
Article

Neural Network Based Deep Learning Method for
Multi-Dimensional Neutron Diffusion Problems with Novel
Treatment to Boundary

Yuchen Xie 1 , Yahui Wang 1, Yu Ma 1,* and Zeyun Wu 2,*

����������
�������

Citation: Xie, Y.; Wang, Y.; Ma, Y.;

Wu, Z. Neural Network Based

Deep Learning Method for

Multi-Dimensional Neutron

Diffusion Problems with Novel

Treatment to Boundary. J. Nucl. Eng.

2021, 2, 533–552. https://doi.org/

10.3390/jne2040036

Academic Editor: Dan Gabriel Cacuci

Received: 8 October 2021

Accepted: 1 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China;
marc-antoine.xie@foxmail.com (Y.X.); wangyh296@mail.sysu.edu.cn (Y.W.)

2 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University,
Richmond, VA 23284-3015, USA

* Correspondence: mayu9@mail.sysu.edu.cn (Y.M.); zwu@vcu.edu (Z.W.)

Abstract: In this paper, the artificial neural networks (ANN) based deep learning (DL) techniques
were developed to solve the neutron diffusion problems for the continuous neutron flux distribution
without domain discretization in advance. Due to its mesh-free property, the DL solution can easily be
extended to complicated geometries. Two specific realizations of DL methods with different bound-
ary treatments are developed and compared for accuracy and efficiency, including the boundary
independent method (BIM) and boundary dependent method (BDM). The performance comparison
on analytic benchmark indicates BDM being the preferred DL method. Novel constructions of trial
function are proposed to generalize the application of BDM. For a more in-depth understanding of
the BDM on diffusion problems, the influence of important hyper-parameters is further investigated.
Numerical results indicate that the accuracy of BDM can reach hundreds of times higher than that of
BIM on diffusion problems. This work can provide a new perspective for applying the DL method to
nuclear reactor calculations.

Keywords: neutron diffusion equation; artificial neural network; deep learning

1. Introduction

Neutron diffusion equation, as a simplified form with the P1 approximation of neutron
transport equation [1,2], is commonly used in reactor core calculations for nuclear reactor
design and analysis. Focusing on solving neutron diffusion equation, many mesh-based
numerical methods have been proposed and employed by various groups. These methods
discretize the calculation domain into many subdomains via different numerical techniques,
including the finite element method (FEM) [3], the finite volume method (FVM) [4] and
the finite difference method (FDM) [5,6]. The pros and cons of these mesh-based methods
are generally recognized and the accuracy of these methods is essentially limited by the
number of nodes and the geometric shape of the problem under investigated [7]. In
particular, these mesh-based methods can only obtain discrete solutions associated with
the discretized nodes. When using these discrete solutions for other purposes, such as for
the calculation of group constants or k-eigenvalue in reactor problems, numerical integrals
of these discrete solutions are indispensable. The error caused by the numerical integral
is limited by the complexity of the mesh structure, and thus is very hard to reduce. As a
result, a mesh independent and easy implemented computational method is more desired
for problems with complex geometries.

The deep learning (DL) method, due to its powerful ability to discover complex struc-
tures in large data set and its low human intervene requirements, has attracted many
attentions for engineering problems in recent years [8–12]. The DL method has produced
encouraging results in many applications of various disciplines, including language pro-
cessing [13–16], image recognition [17–19], speech recognition [20,21] and finance [22].

J. Nucl. Eng. 2021, 2, 533–552. https://doi.org/10.3390/jne2040036 https://www.mdpi.com/journal/jne

https://www.mdpi.com/journal/jne
https://www.mdpi.com
https://orcid.org/0000-0003-4672-5616
https://orcid.org/0000-0002-6114-0352
https://doi.org/10.3390/jne2040036
https://doi.org/10.3390/jne2040036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jne2040036
https://www.mdpi.com/journal/jne
https://www.mdpi.com/article/10.3390/jne2040036?type=check_update&version=1

J. Nucl. Eng. 2021, 2 534

In recent years, the DL method has been extended to the field of nuclear reactor engineer-
ing by some researchers and achieved good performance [23–25]. However, the traditional
DL method usually needs a large amount of data to train the deep network, whereas
nuclear engineering applications always lack of the training data since experimental data
of nuclear engineering are normally difficult to obtain and collecting computational data
are usually time-consuming.

To improve this condition, the physics-informed DL (PIDL) method is proposed.
This method constructs the loss function by using the partial differential equation (PDE)
as regulation term rather than using the large amount of data like classical DL method.
Owning to this advantage, the PIDL can be applied to solve the PDE based physics
problems with limited or even no data available [26–28]. In comparing with the classical
method, such as the FEM, the PIDL shows some outstanding advantages. Since the PIDL
doesn’t require mesh discretization, this method has strong geometry adaptability and can
directly provide continuous solutions over whole domain. Based on these properties, the
PIDL holds strong multi-physics coupling ability without requirement of data interpolation
between different physical fields. Besides, owing to its simple implementation and strong
parallelism, the PIDL is very suitable for the graphics processing unit (GPU) accelerated
technique to significantly improve computational efficiency. In addition, the PIDL can be
simply realized and developed with many open-source libraries, such as TensorFlow [29,30]
and PyTorch [31].

More recently, in view of these attractive advantages, one of the PIDL method, namely
boundary independent method (BIM) [27], has been extended to neutron transport prob-
lems [32]. The BIM is one of the PIDL method, which introduces the boundary conditions
(BCs) to loss function for regulation. Different from the BIM, the boundary dependent
method (BDM) [33] is another type of PIDL method, which introduces the BCs to trial
function to determine the unique solution. In comparison, the BDM can achieve higher
accuracy than BIM, which is benefit for detail reactor simulation. Therefore, in this work,
the BDM is extended to multi-dimensional neutron diffusion problems with various BCs,
and the accuracy and efficiency of BDM and BIM are analyzed.

The rest of this paper is organized as follows. In Section 2, the governing equation,
the main idea of BIM and BDM and some construction approaches of trial function are
introduced. Section 3 tests some typical problems to prove the excellence of BDM. Some
main conclusions of this paper are offered in Section 4.

2. Methodology

In this section, the governing equation (e.g., the neutron diffusion equation) used
in this work is described first with explanations of the parameters used in the equation.
Two realizations of the PIDL methods, BIM and BDM, for solving the neutron diffusion
equation are introduced. The principle of BDM, which will be the primary method used in
this work, is elaborated for clarification. A novel approach of constructing trial functions
based on some special BCs in BDM for reactor problems is presented at the last part of this
section to complete the implementation.

