2; x), VM(2)
[
2× 2; U(2)(2; x);α

]
V(2)(2; x)

〉
2

}
α0

−
{[

P̂(2)
(

U(2); A(2);α; δα
)]

∂Ωx

}
α0

,

(68)

where
{[

P̂(2)
(

U(2); A(2);α; δα
)]

∂Ωx

}
α0

denotes residual boundary terms which do not

depend on V(2)(2; x) but may not have vanished automatically. The right side of Equation (64)
is now used to replace the vector VM(2)

[
2× 2; U(2)(2; x);α

]
V(2)(2; x) in the first term on

the right side of Equation (68), thereby obtaining the following relation:{〈
V(2)(2; x), AM(2)

[
2× 2; U(2)(2; x);α

]
A(2)(2; x)

〉
2

}
α0

=
{〈

A(2)(2; x), Q(2)
V

[
2; U(2)(2; x);α; δα

]〉
2

}
α0
−
{[

P̂(2)
(

U(2); A(2);α; δα
)]

∂Ωx

}
α0

.
(69)

The definition of the second-level adjoint function

A(2)(2; x) ,
[
a(2)(1; x), a(2)(2; x)

]†
∈ H2(Ωx) is now completed by requiring that both

the left side of Equation (69) and the right side of Equation (47) represent the “indirect-
effect term”

{
δR(1)

[
j1; u(x); a(1)(x);α; v(1)(x)

]}
ind

. As shown in Equation (45), there are
a total of TP indirect-effect terms, each one corresponding to a first-order sensitivity
R(1)

[
j1; u(x); a(1)(x);α

]
, j1 = 1, . . . , TP. Hence, there will be a total of TP second-level adjoint

functions of the form A(2)(2; j1; x) ,
[
a(2)(1; j1; x), a(2)(2; j1; x)

]†
∈ H2(Ωx), j1 = 1, . . . , TP,

with each such adjoint function corresponding to a specific j1-dependent indirect-effect
term. The left side of Equation (69) will be identical to the right side of Equation (47) by
requiring that the following relation is satisfied for each j1 = 1, . . . , TP by the second-level

adjoint functions (block vectors) A(2)(2; j1; x) ,
[
a(2)(1; j1; x), a(2)(2; j1; x)

]†
∈ H2(Ωx):{

AM(2)
[
2× 2; U(2)(2; x);α

]
A(2)(2; j1; x)

}
α0

=
{

Q(2)
A

[
2; j1; U(2)(2; x);α

]}
α0

, j1 = 1, . . . , TP, x ∈ Ωx,
(70)
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where

Q(2)
A

[
2; j1; U(2)(2; x);α

]
,

 q(2)
A

(
1; j1; U(2);α

)
q(2)

A

(
2; j1; U(2);α

)


,

 ∂R(1)
[

j1; u(x); a(1)(x);α; v(1)(x)
]
/∂u

∂R(1)
[

j1; u(x); a(1)(x);α; v(1)(x)
]
/∂a(1)

, j1 = 1, . . . , TP.

(71)

The boundary conditions to be satisfied by each of the second-level adjoint functions

A(2)(2; j1; x) ,
[
a(2)(1; j1; x), a(2)(2; j1; x)

]†
∈ H2(Ωx) are as represented by Equation (67),

namely:{
B(2)

A

[
2; U(2)(2; x); A(2)(2; j1; x);α

]}
α0

= 0[2]; j1 = 1, . . . , TP; x ∈ ∂Ωx

(
α0
)

. (72)

Since the source Q(2)
A

[
2; j1; U(2)(2; x);α

]
may contain distributions (e.g., Dirac delta

functions and derivatives thereof), the equality in Equation (70) is considered to hold in the
weak sense. The well-known Riesz representation theorem ensures that the relationship in
Equation (70) holds uniquely.

The system of equations represented by Equations (70)–(72) will be called the second-
level adjoint sensitivity system (2nd-LASS) and its solution,

A(2)(2; j1; x) ,
[
a(2)(1; j1; x), a(2)(2; j1; x)

]†
, will be called the second-level adjoint func-

tion. The 2nd-LASS is independent of parameter variations δα and variations V(2)(2; x) in
the respective state functions. It is also important to note that the (2× TD)2-dimensional
matrix AM(2)

[
2× 2; U(2)(2; x);α

]
is independent of the index j1. Only the source term

Q(2)
A

[
2; j1; U(2)(2; x);α

]
depends on the index j1. Therefore, the same solver can be used

to invert the AM(2)
[
2× 2; U(2)(2; x);α

]
and numerically solve the 2nd-LASS for each j1-

dependent source Q(2)
A

[
2; j1; U(2)(2; x);α

]
in order to obtain the corresponding j1-dependent

2 × TD-dimensional second-level adjoint function (column vector)

A(2)(2; j1; x) ,
[
a(2)(1; j1; x), a(2)(2; j1; x)

]†
. Computationally, it would be efficient to store,

if possible, the inverse matrix
{

AM(2)
[
2× 2; U(2)(2; x);α

]}−1
, in order to multiply the in-

verse matrix
{

AM(2)
[
2× 2; U(2)(2; x);α

]}−1
directly with the corresponding source term

Q(2)
A

[
2; j1; U(2)(2; x);α

]
, for each index j1, in order to obtain the corresponding j1-dependent

2× TD-dimensional second-level adjoint function A(2)(2; j1; x) ,
[
a(2)(1; j1; x), a(2)(2; j1; x)

]†
.

The two components a(2)(1; j1; x) and a(2)(2; j1; x) of the second-level adjoint function

A(2)(2; j1; x) ,
[
a(2)(1; j1; x), a(2)(2; j1; x)

]†
are distinguished from each other by the use

of the numbers “1” and, respectively, “2” in the respective list of arguments. In this par-
ticularly simple case, the numbers “1” and “2” could also be used as subscripts, in the
customary notation for vector components, but such a use would not lend itself to gen-
eralizations because the subscript notation would become unwieldy for the higher-level
adjoint functions, which will be introduced in the sections that follow below.
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Using the underlying the 2nd-LASS and Equation (68) in Equation (47) yields the
following expression for the indirect-effect term, for each j1 = 1, . . . , TP:{

δR(1)
[

j1; u(x); a(1)(x);α; v(1)(x); δa(1)(x)
]}

ind

=
{

A(2)(2; j1; x), Q(2)
V

[
2; U(2)(2; x);α; δα

]
2

}
α0

−
{[

P̂(2)
[
U(2)(2; x); A(2)(2; j1; x);α; δα

]]
∂Ωx

}
α0

≡
{
δR(1)

[
j1; u(2)(x); A(2)(2; j1; x);α; δα

]}
ind

.

(73)

As the identity in Equation (73) indicates, the dependence of the indirect-effect term
on the functions v(1)(x) and δa(1)(x) is replaced by the dependence on the second-level
adjoint function A(2)(2; j1; x), for each j1 = 1, . . . , TP.

Replacing the expression obtained in Equation (73) for the indirect-effect term together
with the expression for the direct-effect term provided in Equation (46) yields the following
expression for the total differential defined by Equation (45):{

δR(1)
[

j1; U(2)(2; x); A(2)(2; j1; x);α; δα
]}

α0
=

{
∂R(1)[j1;u(x);a(1)(x);α]

∂α δα

}
α0

+
{〈

A(2)(2; j1; x), Q(2)
V

[
2; U(2)(2; x);α; δα

]〉
2

}
α0
−
{[

P̂(2)
(

U(2); A(2);α; δα
)]

∂Ωx

}
α0

.
(74)

Using Equations (25), (46), and (55) in Equation (74) yields the following component
form for the total differential expressed by Equation (74):{

δR(1)
[

j1; U(2)(2; x); A(2)(2; j1; x);α; δα
]}

α0

=
TP
∑

j2=1

{
R(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α

]}
α0
δαj2 , j1 = 1, . . . , TP,

(75)

where the quantity
{

R(2)
[

j2; j1; U(2)(2; x); A(2)(2; j1; x);α
]}

α0
denotes the second-order

sensitivity of the generic scalar-valued response R[u(x);α] with respect to the parameters αj1
and αj2 computed at the nominal values of the parameters and respective state functions. The

expression of the second-order sensitivity R(2)
[

j2; j1; U(2)(2; x); A(2)(2; j1; x);α
]

of the response
R[u(x);α] with respect to two model parameters αj1 and αj2 has the following expression:

For j1, j2 = 1, . . . , TP : R(2)
[

j2; j1; U(2)(2; x); A(2)(2; j1; x);α
]
,

∂R(1)[j1;u(x);a(1)(x);α]
∂αj2

−
{

∂P̂(2)
[
U(2)(2;x);A(2)(2;j1;x);α

]}
∂Ωx

∂αj2
+
〈

a(2)(1; j1; x), ∂[Q(α)−N(u;α)]
∂αj2

〉
1

+

〈
a(2)(2; j1; x), s(1) [u(x);α]

∂αj2
−

∂
[
A(1)(u;α)a(1)(x)

]
∂αj2

〉
1

, ∂2R[u(x);α]
∂αj2 ∂αj1

.