2.1. Dimensionless Neutron Diffusion Equation

The conventional time-dependent and mono-energetic fixed-source mode neutron
diffusion equation in a two-dimension media can be described as:

1
ν

∂φ(x, y, t)
∂t

−∇ · D(x, y)∇φ(x, y, t) + Σa(x, y)φ(x, y, t) = Q(x, y, t) (1)

where φ(x, y, t) is the neutron flux with the dependency of position (x, y) and time t; v is
the neutron speed; D(x, y) is the diffusion coefficient; Σa is the macroscopic absorption
cross-section; Q(x, y, t) is the total external source in position (x, y) and time t.

It is convenient to cast the original diffusion equation into a dimensionless formulation.
Two special constants, characteristic length l and characteristic time τ, are introduced to

J. Nucl. Eng. 2021, 2 535

linearly transform the original space parameters (x, y) and time parameter t in the original
diffusion equation in order to make the new space parameters (m, n) and time parameter
s to fall into the range between 0 and 1. The forms of the linear transformation of the
parameters are described as:

m = x/l, n = y/l, s = t/τ (2)

After space and time parameter transformation variables, Equation (1) can be rewritten as:

1
ντ

∂φ(m, n, s)
∂s

− 1
l2∇ · D(m, n)∇φ(m, n, s) + Σa(m, n)φ(m, n, s) = Q(m, n, s) (3)

For a steady-state problem, the transient term is vanished, thus Equation (3) is reduced to:

− 1
l2∇ · D(m, n)∇φ(m, n) + Σa(m, n)φ(m, n) = Q(m, n) (4)

The dimensionless diffusion equation renders a few merits in terms of reactor analysis.
First, it avoids the huge difference in the magnitude of the physical parameters in the
governing equation; second, the calculation results are versatile and can be applicable in
some similar situations.

2.2. BDM and BIM

Figure 1 shows the flowchart of PIDL method, which can be descripts as follows.
Before solving the neutron diffusion problem, it’s needed to classify the type of problem.
For example, whether the problem is two-dimensional or three-dimensional, transient or
steady, a single-zone problem or a multi-zone problem, and so on. When solving the new
type of problem, a small data set should be chosen as the validation set, which is used
to perform a simple and fast hyperparameter research to determine an appropriate set of
hyperparameters. Then, the training set and test set are built by randomly generating the
discrete points on the calculation domain. The construction of trial function is necessary
for BDM, but is unnecessary for BIM, while the constructions of loss functions based on the
PDE are both necessary. After being trained on training set, neural network is evaluated
on the test set. If its performance is not satisfactory enough, the weights and biases of the
network will be reinitialized for retraining. Otherwise, the final result will be given.

It should be noted that, in most cases, the hyperparameters search is only required for
different types of problems rather than every problem, i.e., the similar problems can usually
be solved using the similar hyperparameters. When considering a new type of problem,
only a small validation set is needed to determine the proper set of hyperparameters, which
is recommended to solve other similar problems.

The PIDL method does not require any output data (for the diffusion equation, the
output data is the point-wise neutron flux value), but employ the physical model provided
by the diffusion equation itself as the calculation guidance. The underlining idea of PIDL
is implemented as follows. It first assumes a trial function φt containing undetermined
parameters to be the solution of the PDE (in our case, it is the diffusion equation), and then
it tests whether the trial function can fit the PDE at certain arbitrary picked discrete points.
A gradient based descent method is followed to adjust the undetermined parameters to
improve the global fitting performance until the satisfactory solution is achieved. Figure 2
shows the schematic flowchart of the PIDL method. The implementation difference existed
in BDM and BIM (which are two different PIDL realization in this work) are also briefly
illustrated in Figure 2, and these differences will be elaborated soon.

J. Nucl. Eng. 2021, 2 536

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 4

difference existed in BDM and BIM (which are two different PIDL realization in this work)
are also briefly illustrated in Figure 2, and these differences will be elaborated soon.

Start

New type of
problem? Y

Choose a
small data set

as the
validation set

N
Randomly generate some discrete

points on the calculation area as the
training set and test set

Perform a simple
hyperparameter study
on the validation set

Get a set of proper
hyperparameters

Construct a test function according to the boundary
conditions (for BDM, not necessary for BIM)

Construct loss function according to PDE

Feed the training set to the loss function
and train the neural network

The trained neural network
perform well on the test set?

Y

Final result

N

Reinitialize the weights
and biases of the neural

network

End

Figure 1. A flowchart of PIDL.

As shown in Figure 2a, several discrete points are randomly selected in the compu-
tation domain. The internal points, such as point i, are necessary for both BDM and BIM.
The boundary points, such as point j, are only necessary for BIM. At each point, a local
loss function is established to measure the fitting performance. As shown in Figure 2b, the
local loss function at internal point i is always defined by the square of the value of PDE
at this point for either BDM or BIM. The local loss function at boundary point j changes in
BIM, since it is employed to measure whether the trial function can fit the BC well. The
top formula in Figure 2b presents an example of local loss function on the boundary for
the constant Dirichlet BC. However, in actual calculation, it is almost impossible for the
trial function to perfectly match BCs. This mismatch may interfere with the calculation of
internal points and negatively affect the calculation accuracy of final results. Fortunately,
the problem of BCs fitting does not exist in BDM, since the constructed trial function in
BDM naturally fit the BCs perfectly. The global loss function on the train set, namely the
optimization object, is then defined upon the local loss functions as:

Figure 1. A flowchart of PIDL.

As shown in Figure 2a, several discrete points are randomly selected in the compu-
tation domain. The internal points, such as point i, are necessary for both BDM and BIM.
The boundary points, such as point j, are only necessary for BIM. At each point, a local
loss function is established to measure the fitting performance. As shown in Figure 2b, the
local loss function at internal point i is always defined by the square of the value of PDE at
this point for either BDM or BIM. The local loss function at boundary point j changes in
BIM, since it is employed to measure whether the trial function can fit the BC well. The
top formula in Figure 2b presents an example of local loss function on the boundary for
the constant Dirichlet BC. However, in actual calculation, it is almost impossible for the
trial function to perfectly match BCs. This mismatch may interfere with the calculation of
internal points and negatively affect the calculation accuracy of final results. Fortunately,
the problem of BCs fitting does not exist in BDM, since the constructed trial function in
BDM naturally fit the BCs perfectly. The global loss function on the train set, namely the
optimization object, is then defined upon the local loss functions as:

losstrain =
1

Ntrain
∑

k∈training set
lossk (5)

J. Nucl. Eng. 2021, 2 537

where Ntrain is the total number of discrete points in the training set; lossk represent the
local loss function at a certain point k. In a similar manner, losstest is defined as the global
loss function on the test set.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 5

training set
1

train k
tr

k
ainN

loss loss∈= (5)

where Ntrain is the total number of discrete points in the training set; lossk represent the
local loss function at a certain point k. In a similar manner, losstest is defined as the global
loss function on the test set.

Figure 2. A schematic diagram of the PIDL method, including (a) training set in the computation domain, (b) local loss
function, (c) trial function and (d) ANN.

In addition to the BC treatments, there are two important questions need to be ad-
dressed by the PIDL: the optimization strategy for the global loss function, and the adjust-
ment of the trial function. These questions are very difficult to answer two decades ago,
but now with the help of artificial intelligence toolbox such as TensorFlow, the difficulties
of these questions are significantly mitigated and both questions can be solved by a simple
subroutine within the toolbox. In this work, the automatic differentiation technique and
the quasi-Newton based optimization method, namely Limit memory BFGS (L-BFGS)
method [34], are applied to address these two questions. The L-BFGS technique is one of
the most commonly used quasi-Newton method for solving unconstrained nonlinear op-
timization problems. In comparing to other optimization method, the L-BFGS method
shows higher convergence rate and lower memory requirement. The automatic differen-
tiation and L-BFGS method can be realized by calling built-in functions in TensorFlow.
Both of these capabilities are enabled by directly calling built-in functions in TensorFlow.
A parameter known as ftol varies with different applications when calling these build-in
functions. It is a criterion by which L-BFGS stops the iteration. A larger ftol means stop-
ping iteration earlier and deviating more from the extreme.

The equations in Figure 2c presents the basic idea of trial function construction. For
BIM, it is defined as:

Figure 2. A schematic diagram of the PIDL method, including (a) training set in the computation domain, (b) local loss
function, (c) trial function and (d) ANN.

In addition to the BC treatments, there are two important questions need to be ad-
dressed by the PIDL: the optimization strategy for the global loss function, and the adjust-
ment of the trial function. These questions are very difficult to answer two decades ago,
but now with the help of artificial intelligence toolbox such as TensorFlow, the difficulties
of these questions are significantly mitigated and both questions can be solved by a simple
subroutine within the toolbox. In this work, the automatic differentiation technique and
the quasi-Newton based optimization method, namely Limit memory BFGS (L-BFGS)
method [34], are applied to address these two questions. The L-BFGS technique is one
of the most commonly used quasi-Newton method for solving unconstrained nonlinear
optimization problems. In comparing to other optimization method, the L-BFGS method
shows higher convergence rate and lower memory requirement. The automatic differen-
tiation and L-BFGS method can be realized by calling built-in functions in TensorFlow.
Both of these capabilities are enabled by directly calling built-in functions in TensorFlow.
A parameter known as ftol varies with different applications when calling these build-in
functions. It is a criterion by which L-BFGS stops the iteration. A larger ftol means stopping
iteration earlier and deviating more from the extreme.

The equations in Figure 2c presents the basic idea of trial function construction. For
BIM, it is defined as:

φt(m, n, s) = N(m, n, s,
→
p) (6)

J. Nucl. Eng. 2021, 2 538

where N(m, n, s,
→
p) is an ANN function with

→
p representing all undetermined parameters

in N, including weights and biases. For BDM, the trial function is defined as:

φt(m, n, s) = A(m, n, s) + B(m, n, s, N) (7)

where A(m, n, s) is the function that fits the BCs and B(m, n, s, N) is the function that has
no contribution to the BCs. Taking the constant Dirichlet BC as an example, A should be
equal to the value required by BC on this boundary and B should be zero on this boundary.
Obviously, the specific expressions of A and B depends entirely on BCs, which is one of the
trickiest problems in BDM. An innovative approach to obtain the expressions of A and B
for some special BCs for BDM is elaborated in Section 2.3.

2.3. Trial Functions for Special BCs in BDM

A construction of trial function for special BCs means to give a concrete form of
A(m, n, s) and B(m, n, s, N) in the BDM implementation. The construction should have two
apparent features. The first is that the construction for certain BCs should not be unique,
since the trial function fitting the BCs is not unique. Therefore, the trial function constructed
by BDM corresponding to certain BCs in this work is not the only possible solution. The
second is that the construction should only depend on the BCs, not the governing equations.
Thus, different governing equations with same BCs may share common constructions.
Furthermore, the construction should not be affected by the parameters changing of the
governing equations within the computation domain. In this section, eight constructions
of trial functions for four kind of BCs in both transient and steady state conditions are
outlined by following the boundary treatment ideas proposed by [33].

For time-dependent conditions, in addition to the spatial BCs, an initial condition (IC)
is required, which can be assumed as:

φ(m, n, 0) = φ0(m, n) (8)

In this paper, two typical geometries shown in Figure 3 will be used to illustrate the
setting of trial function construction for spatial BCs.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 6

(, ,) (, , ,)t m n s N m n s pφ =
 (6)

where (, , ,)N m n s p is an ANN function with p representing all undetermined pa-
rameters in N, including weights and biases. For BDM, the trial function is defined as:

(, ,) (, ,) (, , ,)t m n s A m n s B m n s Nφ = + (7)

where A(m, n, s) is the function that fits the BCs and B(m, n, s, N) is the function that has
no contribution to the BCs. Taking the constant Dirichlet BC as an example, A should be
equal to the value required by BC on this boundary and B should be zero on this bound-
ary. Obviously, the specific expressions of A and B depends entirely on BCs, which is one
of the trickiest problems in BDM. An innovative approach to obtain the expressions of A
and B for some special BCs for BDM is elaborated in Section 2.3.

2.3. Trial Functions for Special BCs in BDM
A construction of trial function for special BCs means to give a concrete form of A(m,

n, s) and B(m, n, s, N) in the BDM implementation. The construction should have two
apparent features. The first is that the construction for certain BCs should not be unique,
since the trial function fitting the BCs is not unique. Therefore, the trial function con-
structed by BDM corresponding to certain BCs in this work is not the only possible solu-
tion. The second is that the construction should only depend on the BCs, not the governing
equations. Thus, different governing equations with same BCs may share common con-
structions. Furthermore, the construction should not be affected by the parameters chang-
ing of the governing equations within the computation domain. In this section, eight con-
structions of trial functions for four kind of BCs in both transient and steady state condi-
tions are outlined by following the boundary treatment ideas proposed by [33].

For time-dependent conditions, in addition to the spatial BCs, an initial condition (IC)
is required, which can be assumed as:

0(, ,0) (,)m n m nφ φ= (8)

In this paper, two typical geometries shown in Figure 3 will be used to illustrate the
setting of trial function construction for spatial BCs.

Figure 3. Dirichlet BC for two common geometries, including (a) Square boundary (SB) and (b)
Circular boundary (CB).

The Dirichlet BC (such as zero-flux boundary) is commonly used in reactor physics.
In Figure 3, the neutron flux on the physical boundaries is set as (, ,)c m n sφ , which is
only defined on the boundary and can be described in Equations (9) and (10) for square
boundary (SB) and circular boundary (CB), respectively.

Figure 3. Dirichlet BC for two common geometries, including (a) Square boundary (SB) and (b)
Circular boundary (CB).