(76)

As Equations (70) and (72) indicate, solving the 2nd-LASS once provides the second-
level adjoint function a(2)(j1; x), for each index j1 = 1, . . . , TP, which enables the exact and
efficient computation of the G differential δR(1)

[
j1; U(2)(2; x); A(2)(2; j1; x);α; δα

]
for each

index j1 = 1, . . . , TP. Notably, the G differential δR(1)
[

j1; U(2)(2; x); A(2)(2; j1; x);α; δα
]

comprises one complete row (running on the index j1 = 1, . . . , TP) of mixed second-
order partial sensitivities R(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α

]
= ∂2R/∂αj2 ∂αj1 . Thus, the

exact computation of all of the partial second-order sensitivities,
{

∂2R(α, u)/∂αj∂αi
}
(α0)

,
i, j = 1, . . . , TP, requires at most TP large-scale (adjoint) computations using the 2nd-
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LASS, rather than at least O
(
TP2) large-scale computations, which would be required by

forward methods.
Since the adjoint matrix AM(2)

[
2× 2; U(2)(2; x);α

]
is block diagonal, solving the 2nd-

LASS is equivalent to solving two 1st-LASS, with two different source terms. Thus, the
“solvers” and the computer program used for solving the 1st-LASS can also be used for
solving the 2nd-LASS. The 2nd-LASS was designated as the “second-level” rather than the
“second-order” adjoint sensitivity system, since the 2nd-LASS does not involve any explicit
second-order G derivatives of the operators underlying the original system but involves
the inversion of the same operators that needed to be inverted for solving the 1st-LASS.

It is important to note that if the 2nd-LASS is solved TP-times, the second-order
mixed sensitivities R(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α

]
≡ ∂2R/∂αj2 ∂αj1 will be computed

twice, in two different ways, in terms of two distinct second-level adjoint functions. Conse-
quently, the symmetry property ∂2R[u(x);α]/∂αj2 ∂αj1 =∂2R[u(x);α]/∂αj1 ∂αj2 enjoyed by
the second-order sensitivities provides an intrinsic (numerical) verification that the com-
ponents of the second-level adjoint function A(2)(2; j1; x), as well as the first-level adjoint
function a(1)(x) are computed accurately.

The structure of the 2nd-LASS enables full flexibility for prioritizing the computation
of the second-order sensitivities. The computation of the second-order sensitivities would
logically be prioritized based on the relative magnitudes of the first-order sensitivities: the
largest relative first-order response sensitivity should have the highest priority for comput-
ing the corresponding second-order mixed sensitivities; then, the second largest relative
first-order response sensitivity should be considered next, and so on. The unimportant
second-order sensitivities can be deliberately neglected while knowing the error incurred
by neglecting them. Computing second-order sensitivities that correspond to vanishing
first-order sensitivities may also be of interest, since vanishing first-order sensitivities may
indicate critical points of the response in the phase space of model parameters.

3.3. The Third-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear
Systems (3rd-CASAM-N)

The second-order sensitivities R(2)
[

j2; j1; U(2)(2; x); A(2)(2; j1; x);α
]
≡ ∂2R/∂αj2∂αj1 will

be assumed to satisfy the conditions stated in Equations (11) and (12) for each j1, j2 = 1, . . . , TP,
so that the first-order total G differential of R(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α

]
will exist

and will be linear in the variations V(2)(2; x) and δA(2)(2; j1; x) in a neighborhood around
the nominal values of the parameters and the respective state functions. By definition,
the first-order total G differential of R(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α

]
, which will be de-

noted as
{
δR(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α; V(2)(2; x); δA(2)(2; j1; x); δα

]}
α0

, is given
by the following expression:{

δR(2)
[

j2; j1; U(2)(2; x); A(2)(2; j1; x);α; V(2)(2; x); δA(2)(2; j1; x); δα
]}

α0

,
{

d
dεδR(2)

[
j2; j1; U(2)(2; x) + εV(2)(2; x); A(2)(2; j1; x) + εδA(2)(2; j1; x);α+ εδα

]}
ε=0

,
{
δR(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α; δα

]}
dir

+
{
δR(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α; V(2)(2; x); δA(2)(2; j1; x)

]}
ind

.

(77)



J. Nucl. Eng. 2022, 3 57

In Equation (77), the quantity
{
δR(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α; δα

]}
dir

denotes
the “direct-effect term”, which comprises all of the dependencies on the vector δα of
parameter variations and has the following expression:{

δR(2)
[

j2; j1; U(2)(2; x); A(2)(2; j1; x);α; δα
]}

dir

,

{
∂R(2)

[
j2;j1;U(2)(2;x);A(2)(2;j1;x);α

]
∂α δα

}
α0

=
TP
∑

j3=1

{
∂R(2)

[
j2;j1;U(2)(2;x);A(2)(2;j1;x);α

]
∂αj3

}
α0

δαj3 .

(78)

In Equation (77), the quantity{
δR(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α; V(2)(2; x); δA(2)(2; j1; x)

]}
ind

denotes the “indirect-

effect term” which comprises all of the dependencies on the vectors V(2)(2; x) and δA(2)(2; j1; x)
of variations in the state functions U(2)(2; x) and A(2)(2; j1; x); this indirect-effect term is
defined as follows:{

δR(2)
[

j2; j1; U(2)(2; x); A(2)(2; j1; x);α; V(2)(2; x); δA(2)(2; j1; x)
]}

ind

,

{
∂R(2)

[
j2;j1;U(2);A(2);α

]
∂U(2)(2;x)

}
α0

V(2)(2; x) +

{
∂R(2)

[
j2;j1;U(2);A(2);α

]
∂A(2)(2;j1;x)

}
α0

δA(2)(2; j1; x),
(79)

where {
∂R(2)

[
j2;j1;U(2);A(2);α

]
∂U(2)(2;x)

}
α0

V(2)(2; x) ,

{
∂R(2)

[
j2;j1;U(2);A(2);α

]
∂u(x)

}
α0

v(1)(x)

+

{
∂R(2)

[
j2;j1;U(2);A(2);α

]
∂a(1)(x)

}
α0

δa(1)(x),

(80)

and

∂R(2)
[

j2; j1; u(2); a(2);α
]

∂A(2)(2; j1; x)
δA(2)(2; j1; x) ,

2

∑
i=1

∂R(2)
[

j2; j1; u(2); a(2);α
]

∂a(2)(i; j1; x)
δa(2)(i; j1; x). (81)

The direct-effect term
{
δR(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α; δα

]}
dir

can be computed

immediately; however,
{
δR(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α; V(2)(2; x); δA(2)(2; j1; x)

]}
ind

can be computed only after having determined the vectors V(2)(2; x) and δA(2)(2; j1; x). The
vector V(2)(2; x) is the solution of the 2nd-LVSS defined by Equations (57) and (58). The vec-
tor δA(2)(2; j1; x) is the solution of the G-differentiated 2nd-LASS. Taking the G differential
of Equations (70) and (72) yields the following system of equations for δA(2)(2; j1; x):

∂
{

AM(2)[2×2;U(2)(2;x);α]A(2)(2;j1;x)
}

∂U(2)(2;x)
V(2)(2; x)− ∂Q(2)

A [2;j1;u(2)(x);α]
∂U(2)(2;x)

V(2)(2; x)

+AM(2)
[
2× 2; U(2)(2; x);α

]
δA(2)(2; j1; x) =

∂Q(2)
A [2;j1;u(2)(x);α]

∂α ∂α

−
∂
{

AM(2)[2×2;U(2)(2;x);α]A(2)(2;j1;x)
}

∂α ∂α, j1 = 1, . . . , TP; x ∈ Ωx,

(82)

{
δB(2)

A

[
2; U(2)(2; x); A(2)(2; j1; x);α

]}
α0

= 0[2]; j1 = 1, . . . , TP; x ∈ ∂Ωx

(
α0
)

. (83)
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The quantities which appear in Equation (83) are evaluated at the nominal values of
the parameters and respective state functions, but the notation { }α0 , which indicates this
evaluation, is omitted in order to simplify the notation.

Concatenating Equations (82) and (83) with the 2nd-LVSS represented by
Equations (57) and (58) yields the following system of, which will be called the “3rd-
order variational sensitivity system” (3rd-LVSS), for determining the vectors V(2)(2; x) and
δA(2)(2; j1; x): {

VM(3)
[
4× 4; U(3)(4; j1; x);α

]
V(3)(4; j1; x)

}
α0

=
{

Q(3)
V

[
4; j1; U(3)(4; j1; x);α; δα

]}
α0

, x ∈ Ωx,
(84)

{
B(3)

V

[
4; U(3)(4; j1; x); V(3)(4; j1; x);α; δα

]}
α0

= 0[4]; 0[4] , [0, 0, 0, 0]†, x ∈ ∂Ωx

(
α0
)

(85)

where

VM(3)
(

4× 4; U(3);α
)
,

(
VM(2)(2× 2) 0[2× 2]
VM(3)

21 (2× 2) VM(3)
22 (2× 2)

)
;

U(3)(4; j1; x) ,

(
U(2)(2; x)

A(2)(2; j1; x)

)
;

(86)

V(3)(4; j1; x) , δU(3)(4; j1; x) =

(
V(2)(2; x)

δA(2)(2; j1; x)

)
=
[
v(1)(x), δa(1)(x), δa(2)(1; j1; x), δa(2)(2; j1; x)

]†
;

(87)

VM(3)
21 (2× 2; x) ,

∂
{

AM(2)[2×2;U(2)(2;x);α]A(2)(2;j1;x)
}

∂U(2)(2;x)

− ∂Q(2)
A [2;j1;u(2)(x);α]

∂U(2)(2;x)
;

(88)

VM(3)
22 (2× 2; x) , AM(2)

[
2× 2; U(2)(2; x);α

]
; 0[2× 2] ,

(
0 0
0 0

)
; (89)

Q(3)
V

[
4; j1; U(3)(4; j1; x);α; δα

]
,

 Q(2)
V

[
2; U(2)(2; x);α; δα

]
Q(3)

2

[
2; j1; U(3)(4; j1; x);α; δα

]


,
{

q(3)
V

[
1; j1; U(3)(4; j1; x);α; δα

]
, . . . , q(3)

V

[
4; j1; U(3)(4; j1; x);α; δα

]}†
;

(90)

Q(3)
2

[
2; j1; U(3)(4; j1; x);α; δα

]
,

∂Q(2)
A [2;j1;u(2)(x);α]

∂α ∂α

−
∂
{

AM(2)[2×2;U(2)(2;x);α]A(2)(2;j1;x)
}

∂α ∂α;

(91)

B(3)
V

[
4; U(3)(4; j1; x); V(3)(4; j1; x);α; δα

]
,

 B(2)
V

[
2; U(2)(2; x); V(2)(2; x);α; δα

]
δB(2)

A

[
2; U(2)(2; x); A(2)(2; j1; x);α

]
. (92)

For subsequent reference, it is important to note that the quantities
q(3)

V

[
i; j1; U(3)(4; j1; x);α; δα

]
are linear in the parameter variations δαi, i = 1, . . . , TP, and

can therefore be written in the following form:

q(3)
V

[
i; j1; U(3)(4; j1; x);α; δα

]
,

TP

∑
j3=1

s(3)V

[
i; j3; j1; U(3)(4; j1; x);α

]
δαj3 (93)

The variational matrix VM(3)
(

4× 4; U(3);α
)

comprises (4× 4) block matrices, each

comprising TD2 components/elements; thus, the matrix VM(3)
(

4× 4; U(3);α
)

comprises a
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total of (4× 4)TD2 components/elements. Each of the vectors V(3)(4; j1; x),
Q(3)

V

[
4; j1; U(3)(4; j1; x);α;δα

]
and B(3)

V

[
4; U(3)(2; j1; x); V(3)(4; j1; x);α;δα

]
comprise four TD-

dimensional vectors, as shown in their respective definitions; thus, each of the vectors
V(3)(4; j1; x), Q(3)

V

[
4; j1; U(3)(4; j1; x);α; δα

]
, and B(3)

V

[
4; U(3)(2; j1; x); V(3)(4; j1; x);α; δα

]
comprise (4× TD) components/elements.

Solving the 3rd-LVSS would require TP3 large-scale computations, which is unreal-
istic for large-scale systems comprising many parameters. The 3rd-CASAM-N circum-
vents the need for solving the 3rd-LVSS by deriving an alternative expression for the
indirect-effect term defined in Equation (81), in which the function V(3)(4; j1; x) is re-
placed by a third-level adjoint function which is independent of parameter variations.
This third-level adjoint function will be the solution of a third-level adjoint sensitivity
system (3rd-LASS) which will be constructed by applying the same principles as those
used for constructing the 1st-LASS and the 2nd-LASS. The Hilbert space appropriate for
constructing the 3rd-LASS will be denoted as H3(Ωx) and comprise element block vec-
tors of the same form as V(3)(4; j1; x). Thus, a generic block vector in H3(Ωx), denoted

as Ψ(3)(4; x) ,
[
ψ(3)(1; x),ψ(3)(2; x),ψ(3)(3; x),ψ(3)(4; x)

]†
∈ H3(Ωx), comprises four TD-

dimensional vector components of the formψ(3)(i; x) ,
[
ψ
(3)
1 (i; x), . . . ,ψ(3)

TD(i; x)
]†
∈ H1(Ωx),

i = 1, 2, 3, 4, where each of these four components is a TD-dimensional column vector. The
inner product of two vectors Ψ(3)(4; x) ∈ H3(Ωx) and Φ(3)(4; x) ∈ H3(Ωx) in the Hilbert
space H3(Ωx) will be denoted as

〈
Ψ(3)(4; x), Φ(3)(4; x)

〉
3

and defined as follows:

〈
Ψ(3)(4; x), Φ(3)(4; x)

〉
3
,

4

∑
i=1

〈
ψ(3)(i; x),ϕ(3)(i; x)

〉
1

(94)

The inner product defined in Equation (94) is continuous in α, in a neighborhood
around α0. Using the definition of the inner product defined in Equation (94), the inner
product of Equation (84) is constructed with a vector

A(3)(4; x) ,
[
a(3)(1; x), a(3)(2; x), a(3)(3; x), a(3)(4; x)

]†
∈ H3(Ωx) to obtain the following

relation: {〈
A(3)(4; x), VM(3)

[
4× 4; U(3)(4; j1; x);α

]
V(3)(4; j1; x)

〉
3

}
α0

=
{〈

A(3)(4; x), Q(3)
V

[
4; j1; U(3)(4; j1; x);α; δα

]〉
3

}
α0

, x ∈ Ωx.
(95)

The inner product on the left side of Equation (95) is further transformed by using the
definition of the adjoint operator to obtain the following relation:{〈

A(3)(4; x), VM(3)
[
4× 4; U(3)(4; j1; x);α

]
V(3)(4; j1; x)

〉
3

}
α0

=
{〈

V(3)(4; j1; x), AM(3)
[
4× 4; U(3)(4; j1; x);α

]
A(3)(4; x)

〉
3

}
α0

+

{[
P(3)

(
U(3); A(3); V(3);α

)]
∂Ωx

}
α0

,

(96)

where
AM(3)

[
4× 4; U(3)(4; j1; x);α

]
,
[
VM(3)

(
4× 4; U(3);α

)]∗
=


{[

VM(2)(2× 2)
]∗}† {[

VM(3)
21 (2× 2)

]∗}†

0[2× 2]
{[

VM(3)
22 (2× 2)

]∗}†

,
(97)

and where
{[

P(3)
(

U(3); A(3); V(3); α
)]

∂Ωx

}
α0

denotes the corresponding bilinear concomi-

tant on the domain’s boundary, evaluated at the nominal values for the parameters and
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respective state functions. The adjoint matrix AM(3)
[
4× 4; U(3)(4; j1; x);α

]
comprises

(4× TD)2 components/elements, while the adjoint function A(3)(4; x) ∈ H3(Ωx) com-
prises (4× TD) components/elements.