The Dirichlet BC (such as zero-flux boundary) is commonly used in reactor physics.
In Figure 3, the neutron flux on the physical boundaries is set as φc(m, n, s), which is

J. Nucl. Eng. 2021, 2 539

only defined on the boundary and can be described in Equations (9) and (10) for square
boundary (SB) and circular boundary (CB), respectively.

SB :

φc(0, n, s) = φcs1(n, s)

φc(m, 1, s) = φcs2(m, s)

φc(1, n, s) = φcs3(n, s)

φc(m, 0, s) = φcs4(m, s)

(9)

CB : φc(m, n, s) = φcc(m, n, s) (10)

Inspired by a treatment for a time-independent problem [33], a possible form of
trial function is proposed to fit Equations (8) and (9), in which the functions a(m, n, s)
and a0(m, n) are introduced to form this trial function. They can be described as:{

A = a− a0 + φ0
B = s(1− n)n(1−m)mN

(11)

where
a(m, n, s) = (1−m)φcs1 + nφcs2 + mφcs3 + (1− n)φcs4

−(1− n)[(1−m)φcs4(0, s) + mφcs3(0, s)]
−n[(1−m)φcs1(1, s) + mφcs2(1, s)]

a0(m, n) = a(m, n, 0)

(12)

Due to the continuity of the neutron flux function, the continuity of the IC in Equation (8)
and the spatial BCs in Equation (9) is admitted, which can be described as:

φcs1(1, s) = φcs2(0, s), φcs2(1, s) = φcs3(1, s)

φcs3(0, s) = φcs4(1, s), φcs4(0, s) = φcs1(0, s)

φ0(0, n) = φcs1(n, 0), φ0(m, 1) = φcs2(m, 0)

φ0(1, n) = φcs3(n, 0), φ0(m, 0) = φcs4(m, 0)

(13)

With Equation (13), some properties of a and a0 can be obtained as:

a(0, n, s) = φcs1, a(m, 1, s) = φcs2

a(1, n, s) = φcs3, a(m, 0, s) = φcs4

a0(0, n) = φcs1(n, 0) = φ0(0, n)

a0(m, 1) = φcs2(m, 0) = φ0(m, 1)

a0(1, n) = φcs3(n, 0) = φ0(1, n)

a0(m, 0) = φcs4(m, 0) = φ0(m, 0)

(14)

Substituting Equation (14) into Equation (11), it is evident that the trial function
formed by Equation (11) fits Equations (8) and (9).

Similarly, a possible form of trial function fitting Equations (8) and (10) can be de-
scribed as: {

A = φcc − φcc,0 + φ0

B = s((m− 0.5)2 + (n− 0.5)2 − 0.52)N
(15)

where φcc,0(m, n) = φcc(m, n, 0). The definition domain of φcc is a circuit, and A needs
to be defined in the entire calculation domain. Therefore, φcc should be extended to
the entire calculation domain. Sometimes, A obtained by directly extending φcc may be
discontinuous at the center of the circuit, thus in this case, the discrete point at the center
should be avoided.

J. Nucl. Eng. 2021, 2 540

For the steady-state problem, Equation (11) can be simplified to [33]:{
A(m, n) = a0(m, n)

B(m, n,
→
p) = (1− n)n(1−m)mN(m, n,

→
p)

(16)

and Equation (15) can be simplified to:{
A(m, n) = φcc,0

B(m, n,
→
p) = ((m− 0.5)2 + (n− 0.5)2 − 0.52)N(m, n,

→
p)

(17)

In addition to the Dirichlet BC, the Neumann BC, such as the symmetry boundary,
is sometimes used in reactor physics calculations to reduce the computational cost by
applying the symmetry characteristics. As shown in Figure 4, a yellow domain with
one Dirichlet boundary (physical boundary) and two Neumann boundaries (symmetry
boundary) can be used to substitute the whole domain in the calculation.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 8

where ,0 (,) (, , 0)cc ccm n m nφ φ= . The definition domain of ϕcc is a circuit, and A needs to
be defined in the entire calculation domain. Therefore, ϕcc should be extended to the entire
calculation domain. Sometimes, A obtained by directly extending ϕcc may be discontinu-
ous at the center of the circuit, thus in this case, the discrete point at the center should be
avoided.

For the steady-state problem, Equation (11) can be simplified to [33]:

0

) (1
(

) (1)
,) (,)

(, (,), ,p n n m mN m n
A m n a m n
B m n p= − −

=

 (16)

and Equation (15) can be simplified to:

,0

2 2 2

(,)

(, , ((0.5) (0.5) 0.5) ,)) (,
ccA m n

B m n m n N m np p

φ=

− + − − =
 (17)

In addition to the Dirichlet BC, the Neumann BC, such as the symmetry boundary, is
sometimes used in reactor physics calculations to reduce the computational cost by ap-
plying the symmetry characteristics. As shown in Figure 4, a yellow domain with one
Dirichlet boundary (physical boundary) and two Neumann boundaries (symmetry
boundary) can be used to substitute the whole domain in the calculation.

Figure 4. Dirichlet and Neumann BCs with symmetry applied, including (a) SB and (b) CB.

The left and right Neumann BCs and the Dirichlet BC shown in Figure 3 can be re-
spectively described as follows:

(, ,) (, ,)
Neumann BCs:

(0.5, ,) 0

m m s m m s
m n

n s
m

φ φ

φ

∂ ∂=
∂ ∂

∂ =

∂

 (18)

4Dirichlet BC (SB): (,0,) (,)csm s m sφ φ= (19)

Dirichlet BC (CB): (, ,) (, ,)c ccm n s m n sφ φ= (20)

A similar but more simplified trial function is proposed to fit Equations (8), (18) and
(19), in which 4 (, ,)ma n s and 4,0 (,)a m n are introduced to form this trial function.
They are described as:

Figure 4. Dirichlet and Neumann BCs with symmetry applied, including (a) SB and (b) CB.

The left and right Neumann BCs and the Dirichlet BC shown in Figure 3 can be
respectively described as follows:

Neumann BCs :

{ ∂φ
∂m (m, m, s) = ∂φ

∂n (m, m, s)
∂φ
∂m (0.5, n, s) = 0

(18)

Dirichlet BC (SB) : φ(m, 0, s) = φcs4(m, s) (19)

Dirichlet BC (CB) : φc(m, n, s) = φcc(m, n, s) (20)

A similar but more simplified trial function is proposed to fit Equations (8), (18) and (19),
in which a4(m, n, s) and a4,0(m, n) are introduced to form this trial function. They are
described as: {

A = a4 − a4,0 + φ0

B = s(1−m)m(1− n)n(N(m, s,
→
p) + N(n, s,

→
p))

, (21)

where {
a4(m, n, s) = φcs4(m, s) + φcs4(n, s)− φcs4(0, s)

a4,0(m, n) = a4(m, n, 0)
. (22)

Due to the continuity of the neutron flux function, the continuity of the IC in Equation (8)
and the spatial BCs in Equation (9) are admitted, which can be described as:{ ∂φ0

∂m (m, m) = ∂φ0
∂n (m, m)

∂φcs4
∂m (0.5, s) = 0

. (23)

J. Nucl. Eng. 2021, 2 541

Substituting Equations (14) and (23) into Equation (21), it is evident that the trial
function formed by Equation (21) fits Equations (8), (18) and (19).