The domain of the adjoint matrix operator AM(3)
[
4× 4; U(3)(4; j1; x);α

]
is specified by

requiring that the function A(3)(4; x) ,
[
a(3)(1; x), a(3)(2; x), a(3)(3; x), a(3)(4; x)

]†
∈ H3(Ωx)

satisfies adjoint boundary/initial conditions denoted as follows:{
B(3)

A

[
4; U(3)(4; j1; x); A(3)(4; x);α

]}
α0

= 0[4], x ∈ ∂Ωx

(
α0
)

. (98)

The third-level adjoint boundary/initial conditions represented by Equation (98)
are determined by requiring that: (a) they must be independent of unknown values of
V(3)(4; j1; x); and (b) the substitution of the boundary and/or initial conditions represented

by Equations (85) and (98) into the expression of
{[

P(3)
(

U(3); A(3); V(3);α
)]

∂Ωx

}
α0

must

cause all terms containing unknown values of V(3)(4; j1; x) to vanish.
Implementing the boundary/initial conditions represented by Equations (85) and (98)

into Equation (96) will transform the latter into the following form:{〈
V(3)(4; j1; x), AM(3)

[
4× 4; U(3)(4; j1; x);α

]
A(3)(4; x)

〉
3

}
α0

=
{〈

A(3)(4; x), VM(3)
[
4× 4; U(3)(4; j1; x);α

]
V(3)(4; j1; x)

〉
3

}
α0

−
{[

P̂(3)
(

U(3); A(3); δα
)]

∂Ωx

}
α0

,

(99)

where
{[

P̂(3)
(

U(3); A(3); δα
)]

∂Ωx

}
α0

denotes residual boundary terms which may not

vanish automatically. The right side of Equation (95) is now used in the first term on the
right side of Equation (68) to obtain the following relation:{〈

V(3)(4; j1; x), AM(3)
[
4× 4; U(3)(4; j1; x);α

]
A(3)(4; x)

〉
3

}
α0

=
{〈

A(3)(4; x), Q(3)
V

[
4; j1; U(3)(4; j1; x);α; δα

]〉
3

}
α0
−
{[

P̂(3)
(

U(3); A(3); δα
)]

∂Ωx

}
α0

.
(100)

The definition of the third-level adjoint function A(3)(4; x) ∈ H3(Ωx) is now completed by
requiring that the left side of Equation (100) and the right side of Equation (81) represent the
“indirect-effect term”

{
δR(2)

[
j2; j1; U(2)(2; x); A(2)(2; j1; x);α; V(2)(2; x);δA(2)(2; j1; x)

]}
ind

for
each of the indices j1 = 1, . . . , TP; j2 = 1, . . . ., j1. Hence, there will be
TP(TP + 1)/2 distinct third-level adjoint functions

A(3)(4; j2; j1; x) ,
[
a(3)(1; j2; j1; x), a(3)(2; j2; j1; x), a(3)(3; j2; j1; x), a(3)(4; j2; j1; x)

]†
,

corresponding to the indices j1 = 1, . . . , TP; j2 = 1, . . . ., j1. Each of these distinct third-level
adjoint functions will correspond to a specific (j1, j2)-dependent indirect-effect term.

The left side of Equation (100) will be identical to the right side of Equation (81)
by requiring that the following relation be satisfied by the third-level adjoint functions

A(3)(4; j2; j1; x) ,
[
a(3)(1; j2; j1; x), a(3)(2; j2; j1; x), a(3)(3; j2; j1; x), a(3)(4; j2; j1; x)

]†
:{

AM(3)
[
4× 4; U(3)(4; j1; x);α

]
A(3)(4; j2; j1; x)

}
α0

=
{

Q(3)
A

[
4; j2; j1; U(3)(4; j1; x);α

]}
α0

, j1 = 1, . . . , TP; j2 = 1, . . . ., j1,
(101)

Q(3)
A

[
4; j2; j1; U(3)(4; j1; x);α

]
,
[
q(3)

A

(
1; j2; j1; U(3);α

)
, . . . , q(3)

A

(
1; j2; j1; U(3);α

)]
; (102)
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q(3)
A

(
1; j2; j1; U(3);α

)
, ∂R(2)

[
j2; j1; u(2); a(2);α

]
/∂u(1); (103)

q(3)
A

(
2; j2; j1; U(3);α

)
, ∂R(2)

[
j2; j1; u(2); a(2);α

]
/∂a(1); (104)

q(3)
A

(
3; j2; j1; U(3);α

)
, ∂R(2)

[
j2; j1; u(2); a(2);α

]
/∂a(2)(1; j1; x); (105)

q(3)
A

(
3; j2; j1; U(3);α

)
, ∂R(2)

[
j2; j1; u(2); a(2);α

]
/∂a(2)(2; j1; x). (106)

The boundary conditions to be satisfied by each of the third-level adjoint functions

A(3)(4; j2; j1; x) ,
[
a(3)(1; j2; j1; x), a(3)(2; j2; j1; x), a(3)(3; j2; j1; x), a(3)(4; j2; j1; x)

]†
are those

represented by Equation (98), namely{
B(3)

A

[
4; U(3)(4; j1; x); A(3)(4; j2; j1; x);α

]}
α0

= 0[4];

j1 = 1, . . . , TP; j2 = 1, . . . , j1; x ∈ ∂Ωx
(
α0). (107)

Since the source Q(3)
A

[
4; j2; j1; U(3)(4; j1; x);α

]
may contain distributions, the equality

in Equation (101) is considered to hold in the weak sense. The Riesz representation theorem
ensures that the weak equality in Equation (101) holds uniquely.

The system of represented by Equations (101) and (107) will be called the third-level
adjoint sensitivity system (3rd-LASS); its solution, A(3)(4; j2; j1; x), will be called the third-
level adjoint function. Using the underlying the 3rd-LASS and Equation (100) in Equation
(81) yields the following expression for the indirect-effect term:{

δR(2)
[

j2; j1; U(2)(2; x); A(2)(2; j1; x);α; V(2)(2; x); δA(2)(2; j1; x)
]}

ind

=
{

A(3)(4; j2; j1; x), Q(3)
V

[
4; j1; U(3)(4; j1; x);α; δα

]
3

}
α0
−
{[

P̂(3)
(

U(3); A(3); δα
)]

∂Ωx

}
α0

≡
{

δR(2)
[

j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α
]}

ind
; j1 = 1, . . . , TP; j2 = 1, . . . , j1.

(108)

As the identity in Equation (108) indicates, the dependence of the indirect-effect
term on the function V(3)(4; j1; x) is replaced by the dependence on the adjoint function
A(3)(4; j2; j1; x), for each j1 = 1, . . . , TP; j2 = 1, . . . , j1.

Replacing the expression obtained in Equation (108) for the indirect-effect term to-
gether with the expression for the direct-effect term provided in Equation (78) yields the
following expression for the total differential defined by Equation (77):{

δR(2)
[

j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; δα
]}

α0

=

{
∂R(2)[j2;j1;U(3)(4;j1;x);α]

∂α δα

}
α0
−
{[

P̂(3)
(

U(3); A(3); δα
)]

∂Ωx

}
α0

+
{

A(3)(4; j2; j1; x), Q(3)
V

[
4; j1; U(3)(4; j1; x);α; δα

]
3

}
α0

.

(109)

In component form, the total differential expressed by Equation (109) has the following
expression:{

δR(2)
[

j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; δα
]}

α0

=
TP
∑

j3=1

{
R(3)

[
j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α

]}
α0
δαj3 , j1; j2 = 1, . . . , TP,

(110)

where the quantity R(3)
[

j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α
]

denotes the third-order
sensitivity of the generic scalar-valued response R[u(x);α] with respect to any three model
parameters αj1 , αj2 , αj3 , and has the following expression:
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R(3)
[

j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α
]
,

∂R(2)[j2;j1;U(3)(4;j1;x);α]
∂αj3

−
[
∂P̂(3)

(
U(3);A(3);δα

)]
∂Ωx

∂αj3
+

4
∑

i=1

〈
a(3)(i; j2; j1; x), s(3)V

[
i; j3; j1; U(3)(4; j1; x);α

]〉
1

, ∂3R[u(x);α]
∂αj3 ∂αj2 ∂αj1

, f or j1, j2, j3 = 1, . . . , TP.