Similarly, a possible form of trial function fitting Equations (8), (18) and (20) can be
described as:{

A = φcc − φcc,0 + φ0

B = s((m− 0.5)2 + (n− 0.5)2 − 0.52)(N(m, s,
→
p) + N(n, s,

→
p))

. (24)

Similar to Equation (15), φcc should be extended to the entire calculation domain
and the discrete point at the center should be avoided. The proof for this trial function is
presented in Appendix A.

For the steady-state problem, Equation (21) can be simplified to:{
A = a4,0

B = (1−m)m(1− n)n(N(m,
→
p) + N(n,

→
p)) , (25)

and Equation (24) can be simplified to:{
A = φcc,0

B = ((m− 0.5)2 + (n− 0.5)2 − 0.52)(N(m,
→
p) + N(n,

→
p))

. (26)

3. Results and Discussion

In this section, some numerical problems based on the neutron diffusion equation are
employed to examine the computational performance of the BDM and BIM. Four cases
are used to evaluate different performance aspects of the methods. Case 1 compares the
accuracy and efficiency of BDM and BIM. Case 2 assesses the choice of the activation
function type in DL neural network. The activation function is an important element in the
DL method used to determine the hidden unit of the network. Case 3 investigates the influ-
ences of some important hyperparameters used in BDM on the calculation results. Finally,
Case 4 demonstrates the potential of BDM to handle more complicated geometry case.

3.1. Case 1—Comparison of BDM and BIM

As mentioned in Section 2.2, BIM introduces some extra points on the boundary to
ensure the trial functions fit the BCs as much as possible, while BDM constructs the trial
functions to perfectly fit the BCs. As a result, one obvious advantage of BDM over BIM
is that there is no error caused by the BCs in BDM. However, the method to construct the
trial functions in BDM is more complex than that of BIM as shown in Section 2.3, which
may result in higher computational costs. Therefore, Case 1 is set up to gain a better
understanding of the calculation efficiency and accuracy of these two methods.

Case 1 is a two-dimensional time-dependent mono-energetic neutron diffusion prob-
lem with homogeneous media and zero-flux boundaries in the Cartesian geometry, as
shown in Figure 3a. The governing equation of the problem is shown as Equation (3). The
external source Q(x, y, t) is prescribed as:

Q(x, y, t) = (
φ1

ντ
+

2Dπ2

l2 φ1) exp(
t
τ
) sin(π

x
l
) sin(π

y
l
), (27)

and the initial condition is given as:

φ(x, y, 0) = φ1 sin(π
x
l
) sin(π

y
l
). (28)

The values of all parameters used in Case 1 are summarized in Table 1.

J. Nucl. Eng. 2021, 2 542

Table 1. Parameters used in Case 1.

v (cm/s) D (cm) φ1 (n·cm−2·s−1) τ (s) l (cm) Σa (cm−1)

Value 1.0 0.001 1.0 1.0 1.0 0

The analytical solution of this problem is expressed as follows:

φ(x, y, t) = φ1 sin(π
x
l
) sin(π

y
l
) exp(π

t
τ
), (29)

which is used as the exact reference solution for the BIM and BDM solutions.
In the calculations of Case 1, 1000 random data points within the computing phase

space are chosen as the training set to train the neural network. Specifically, 100 random
data points on phase space boundaries are used in BIM. The test set used to assess the
accuracy of ANN consists of 8000 data points with the same distribution range as the
training set. For Case 1, the feed-forward neural network is constructed with two hidden
layers and 20 neurons per hidden layer. A hyperbolic tangent function is used as the
activation function in the network. The parameter ftol is set as 10−7 for both two methods.
The average predicted error (APE) defined in Equation (30) is used to evaluate the accuracy
of the DL neural network

APE =
1

Ntest
∑

(m,n,s)∈test set
|φp(m, n, s)− φa(m, n, s)|, (30)

where Ntest is the number of data points in the test set, φp is the trial function trained by the
DL neural network, and φa is the analytical solution as Equation (29). The training time is
used to evaluate the computational efficiency.

At present, there is no theory that can exactly give the optimal initial value of the
weight and bias in the neural network. The usual practice is to randomly assign them
values within a certain range. However, when applying the gradient descent method to
optimize the neural network, the selection of the initial point will have a great impact on the
optimization speed and results. In order to minimize the error caused by the randomness
of the initial values of the weights and biases, 25 different initial values are used to calculate
and count the average results in Case 1.

The calculation results of PIDL method with BDM and BIM trial solutions at t = 0.5 s
are shown in Figure 5, which indicates that both BDM and BIM can get a good agreement
with the analytical solution for this case. Figure 5d also shows the distribution of absolute
errors. The error of BDM is generally lower than BIM. The maximum error of BDM
is 1.87 × 10−4, and the average absolute error is 5.95 × 10−4, while the maximum and
averaged errors of BIM are 1.27 × 10−2 and 5.41 × 10−2, respectively.

The accuracy and efficiency of BDM and BIM for Case 1 are further compared in
Figure 6, including the time-averaged APEs and the training time. As shown in Figure 6a,
the time-averaged APEs of BDM and BIM with different repeat times both vary within
a narrow scope, which indicates that the PIDL method is stable for neutron diffusion
solving. Figure 6a also shows that the APEs of BDM are nearly two orders of magnitude
smaller than that of BIM, indicating that the accuracy of BDM is far higher than that of BIM.
Figure 6b shows the training time of the PIDL neural network with BDM and BIM, their
comparisons demonstrate that the BDM usually takes more training time than BIM, since
the form of trial function of BDM is usually more complex than that of BIM. The average
training time of BDM is about 1.97 s longer than that of BIM. As a result, no boundary error
is introduced during the training of BDM, but its training time will be extended.

J. Nucl. Eng. 2021, 2 543

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 11

× 10−4, and the average absolute error is 5.95 × 10−4, while the maximum and averaged
errors of BIM are 1.27 × 10−2 and 5.41 × 10−2, respectively.

Figure 5. Comparisons of BDM and BIM results with analytical solution of Case 1 at t = 0.5 s, including (a) BIM solution, (b)
BDM solution, (c) analytical solution and (d) comparisons between different solutions.