(111)

As Equations (101)–(107) indicate, solving the 3rd-LASS once provides the third-level
adjoint function A(3)(4; j2; j1; x), for each of the indices j1 = 1, . . . , TP; j2 = 1, . . . , j1. In
turn, the availability of A(3)(4; j2; j1; x) enables the exact and efficient computation of the
G differential δR(2)

[
j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α

]
. Thus, the exact computation of

all of the partial third-order sensitivities
{

∂3R(α, u)/∂αj3 ∂αj2 ∂αj1
}
(α0)

requires at most
TP(TP + 1)/2 large-scale (adjoint) computations using the 3rd-LASS, rather than at least
O
(
TP3) large-scale computations, which would be required by forward methods.

The matrix AM(3)
[
4× 4; U(3)(4; j1; x);α

]
is block diagonal; therefore, solving the 3rd-

LASS is equivalent to solving three 1st-LASS, with different source terms. The 3rd-LASS
was designated as “the third-level” rather than “third-order” adjoint sensitivity system since
the 3rd-LASS does not involve any explicit second-order and/or third-order G derivatives
of the operators underlying the original system, but involves only the inversion of the same
operators that needed to be inverted for solving the 1st-LASS.

By solving the 3rd-LASS TP(TP + 1)/2 times, the third-order mixed sensitivities{
∂3R(α, u)/∂αj3 ∂αj2 ∂αj1

}
(α0)

will be computed three times, in three different ways. Con-
sequently, the multiple symmetries intrinsic to the third-order sensitivities provide an
intrinsic numerical verification that the components of the first-, second-, and third-level
adjoint functions are computed accurately.

The structure of the 3rd-LASS enables full flexibility for prioritizing the computation of
the third-order sensitivities. The computation of the third-order sensitivities would logically
be prioritized based on the relative magnitudes of the second-order sensitivities, so that the
unimportant third-order sensitivities can be deliberately neglected while knowing the error
incurred by neglecting them.

3.4. The Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear
Systems (4th-CASAM-N)

The third-order sensitivities R(3)
[

j3; j2; j1; U(3); A(3);α
]
≡ ∂3R[u(x);α]/∂αj3 ∂αj2 ∂αj1

will be assumed to satisfy the conditions stated in Equations (11) and (12) for each
j1, j2, j3 = 1, . . . , TP, so that the first-order total G differential of R(3)

[
j3; j2; j1; U(3); A(3);α

]
will exist and will be linear in the variations V(3)(4; j1; x) , δU(3)(4; j1; x) and δA(3)(4; j2; j1; x)
in a neighborhood around the nominal values of the parameters and the respective state
functions. By definition, the first-order total G differential of
R(3)

[
j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α

]
, which will be denoted as{

δR(3)
[

j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; V(3)(4; j1; x);δA(3)(4; j2; j1; x);δα
]}

α0
, is given

by the following expression:
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{
δR(3)

[
j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; V(3)(4; j1; x); δA(3)(4; j2; j1; x); δα

]}
α0

,
{

d
dε R(3)

[
j3; j2; j1; U(3)(4; j1; x) + εV(3)(4; j1; x);

A(3)(4; j2; j1; x) + εδA(3)(4; j2; j1; x);α+ εδα
}
ε=0

,
{
δR(3)

[
j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; δα

]}
dir

+
{
δR(3)

[
j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; V(3)(4; j1; x); δA(3)(4; j2; j1; x)

]}
ind

.

(112)

In Equation (112), the quantity
{
δR(3)

[
j3; j2; j1; U(3); A(3);α; δα

]}
dir

denotes the “direct-
effect term” which comprises all of the dependencies on the vector δα of parameter varia-
tions and has the following expression:{

δR(3)
[

j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; δα
]}

dir
,{

∂R(3)
[

j3;j2;j1;U(3)(4;j1;x);A(3)(4;j2;j1;x);α
]

∂α δα

}
α0

=
TP
∑

j4=1

{
∂R(3)

[
j3;j2;j1;U(3)(4;j1;x);A(3)(4;j2;j1;x);α

]
∂αj4

}
α0

δαj4 .

(113)

In Equation (112), the quantity
{
δR(3)

[
j3; j2; j1; U(3); A(3);α; V(3); δA(3)

]}
ind

denotes

the “indirect-effect term” which comprises all of the dependencies on the vectors V(3)(4; j1; x)
and δA(3)(4; j2; j1; x) of variations in the state functions U(3)(4; j1; x) and A(3)(4; j2; j1; x);
this indirect-effect term is defined as follows:{

δR(3)
[

j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; V(3)(4; j1; x); δA(3)(4; j2; j1; x)
]}

ind

,

{
∂R(3)

[
j3;j2;j1;U(3);A(3);α

]
∂U(3)(4;j1;x)

}
α0

V(3)(4; j1; x)

+

{
∂R(3)

[
j3;j2;j1;U(3);A(3);α

]
∂A(3)(4;j2;j1;x)

}
α0

δA(3)(4; j2; j1; x),

(114)

where
∂R(3)

[
j3;j2;j1;U(3);A(3);α

]
∂U(3)(4;j1;x)

V(3)(4; j1; x)

,
∂R(3)

[
j3;j2;j1;U(3);A(3);α

]
∂u(x) v(1)(x) +

∂R(3)
[

j3;j2;j1;U(3);A(3);α
]

∂a(1)(x)
δa(1)(x)

+
2
∑

i=1

∂R(3)
[

j3;j2;j1;U(3);A(3);α
]

∂a(2)(i;j1;x)
δa(2)(i; j1; x),

(115)

and
∂R(3)

[
j3;j2;j1;U(3);A(3);α

]
∂A(3)(4;j2;j1;x)

δA(3)(4; j2; j1; x)

,
4
∑

i=1

∂R(3)
[

j3;j2;j1;U(3);A(3);α
]

∂a(3)(i;j2;j1;x)
δa(3)(i; j2; j1; x).

(116)

The direct-effect term
{
δR(3)

[
j3; j2; j1; U(3); A(3);α; δα

]}
dir

can be computed imme-

diately; however, the indirect-effect term
{
δR(3)

[
j3; j2; j1; U(3); A(3);α; V(3); δA(3)

]}
ind

can

be computed only after having determined the vectors V(3)(4; j1; x) and δA(3)(4; j2; j1; x).
The vector V(3)(4; j1; x) is the solution of the 3rd-LVSS defined by Equations (84) and (85).
The vector δA(3)(4; j2; j1; x) is the solution of the G-differentiated 3rd-LASS. Taking the G
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differential of Equations (101) and (107) yields the following system of for δA(3)(4; j2; j1; x)
and for j1 = 1, . . . , TP; j2 = 1, . . . , j1:

∂
{

AM(3)[4×4;U(3)(4;j1;x);α]A(3)(4;j2;j1;x)
}

∂U(3)(4;j1;x)
V(3)(4; j1; x)

− ∂Q(3)
A [4;j2;j1;U(3)(4;j1;x);α]

∂U(3)(4;j1;x)
V(3)(4; j1; x)

+AM(3)
[
4× 4; U(3)(4; j1; x);α

]
δA(3)(4; j2; j1; x)

=
∂Q(3)

A [4;j2;j1;U(3)(4;j1;x);α]
∂α ∂α

−
∂
{

AM(3)[4×4;U(3)(4;j1;x);α]A(3)(4;j2;j1;x)
}

∂α ∂α, x ∈ Ωx,

(117)

{
δB(3)

A

[
4; U(3)(4; j1; x); A(3)(4; j2; j1; x);α

]}
α0

= 0[4]; x ∈ ∂Ωx

(
α0
)

. (118)

The quantities which appear in Equation (117) are evaluated at the nominal values of
the parameters and respective state functions, but the notation { }α0 , which indicates this
evaluation, is omitted in order to simplify the notation.