The accuracy and efficiency of BDM and BIM for Case 1 are further compared in
Figure 6, including the time-averaged APEs and the training time. As shown in Figure 6a,
the time-averaged APEs of BDM and BIM with different repeat times both vary within a
narrow scope, which indicates that the PIDL method is stable for neutron diffusion solv-
ing. Figure 6a also shows that the APEs of BDM are nearly two orders of magnitude
smaller than that of BIM, indicating that the accuracy of BDM is far higher than that of
BIM. Figure 6b shows the training time of the PIDL neural network with BDM and BIM,
their comparisons demonstrate that the BDM usually takes more training time than BIM,
since the form of trial function of BDM is usually more complex than that of BIM. The
average training time of BDM is about 1.97 s longer than that of BIM. As a result, no
boundary error is introduced during the training of BDM, but its training time will be
extended.

In summary, the results of Case 1 indicate that the BDM usually shows higher accu-
racy than BIM, which can offset the disadvantage caused by lower calculation efficiency.
Since the training time for both methods are essentially in the same scale, this work herein
adopts only the BDM for the subsequent case problems.

Figure 5. Comparisons of BDM and BIM results with analytical solution of Case 1 at t = 0.5 s, including (a) BIM solution,
(b) BDM solution, (c) analytical solution and (d) comparisons between different solutions.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 12

Figure 6. Comparisons of calculation accuracy and efficiency of BDM and BIM for Case 1, including (a) the time-averaged
APEs and (b) the training time.

3.2. Case 2—Choice of Activation Function
An important aspect in DL method is choosing the type of hidden unit in the net-

work. Activation function is used for this purpose. Even though the design of hidden unit
is a hot topic in DL, there is yet no dominant principle to choose the activation function.
As for now, two common activation functions were used in PIDL of this study: the logistic
sigmoid (sigmoid for short) and the hyperbolic tangent function (tanh for short). The ex-
pressions of these two activation functions are given below:

:

1
1

: x

x x

x x

sigmoid x

tanh x

e
e e
e e

−

−

−

 →

 →

+

+
−

 (31)

Both the tanh and sigmoid activation functions are considered in the Case 2 test prob-
lem to assess their performance for neutron diffusion problems. Some other popular acti-
vation functions, such as ReLU and leaky ReLU, are not used in this work. Since both of
these two activation functions are linear, and their second-order gradients are equal to 0,
which leads to the premature termination of optimization process for neutron diffusion
problems.

Case 2 has the same problem configuration at Case 1, but only works on part of Case
1 domain by utilizing its symmetric property with both Dirichlet and Neumann BCs en-
forced as shown in Figure 4a. Besides, other parameters including the structure of neural
network, and the ftol value used in Case 2 remain identical to that of Case 1. The size
of training set of BDM and BIM is 1000, and the size of test set is 8000.

The results of the comparison of calculation accuracy and efficiency when using tanh
or sigmoid as activation function in Case 2 are illustrated in Figure 7. As shown in Figure
7a, the average value of APE using tanh activation function within 25 repeated calculations
is smaller than that with sigmoid activation function, which indicates a higher accuracy of
using tanh as the activation function. In Figure 7b, the training time for each calculation
corresponding to tanh and sigmoid activation function is compared, in which the average
training time with tanh activation function is shorter than that with sigmoid.

In summary, this case indicates that the tanh activation function shows better perfor-
mance than that of sigmoid. Therefore, tanh is used herein as the activation function for the
rest of test problem calculations.

Figure 6. Comparisons of calculation accuracy and efficiency of BDM and BIM for Case 1, including (a) the time-averaged
APEs and (b) the training time.

J. Nucl. Eng. 2021, 2 544

In summary, the results of Case 1 indicate that the BDM usually shows higher accuracy
than BIM, which can offset the disadvantage caused by lower calculation efficiency. Since
the training time for both methods are essentially in the same scale, this work herein adopts
only the BDM for the subsequent case problems.

3.2. Case 2—Choice of Activation Function

An important aspect in DL method is choosing the type of hidden unit in the network.
Activation function is used for this purpose. Even though the design of hidden unit is a hot
topic in DL, there is yet no dominant principle to choose the activation function. As for now,
two common activation functions were used in PIDL of this study: the logistic sigmoid
(sigmoid for short) and the hyperbolic tangent function (tanh for short). The expressions of
these two activation functions are given below:{

sigmoid : x → 1
1+e−x

tanh : x → ex−e−x

ex+e−x

(31)

Both the tanh and sigmoid activation functions are considered in the Case 2 test problem
to assess their performance for neutron diffusion problems. Some other popular activation
functions, such as ReLU and leaky ReLU, are not used in this work. Since both of these
two activation functions are linear, and their second-order gradients are equal to 0, which
leads to the premature termination of optimization process for neutron diffusion problems.

Case 2 has the same problem configuration at Case 1, but only works on part of Case 1
domain by utilizing its symmetric property with both Dirichlet and Neumann BCs enforced
as shown in Figure 4a. Besides, other parameters including the structure of neural network,
and the f tol value used in Case 2 remain identical to that of Case 1. The size of training set
of BDM and BIM is 1000, and the size of test set is 8000.

The results of the comparison of calculation accuracy and efficiency when using tanh
or sigmoid as activation function in Case 2 are illustrated in Figure 7. As shown in Figure 7a,
the average value of APE using tanh activation function within 25 repeated calculations is
smaller than that with sigmoid activation function, which indicates a higher accuracy of
using tanh as the activation function. In Figure 7b, the training time for each calculation
corresponding to tanh and sigmoid activation function is compared, in which the average
training time with tanh activation function is shorter than that with sigmoid.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 13

Figure 7. Comparisons of calculation accuracy and efficiency using tanh and sigmoid as activation function of Case 2, in-
cluding (a) time-averaged APEs and (b) training time.

3.3. Case 3—Impact of Hyperparameters
Similar to the other DL methods, there are many important hyperparameters in the

PIDL with BDM. It is noteworthy to investigate the sensitivities of hyperparameters to the
method. In this work, the following two hyperparameters are selected for this purpose:
the number of hidden layers Nl and the number of neutrons in each hidden layer Nn. In
Cases 1 and 2, Nl = 2 and Nn = 20 were used to construct the network, but they may not be
the optimum ones. The Case 3 test problem discussed in this subsection is designed to
investigate the impact of these hyperparameters to the BDM method. The size of training
set is 5000, and the size of test set is 10,000.

This problem is a steady-state two-dimensional mono-energetic neutron diffusion
problem with heterogeneous media as shown in Figure 2a. The external source term

(,)Q x y is prescribed as

1

3[,]0 if ,
(,)

4 4
3if
4

, [,]
4

x y
Q x y

x y

l l

l lQ

 ∈

∉

=

 (32)

The zero-flux boundaries are applied to each side of the domain, and the values of
problem parameters used in Case 3 are summarized in Table 2. The reference value of
Case 3 is provided by the multi-physics software COMSOL [35], which used FEM to pro-
vide higher order numerical solutions to PDE problems.

Table 2. Parameters used in Case 3.