Concatenating Equations (117) and (118) with the 3rd-LVSS represented by Equa-
tions (84) and (85) yields the following system of, which will be called the “4th-order
variational sensitivity system” (4th-LVSS), for determining the vectors V(3)(4; j1; x) and
δA(3)(4; j2; j1; x), for j1 = 1, . . . , TP; j2 = 1, . . . , j1:{

VM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
V(4)(8; j2; j1; x)

}
α0

=
{

Q(4)
V

[
8; j1; U(4)(8; j2; j1; x);α; δα

]}
α0

, x ∈ Ωx,
(119)

{
B(4)

V

[
8; U(4)(8; j1; x); V(4)(8; j1; x);α; δα

]}
α0

= 0[8]; x ∈ ∂Ωx

(
α0
)

; (120)

where 0[8] , [0, 0, 0, 0, 0, 0, 0, 0]†, and

VM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
,

(
VM(3)

[
4× 4; U(3)(4; j1; x);α

]
0[4× 4]

VM(4)
21 (4× 4; x) VM(4)

22 (4× 4; x)

)
; (121)

U(4)(8; j2; j1; x) ,

(
U(3)(4; j1; x)

A(3)(4; j2; j1; x)

)
; (122)

V(4)(8; j2; j1; x) , δU(4)(8; j2; j1; x) =

(
V(3)(4; j1; x)

δA(3)(4; j2; j1; x)

)
=
[
v(1)(x), δa(1)(x), δa(2)(1; j1; x), δa(2)(2; j1; x) ,

δa(3)(1; j2; j1; x), . . . , δa(3)(4; j2; j1; x)
]†

;

(123)

VM(4)
21 (4× 4; x) , − ∂Q(3)

A [4;j2;j1;U(3)(4;j1;x);α]
∂U(3)(4;j1;x)

+
∂
{

AM(3)[4×4;U(3)(4;j1;x);α]A(3)(4;j2;j1;x)
}

∂U(3)(4;j1;x)
;

(124)

VM(4)
22 (4× 4; x) , AM(3)

[
4× 4; U(3)(4; j1; x);α

]
; (125)

Q(4)
V

[
8; j1; U(4)(4; j2; j1; x);α; δα

]
,

 Q(3)
V

[
4; j1; U(3)(4; j1; x);α; δα

]
Q(4)

2

[
4; j1; U(4)(4; j2; j1; x);α; δα

] 
≡
{

q(4)
V

[
1; j1; U(4)(4; j2; j1; x);α; δα

]
, . . . , q(4)

V

[
8; j1; U(4)(4; j2; j1; x);α; δα

]}†
;

(126)
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Q(4)
2

[
4; j1; U(4)(4; j2; j1; x);α; δα

]
,

∂Q(3)
A [4;j2;j1;U(3)(4;j1;x);α]

∂α ∂α

−
∂
{

AM(3)[4×4;U(3)(4;j1;x);α]A(3)(4;j2;j1;x)
}

∂α ∂α;

(127)

B(4)
V

[
8; U(4)(8; j2; j1; x); V(4)(8; j2; j1; x);α; δα

]
,

 B(3)
V

[
4; U(3)(4; j1; x); V(3)(4; j1; x);α; δα

]
δB(2)

A

[
2; U(2)(2; x); A(2)(2; j1; x);α

] .
(128)

For subsequent reference, it is noted that the quantities q(4)
V

[
i; j2; j1; U(4)(4; j2; j1; x);α; δα

]
are linear in the parameter variations δαi, i = 1, . . . , TP, and can therefore be written in the
following form:

q(4)
V

[
i; j2; j1; U(4)(4; j2; j1; x);α; δα

]
,

TP

∑
j4=1

s(3)V

[
i; j4; j2; j1; U(4)(4; x);α

]
δαj4 ; i = 1, . . . , 8. (129)

The variational matrix VM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
comprises (8× 8) block matrices,

each comprising TD2 components/elements; thus, the matrix VM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
comprises a total of (8× 8)TD2 components/elements. Each of the vectors V(4)(8; j2; j1; x),
Q(4)

V

[
8; j1; U(3)(4; j1; x);α; δα

]
, and B(4)

V

[
8; U(4)(8; j2; j1; x); V(4)(8; j2; j1; x);α; δα

]
comprise

eight TD-dimensional vectors, as shown in their respective definitions; thus, each of the vectors
B(4)

V

[
8; U(4)(8; j2; j1; x); V(4)(8; j2; j1; x);α; δα

]
, V(4)(8; j2; j1; x), Q(4)

V

[
8; j1; U(3)(4; j1; x);α; δα

]
comprise (8× TD) components/elements.

Solving the 4th-LVSS would require TP4 large-scale computations, which is unrealistic
for large-scale systems comprising many parameters. The 4th-CASAM-N circumvents the
need for solving the 3rd-LVSS by deriving an alternative expression for the indirect-effect
term defined in Equation (114), in which the function V(4)(8; j2; j1; x) is replaced by a fourth-
level adjoint function which is independent of parameter variations. This fourth-level
adjoint function will be the solution of a fourth-level adjoint sensitivity system (4th-LASS)
which will be constructed by applying the same principles as those used for constructing the
1st-LASS, the 2nd-LASS, and the 3rd-LASS. The Hilbert space appropriate for constructing
the 4th-LASS will be denoted as H4(Ωx) and comprises block vectors elements of the same
form as V(4)(8; j2; j1; x). Thus, a generic block vector in H4(Ωx) will have the structure

Ψ(4)(8; x) ,
[
ψ(4)(1; x), . . . ,ψ(4)(8; x)

]†
∈ H4(Ωx), comprising eight TD-dimensional

vectors of the form ψ(4)(i; x) ,
[
ψ
(4)
1 (i; x), . . . ,ψ(4)

TD(i; x)
]†
∈ H1(Ωx), i = 1, . . . , 8. The

inner product of two vectors Ψ(4)(8; x) ∈ H4(Ωx) and Φ(4)(8; x) ∈ H4(Ωx) in the Hilbert
space H4(Ωx) will be denoted as

〈
Ψ(4)(8; x), Φ(4)(8; x)

〉
4

and defined as follows:

〈
Ψ(4)(8; x), Φ(4)(8; x)

〉
4
,

8

∑
i=1

〈
ψ(3)(i; x),ϕ(3)(i; x)

〉
1

(130)

The inner product defined in Equation (130) is continuous in α, in a neighborhood
aroundα0. Using the definition of the inner product defined in Equation (130), construct the

inner product of Equation (119) with a vector A(4)(8; x) ,
[
a(4)(1; x), . . . , a(4)(8; x)

]†
∈ H4(Ωx)

to obtain the following relation:{〈
A(4)(8; x), VM(4)

[
8× 8; U(4)(8; j2; j1; x);α

]
V(4)(8; j2; j1; x)

〉
3

}
α0

=
{〈

A(4)(8; x), Q(4)
V

[
8; j1; U(4)(8; j2; j1; x);α; δα

]〉
3

}
α0

, x ∈ Ωx.
(131)
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The inner product on the left side of Equation (131) is further transformed by using
the definition of the adjoint operator to obtain the following relation:{〈

A(4)(8; x), VM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
V(4)(8; j2; j1; x)

〉
3

}
α0

={〈
V(4)(8; j2; j1; x), AM(4)

[
8× 8; U(4)(8; j2; j1; x);α

]
A(4)(8; x)

〉
3

}
α0

+

{[
P(4)

(
U(4); A(4); V(4);α

)]
∂Ωx

}
α0

,

(132)

where
AM(4)

[
8× 8; U(4)(8; j2; j1; x);α

]
,
[
VM(4)

(
8× 8; U(4);α

)]∗
=


{[

VM(3)(4× 4)
]∗}† {[

VM(4)
21 (4× 4)

]∗}†

0[4× 4]
{[

VM(3)
22 (4× 4)

]∗}†

,
(133)

and where
{[

P(4)
(

U(4); A(4); V(4);α
)]

∂Ωx

}
α0

denotes the corresponding bilinear con-

comitant on the domain’s boundary, evaluated at the nominal values for the parameters
and respective state functions. The adjoint matrix AM(4)

[
8× 8; U(4)(8; j2; j1; x);α

]
com-

prises (8× 8)TD2 components/elements, while the adjoint function A(4)(8; x) ∈ H4(Ωx)
comprises (8× TD) components/elements.