 D (cm) l (cm) Σa (cm−1) Q1 (n·cm−3·s−1)
Value 2/3 100 0.5 1.0

In the application of PIDL, an important question is whether the performance of the
neural network on test set after training can meet the expected requirements. The quantity
losstest is used as a metric to evaluate whether the trained neural network is successful. In
this work, the neural network with losstest greater than 10−2 is considered as a failure train-
ing. For each neural network with a set of hyperparameters, 10 successful trainings are
expected for analysis, i.e., for each proposed neural network, many times repeatedly train-
ing should be taken until 10 successfully trained neural networks are obtained. In general,
10 successfully trained ANNs can be obtained. But in a few cases, it’s extremely difficult
or impossible to achieve 10 successfully trained neural networks. Therefore, in this work,
an upper limit of failed training Nfail = 50 is set to reduce meaningless calculations. In all
calculations in the Case 3, Nfail cannot be greater than 50 for each attempt to successful

Figure 7. Comparisons of calculation accuracy and efficiency using tanh and sigmoid as activation function of Case 2,
including (a) time-averaged APEs and (b) training time.

J. Nucl. Eng. 2021, 2 545

In summary, this case indicates that the tanh activation function shows better perfor-
mance than that of sigmoid. Therefore, tanh is used herein as the activation function for the
rest of test problem calculations.

3.3. Case 3—Impact of Hyperparameters

Similar to the other DL methods, there are many important hyperparameters in the
PIDL with BDM. It is noteworthy to investigate the sensitivities of hyperparameters to the
method. In this work, the following two hyperparameters are selected for this purpose:
the number of hidden layers Nl and the number of neutrons in each hidden layer Nn. In
Cases 1 and 2, Nl = 2 and Nn = 20 were used to construct the network, but they may not
be the optimum ones. The Case 3 test problem discussed in this subsection is designed to
investigate the impact of these hyperparameters to the BDM method. The size of training
set is 5000, and the size of test set is 10,000.

This problem is a steady-state two-dimensional mono-energetic neutron diffusion
problem with heterogeneous media as shown in Figure 2a. The external source term Q(x, y)
is prescribed as

Q(x, y) =

{
0 if x, y ∈ [l

4 , 3l
4]

Q1 if x, y /∈ [l
4 , 3l

4]
(32)

The zero-flux boundaries are applied to each side of the domain, and the values
of problem parameters used in Case 3 are summarized in Table 2. The reference value
of Case 3 is provided by the multi-physics software COMSOL [35], which used FEM to
provide higher order numerical solutions to PDE problems.

Table 2. Parameters used in Case 3.

D (cm) l (cm) Σa (cm−1) Q1 (n·cm−3·s−1)

Value 2/3 100 0.5 1.0

In the application of PIDL, an important question is whether the performance of the
neural network on test set after training can meet the expected requirements. The quantity
losstest is used as a metric to evaluate whether the trained neural network is successful.
In this work, the neural network with losstest greater than 10−2 is considered as a failure
training. For each neural network with a set of hyperparameters, 10 successful trainings
are expected for analysis, i.e., for each proposed neural network, many times repeatedly
training should be taken until 10 successfully trained neural networks are obtained. In
general, 10 successfully trained ANNs can be obtained. But in a few cases, it’s extremely
difficult or impossible to achieve 10 successfully trained neural networks. Therefore, in this
work, an upper limit of failed training Nfail = 50 is set to reduce meaningless calculations. In
all calculations in the Case 3, Nfail cannot be greater than 50 for each attempt to successful
training. If under a certain set of hyperparameters, Nfail reaches 50, it simply indicates this
network structure is be suitable for the calculation of Case 3.

The impact of two hyperparameters (Nl and Nn) on APE, training time and success
rate of neural network training are summarized in Figures 8–10, respectively. It should be
noted that more than 50 networks with the structure Nl = 1 and Nn = 5 have been tried
to train. But all these networks have failed. Therefore, this structure is not included in
Figures 8 and 9. One possible explanation for the failure of this network structure is that
this structure is too simple to be adequate for the calculation in Case 3. Additionally, for
most cases, failed training has much less training time than successful training, but this is
meaningless since the failed training fell into a local minimum shortly after the start. In this
case, the APEs of the failed training networks are often higher than that of the successfully
trained networks.

J. Nucl. Eng. 2021, 2 546

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 14

training. If under a certain set of hyperparameters, Nfail reaches 50, it simply indicates this
network structure is be suitable for the calculation of Case 3.

The impact of two hyperparameters (Nl and Nn) on APE, training time and success
rate of neural network training are summarized in Figures 8–10, respectively. It should be
noted that more than 50 networks with the structure Nl = 1 and Nn = 5 have been tried to
train. But all these networks have failed. Therefore, this structure is not included in Fig-
ures 8 and 9. One possible explanation for the failure of this network structure is that this
structure is too simple to be adequate for the calculation in Case 3. Additionally, for most
cases, failed training has much less training time than successful training, but this is mean-
ingless since the failed training fell into a local minimum shortly after the start. In this
case, the APEs of the failed training networks are often higher than that of the successfully
trained networks.

5 10 15 20 25 30
0.000

0.007

0.014

0.021

0.028

0.035

A
ve

ra
ge

 A
PE

Nn

 Nl = 1
 Nl = 2
 Nl = 3
 Nl = 4

Figure 8. Average value of APE under different hyperparameters.

5 10 15 20 25 30
0

100

200

300

400

Nn

A
ve

ra
ge

 T
ra

in
in

g
Ti

m
e

(s
)

 Nl = 1
 Nl = 2
 Nl = 3
 Nl = 4

Figure 9. Average of training time (s) under different hyperparameters.

5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

 Nn

 N
l
 = 1

 Nl = 2

Tr
ai

ni
ng

 S
uc

ce
ss

 R
at

e

 Nl = 3
 Nl = 4

Figure 10. Success rate of training under different hyperparameters.

Figure 8. Average value of APE under different hyperparameters.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 14

training. If under a certain set of hyperparameters, Nfail reaches 50, it simply indicates this
network structure is be suitable for the calculation of Case 3.

The impact of two hyperparameters (Nl and Nn) on APE, training time and success
rate of neural network training are summarized in Figures 8–10, respectively. It should be
noted that more than 50 networks with the structure Nl = 1 and Nn = 5 have been tried to
train. But all these networks have failed. Therefore, this structure is not included in Fig-
ures 8 and 9. One possible explanation for the failure of this network structure is that this
structure is too simple to be adequate for the calculation in Case 3. Additionally, for most
cases, failed training has much less training time than successful training, but this is mean-
ingless since the failed training fell into a local minimum shortly after the start. In this
case, the APEs of the failed training networks are often higher than that of the successfully
trained networks.

5 10 15 20 25 30
0.000

0.007

0.014

0.021

0.028

0.035

A
ve

ra
ge

 A
PE

Nn

 Nl = 1
 Nl = 2
 Nl = 3
 Nl = 4

Figure 8. Average value of APE under different hyperparameters.