The domain of the adjoint matrix operator AM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
is specified

by requiring that the function A(4)(8; x) ,
[
a(4)(1; x), . . . , a(4)(8; x)

]†
∈ H4(Ωx) satisfies

adjoint boundary/initial conditions denoted as follows:{
B(4)

A

[
8; U(4)(8; j2; j1; x); A(4)(8; x);α

]}
α0

= 0[8], x ∈ ∂Ωx

(
α0
)

. (134)

The fourth-level adjoint boundary/initial conditions represented by Equation (134)
are determined by requiring that: (a) they must be independent of unknown values of
V(4)(8; j2; j1; x); and (b) the substitution of the boundary and/or initial conditions repre-

sented by Equations (85) and (98) into the expression of
{[

P(4)
(

U(4); A(4); V(4);α
)]

∂Ωx

}
α0

must cause all terms containing unknown values of V(4)(8; j2; j1; x) to vanish.
Implementing the boundary/initial conditions represented by Equations (128) and (134)

into Equation (132) will transform the later relation into the following form:{〈
V(4)(8; j2; j1; x), AM(4)

[
8× 8; U(4)(8; j2; j1; x);α

]
A(4)(8; x)

〉
3

}
α0

= −
{[

P̂(4)
(

U(4); A(4); δα
)]

∂Ωx

}
α0

+
{〈

A(4)(8; x), VM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
V(4)(8; j2; j1; x)

〉
3

}
α0

,

(135)

where
{[

P̂(4)
(

U(4); A(4); δα
)]

∂Ωx

}
α0

denotes residual boundary terms which may have

not vanish automatically. The right side of Equation (131) is now used in the first term on
the right side of Equation (135) to obtain the following relation:{〈

V(4)(8; j2; j1; x), AM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
A(4)(8; x)

〉
3

}
α0

={〈
A(4)(8; x), Q(4)

V

[
8; j1; U(4)(8; j2; j1; x);α; δα

]〉
3

}
α0
−
{[

P̂(4)
(

U(4); A(4); δα
)]

∂Ωx

}
α0

.
(136)
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The definition of the fourth-level adjoint function

A(4)(8; x) ,
[
a(1)(1; x), . . . , a(4)(8; x)

]†
∈ H4(Ωx) is now completed by requiring that the

left side of Equation (136) and the right side of Equation (114) represent the “indirect-effect
term”

{
δR(3)

[
j3; j2; j1; U(3); A(3);α; V(3); δA(3)

]}
ind

, for each of the indices j1 = 1, . . . , TP;

j2 = 1, . . . ., j1; j3 = 1, . . . ., j2. Hence, there will be TP(TP + 1)(TP + 2)/6 distinct fourth-
level adjoint functions A(4)(8; x) ∈ H4(Ωx), each corresponding to one combination of
the indices j1 = 1, . . . , TP; j2 = 1, . . . ., j1; j3 = 1, . . . ., j2. Each of these distinct fourth-level
adjoint functions will correspond to a specific (j1, j2, j3)-dependent indirect-effect term.

The left side of Equation (136) will be identical to the right side of Equation (114)
by requiring that the following relation be satisfied by the fourth-level adjoint functions

A(4)(8; j3; j2; j1; x) ,
[
a(4)(1; j3; j2; j1; x), . . . , a(4)(8; j3; j2; j1; x)

]†
∈ H4(Ωx), for each value

of the indices j1 = 1, . . . , TP; j2 = 1, . . . ., j1; j3 = 1, . . . ., j2:

AM(4)
[
8× 8; U(4)(8; j2; j1; x);α

]
A(4)(8; j3; j2; j1; x)

= Q(4)
A

[
8; j3; j2; j1; U(4)(4; j1; x);α

]
,

(137)

where

Q(4)
A

[
8; j3; j2; j1; U(4)(4; j1; x);α

]
,
{

q(4)
A

[
1; j3; j2; j1; U(4)(4; j1; x);α

]
, . . .

. . . , q(4)
A

[
8; j3; j2; j1; U(4)(4; j1; x);α

]}†
, j1 = 1, . . . , TP; j2 = 1, . . . , j1; j3 = 1, . . . , j2;

(138)

q(4)
A

[
1; j3; j2; j1; U(4)(4; j1; x);α

]
, ∂R(3)

[
j3; j2; j1; U(3); A(3);α

]
/∂u(x); (139)

q(4)
A

[
2; j3; j2; j1; U(4)(4; j1; x);α

]
, ∂R(3)

[
j3; j2; j1; U(3); A(3);α

]
/∂a(1)(x); (140)

q(4)
A

[
2 + i; j3; j2; j1; U(4)(4; j1; x);α

]
,

∂R(3)
[

j3; j2; j1; U(3); A(3);α
]

∂a(2)(i; j1; x)
; i = 1, 2; (141)

q(4)
A

[
4 + i; j3; j2; j1; U(4)(4; j1; x);α

]
,

∂R(3)
[

j3; j2; j1; U(3); A(3);α
]

∂a(3)(i; j2; j1; x)
; i = 1, 2, 3, 4; (142)

The boundary conditions to be satisfied by each of the fourth-level adjoint functions

A(4)(8; j3; j2; j1; x) ,
[
a(4)(1; j3; j2; j1; x), . . . , a(4)(8; j3; j2; j1; x)

]†
∈ H4(Ωx) are those repre-

sented by Equation (134), namely{
B(4)

A

[
8; U(4)(8; j2; j1; x); A(4)(8; j3; j2; j1; x);α

]}
α0

= 0[8], x ∈ ∂Ωx
(
α0);

j1 = 1, . . . , TP; j2 = 1, . . . , j1; j3 = 1, . . . , j2.
(143)

Since the source Q(4)
A

[
8; j3; j2; j1; U(4)(4; j1; x);α

]
may contain distributions, the equal-

ity in Equation (137) is considered to hold in the weak sense, and the Riesz representation
theorem ensures that this weak equality holds uniquely.

The system of represented by Equations (101) and (107) will be called the fourth-level
adjoint sensitivity system (4th-LASS); its solution, A(4)(8; j3; j2; j1; x), will be called the
fourth-level adjoint function. Using the underlying the 4th-LASS and Equation (136) in
Equation (114) yields the following expression for the indirect-effect term:
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{
δR(3)

[
j3; j2; j1; U(3)(4; j1; x); A(3)(4; j2; j1; x);α; V(3)(4; j1; x); δA(3)(4; j2; j1; x)

]}
ind

,
{〈

A(4)(8; x), Q(4)
V

[
8; j1; U(4)(8; j2; j1; x);α; δα

]〉
3

}
α0
−
{[

P̂(4)
(

U(4); A(4); δα
)]

∂Ωx

}
α0

≡
{
δR(3)

[
j3; j2; j1; U(4)(8; j2; j1; x); A(4)(8; j3; j2; j1; x);α

]}
ind

.

(144)

As the identity in Equation (144) indicates, the dependence of the indirect-effect term
on the function V(4)(8; j2; j1; x) is replaced by the dependence on the adjoint function
A(4)(8; j3; j2; j1; x) for each j1 = 1, . . . , TP; j2 = 1, . . . , j1; j3 = 1, . . . , j2.

Replacing the expression obtained in Equation (144) for the indirect-effect term to-
gether with the expression for the direct-effect term provided in Equation (113) yields the
following expression for the total differential defined by Equation (112):{

δR(3)
[

j3; j2; j1; U(4)(8; j2; j1; x); A(4)(8; j3; j2; j1; x); δα
]}

α0

=

{
∂R(3)

[
j3;j2;j1;U(3)(4;j1;x);A(3)(4;j2;j1;x);α

]
∂α δα

}
α0

−
{[

P̂(4)
(

U(4); A(4); δα
)]

∂Ωx

}
α0

+
{〈

A(4)(8; j3; j2; j1; x), Q(4)
V

[
8; j1; U(4)(8; j2; j1; x);α; δα

]〉
3

}
α0

(145)

In component form, the total differential expressed by Equation (145) can be written
in the following form, for each j1 = 1, . . . , TP; j2 = 1, . . . , j1; j3 = 1, . . . , j2:{

δR(3)
[

j3; j2; j1; U(4)(8; j2; j1; x); A(4)(8; j3; j2; j1; x); δα
]}

α0

=
TP
∑

j4=1

{
R(4)

[
j4; j3; j2; j1; U(4)(8; j2; j1; x); A(4)(8; j3; j2; j1; x);α

]}
α0
δαj4 ,

(146)

where the quantity R(4)
[

j4; j3; j2; j1; U(4)(8; j2; j1; x); A(4)(8; j3; j2; j1; x);α
]

denotes the fourth-
order sensitivity of the generic scalar-valued response R[u(x);α] with respect to any four
model parameters αj1 , αj2 , αj3 , αj3 , and has the following expression:

R(4)
[

j4; j3; j2; j1; U(4)(8; j2; j1; x); A(4)(8; j3; j2; j1; x);α
]

,
∂R(3)

[
j3;j2;j1;U(3)(4;j1;x);A(3)(4;j2;j1;x);α

]
∂αj4

−
[
∂P̂(4)

(
U(4);A(4);δα

)]
∂Ωx

∂αj4

+
8
∑

i=1

〈
a(4)(i; j3; j2; j1; x), s(3)V

[
i; j4; j2; j1; U(4)(4; x);α

]〉
1

≡ ∂4R[u(x);α]/∂αj1 ∂αj3 ∂αj3 ∂αj4 ; j1, j2, j3, j4 = 1, . . . , j3 = 1, . . . , TP.

(147)

As Equations (137) and (143) indicate, solving the 4th-LASS once provides the fourth-level
adjoint function A(4)(8; j3; j2; j1; x) for each of the indices j1 = 1, . . . , TP; j2 = 1, . . . , j1, and
j3 = 1, . . . , j2. In turn, the availability of A(4)(8; j3; j2; j1; x) enables the exact and efficient com-
putation of the G differential δR(3)

[
j3; j2; j1; U(4)(8; j2; j1; x); A(4)(8; j3; j2; j1; x);δα

]
. Thus, the

exact computation of all of the partial fourth-order sensitivities, ∂4R[u(x);α]/∂αj1∂αj3∂αj3∂αj4
requires at most TP(TP + 1)(TP + 2)/6 large-scale (adjoint) computations using the 4th-
LASS, rather than at least O

(
TP4) large-scale computations, which would be required by

forward methods.
The adjoint matrix AM(4)

[
8× 8; U(4)(8; j2; j1; x);α

]
is block diagonal; therefore, solv-

ing the 4th-LASS is equivalent to solving four 1st-LASS, with different source terms. The
4th-LASS was designated as the “fourth-level” rather than “fourth-order” adjoint sensi-
tivity system since the 3rd-LASS does not involve any explicit second-order, third-order,
and/or fourth-order G derivatives of the operators underlying the original system but
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involves the inversion of the operators similar to those that needed to be inverted for
solving the 1st-LASS.

By solving the 4th-LASS TP(TP + 1)(TP + 2)/6 times, the fourth-order mixed sensi-
tivities ∂4R[u(x);α]/∂αj1 ∂αj3 ∂αj3 ∂αj4 will be computed four times, in four different ways
using distinct adjoint functions. Consequently, the multiple symmetries intrinsic to the
fourth-order sensitivities provide an intrinsic numerical verification that the components
of the first-, second-, third-, and fourth-level adjoint functions are computed accurately.

The structure of the 4th-LASS enables full flexibility for prioritizing the computation
of the third-order sensitivities. The computation of the fourth-order sensitivities would
be prioritized based on the relative magnitudes of the third-order sensitivities, so that the
unimportant fourth-order sensitivities can be deliberately neglected while knowing the
error incurred by neglecting them.

4. Discussion

This work has presented the “fourth-order comprehensive sensitivity analysis method-
ology for nonlinear systems (abbreviated as “4th-CASAM-N”), which enables the hitherto
very difficult, if not intractable, exact computation of all of the first-, second-, third-, and
fourth-order response sensitivities for large-scale nonlinear systems involving many pa-
rameters. The qualifier “comprehensive” indicates that the fourth-CASAM-N methodology
enables the exact and efficient computation not only of response sensitivities with respect
to the customary model parameters (including computational input data, correlations,
initial and/or boundary conditions) but also with respect to imprecisely known material
boundaries, which would be caused by manufacturing tolerances.

It has been shown that the first-order sensitivities of the system response under consid-
eration with respect to the model parameters (including boundary and initial conditions)
can be computed inexpensively, using just quadrature formulas, after having obtained the
first-level adjoint state function. The first-level adjoint state function is obtained by solv-
ing once the first-level adjoint sensitivity system (1st-LASS), which is the sole large-scale
computation needed for obtaining all of the first-order sensitivities. This is because the
1st-LASS is independent of parameter variations, and therefore needs to be solved only
once, regardless of the number of model parameters (denoted as “TP”) under considera-
tion. Furthermore, solving the 1st-LASS requires less computational effort than solving
the nonlinear underlying the original models, since the 1st-LASS is linear in the first-level
adjoint function.

The second-order sensitivities which correspond to each first-order sensitivity are also
computed by using inexpensive quadrature formulas, after having obtained the second-
level adjoint state function. The computation of the second-level adjoint state function
requires solving the second-level adjoint sensitivity system (2nd-LASS). Since the 2nd-
LASS is block diagonal, solving it is equivalent to solving two 1st-LASS, with two different
source terms. Thus, the “solvers” and the computer program used for solving the 1st-
LASS can also be used for solving the 2nd-LASS. The 2nd-LASS was designated as the
“second-level” rather than the “second-order” adjoint sensitivity system, since the 2nd-
LASS does not involve any second-order G derivatives of the operators underlying the
original system but involves the inversion of the same operators that need to be inverted to
solve the 1st-LASS. The structure of the 2nd-LASS enables full flexibility for prioritizing
the computation of the second-order sensitivities. The computation of the second-order
sensitivities would logically be prioritized based on the relative magnitudes of the first-
order sensitivities: the largest relative first-order response sensitivity should have the
highest priority for computing the corresponding second-order mixed sensitivities; then,
the second largest relative first-order response sensitivity should be considered next, and
so on. The unimportant second-order sensitivities can be deliberately neglected while
knowing the error incurred by neglecting them. Computing second-order sensitivities that
correspond to vanishing first-order sensitivities may also be of interest, since vanishing
first-order sensitivities may indicate critical points of the response in the phase space of
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model parameters. If the 2nd-LASS is solved TP times, the second-order mixed sensitivities
will be computed twice, in two different ways, in terms of two distinct second-level adjoint
functions. Consequently, the symmetry property enjoyed by the second-order sensitivities
provides an intrinsic (numerical) verification that the components of the first- and second-
level adjoint functions are computed accurately.

The exact computation of all of the partial third-order sensitivities that correspond
to a second-order sensitivities is also accomplished by using quadrature formulas after
having obtained the third-level adjoint function. Thus, for each second-order sensitivity, the
third-level adjoint function is obtained by solving the third-level adjoint sensitivity system
(3rd-LASS) once, which is equivalent to solving three 1st-LASS, with different source
terms. The 3rd-LASS is designated as “the third-level” rather than the “third-order” adjoint
sensitivity system since the 3rd-LASS does not involve any explicit second-order and/or
third-order G derivatives of the operators underlying the original system. By solving
the 3rd-LASS TP(TP + 1)/2 times, the third-order mixed sensitivities will be computed
three times, in three different ways. Consequently, the multiple symmetries intrinsic to the
third-order sensitivities provide an intrinsic numerical verification that the components of
the first-, second- and third-level adjoint functions are computed accurately. The structure
of the 3rd-LASS enables full flexibility for prioritizing the computation of the third-order
sensitivities. The computation of the third-order sensitivities would logically be prioritized
based on the relative magnitudes of the second-order sensitivities, so that the unimportant
third-order sensitivities can be deliberately neglected while knowing the error incurred by
neglecting them.

The exact computation of all of the partial fourth-order sensitivities that correspond to
a third-order sensitivity also involves the use of quadrature formulas after having obtained
the fourth-level adjoint function by solving the fourth-level adjoint sensitivity system (4th-
LASS). The 4th-LASS is designated as the “fourth-level” rather than “fourth-order” adjoint
sensitivity system since the 3rd-LASS does not involve any explicit second-order, third-
order, and/or fourth-order G derivatives of the operators underlying the original system but
involves the inversion of the operators similar to those that needed to be inverted for solving
the 1st-LASS. The 4th-LASS is block diagonal; solving it is equivalent to solving four 1st-
LASS, with different source terms. If the 4th-LASS is solved TP(TP + 1)(TP + 2)/6 times,
the fourth-order mixed-response sensitivities will be computed four times, in four different
ways using distinct adjoint functions. Consequently, the multiple symmetries intrinsic to the
fourth-order sensitivities provide an intrinsic numerical verification that the components
of the first-, second-, third-, and fourth-level adjoint functions are computed accurately.
The structure of the 4th-LASS enables full flexibility for prioritizing the computation of
the third-order sensitivities. The computation of the fourth-order sensitivities would be
prioritized based on the relative magnitudes of the third-order sensitivities, so that the
unimportant fourth-order sensitivities can be deliberately neglected while knowing the
error incurred by neglecting them.

In summary, the implementation of the 4th-CASAM-N requires very little additional
effort beyond the construction of the adjoint sensitivity system needed for computing the
first-order sensitivities. An illustrative application of the 4th-CASAM-N to a paradigm
nonlinear heat conduction is presented in the accompanying work [17].
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