5 10 15 20 25 30
0

100

200

300

400

Nn

A
ve

ra
ge

 T
ra

in
in

g
Ti

m
e

(s
)

 Nl = 1
 Nl = 2
 Nl = 3
 Nl = 4

Figure 9. Average of training time (s) under different hyperparameters.

5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

 Nn

 N
l
 = 1

 Nl = 2

Tr
ai

ni
ng

 S
uc

ce
ss

 R
at

e

 Nl = 3
 Nl = 4

Figure 10. Success rate of training under different hyperparameters.

Figure 9. Average of training time (s) under different hyperparameters.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 14

training. If under a certain set of hyperparameters, Nfail reaches 50, it simply indicates this
network structure is be suitable for the calculation of Case 3.

The impact of two hyperparameters (Nl and Nn) on APE, training time and success
rate of neural network training are summarized in Figures 8–10, respectively. It should be
noted that more than 50 networks with the structure Nl = 1 and Nn = 5 have been tried to
train. But all these networks have failed. Therefore, this structure is not included in Fig-
ures 8 and 9. One possible explanation for the failure of this network structure is that this
structure is too simple to be adequate for the calculation in Case 3. Additionally, for most
cases, failed training has much less training time than successful training, but this is mean-
ingless since the failed training fell into a local minimum shortly after the start. In this
case, the APEs of the failed training networks are often higher than that of the successfully
trained networks.

5 10 15 20 25 30
0.000

0.007

0.014

0.021

0.028

0.035

A
ve

ra
ge

 A
PE

Nn

 Nl = 1
 Nl = 2
 Nl = 3
 Nl = 4

Figure 8. Average value of APE under different hyperparameters.

5 10 15 20 25 30
0

100

200

300

400

Nn

A
ve

ra
ge

 T
ra

in
in

g
Ti

m
e

(s
)

 Nl = 1
 Nl = 2
 Nl = 3
 Nl = 4

Figure 9. Average of training time (s) under different hyperparameters.

5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

 Nn

 N
l
 = 1

 Nl = 2

Tr
ai

ni
ng

 S
uc

ce
ss

 R
at

e

 Nl = 3
 Nl = 4

Figure 10. Success rate of training under different hyperparameters. Figure 10. Success rate of training under different hyperparameters.

Figure 8 shows the average APE varying with Nl and Nn. The general trend is that
increasing Nn can reduce the APE. But for a few structures, such as Nl = 4 and Nn > 20,
the increase of Nn will cause the increase of APE. Increasing Nl from 1 to 2 greatly reduces
the APE. But when Nl continues to increase, the decrease in APE decreases sharply, even
when Nn = 30, APE does not decrease but increase. This phenomenon may be caused by
the large ftol that stoping the optimization in advance, thus the fitting ability of the complex
neural network is not fully exerted. Besides, as neural network become more complex, the
problem of overfitting becomes more and more serious. A complex neural network can
perform well on the training set, but it does not always perform well on the test set.

Figure 9 shows the averaged training time varying with Nl and Nn, in which the
larger Nl and Nn lead to longer training time. Considering the effect of fluctuations in the
computer’s running conditions in training time, it is acceptable to have some cases that do
not conform to the above rule.

J. Nucl. Eng. 2021, 2 547

Figure 10 gives the training success rate varying with Nl and Nn, which shows a
different regulation from APE and training time. The success rate of training in the
Figure 10 is slightly lower than the actual success rate, because every attempt ends with a
successful training. But the statistical results under 10 attempts are sufficient for qualitative
analysis. The success rate of training is not simply increasing with the complexity of the
neural network. For some simple neural networks (Nl = 2, Nn = 5 and Nl = 1, Nn = 10),
the success rate is very low but not zero, which means that these two neural networks
have sufficient fitting ability to meet the restriction of losstest. The low success rate may be
explained by the fact that most of the local extreme points of these two neural networks
can’t meet this restriction. For some complex neural networks (Nl = 4), the success rate
doesn’t exceed 50%, which is worse than a simpler neural network (Nl = 2). For a neural
network with a complexity between simple and complex, there is almost no specific rule
for the success rate. In the actual application of DL, the optimal choice of neural network
structure is often different for different issues. The optimal choice of neural network
structure is often based on experience rather than theory. In general, we should avoid
choosing a too simple or too complex neural network. Only after determining the issue
and the training set, can we choose a better network structure.

In conclusion, for a particular issue, it is recommended to first determine the size
of the training set, which relies on the independent variables number in the issue, and
the degree of the physical parameters change in the calculation domain. In the choice
of network structure, overly simple networks should be absolutely avoided. Although
an overly complex ANN may have better performance in term of calculation accuracy,
considering its low success rate of training and long training time, it’s recommended to
choose an overly complicated ANN carefully.

3.4. Case 4—Application in Complex Geometry

The last test problem [36], namely Case 4, is calculated to demonstrate the BDM in
solving the problems with complex geometry. Case 4 is a steady-state diffusion problem
governed by Equation (4), in which l = 100 cm. The geometric conditions of Case 4 are
shown in Figure 11. The space domain of the problem is divided into five regions with three
materials indicated as Area 1, Area 3 and Area 5, respectively, whose physical properties
are given in Table 3. The zero-flux boundaries, as shown in Figure 3b, are imposed for the
problem. The selected neural network in BDM is a feed-forward network with four hidden
layers and 40 neutrons per hidden layer (i.e., Nl = 4 and Nn = 40), and a hyperbolic tangent
activation function. The network is trained under the condition of ftol = 2.2 × 10−16. The
size of training set is 10,000 and no test set is set in this case.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 16

BDM solutions agree well with those of COMSOL, indicating that the proposed BDM can
simulate the neutron diffusion processes with high accuracy and flexibility.

Figure 11. Geometric conditions of Case 4.

Table 3. Values of some parameters in Example Ⅳ.

Area No. D (cm) Σa (cm−1) Q (n·cm−3·s−1)
1 0.5556 0.07 0.79
3 0.4762 0.04 0.43
5 0.3704 0.01 0

Figure 12. Comparisons of BDM and COMSOL solution of Case 4, including (a) BDM solution, (b)
COMSOL solution, comparisons between BDM and COMSOL along (c) lines y = 50 cm and (d) x =
40 cm and the PDE residuals along (e) lines y = 50 cm and (f) x = 40 cm.

Figure 11. Geometric conditions of Case 4.

J. Nucl. Eng. 2021, 2 548

Table 3. Values of some parameters in Example IV.

Area No. D (cm) Σa (cm−1) Q (n·cm−3·s−1)

1 0.5556 0.07 0.79
3 0.4762 0.04 0.43
5 0.3704 0.01 0

The result calculated by COMSOL is used as the reference solution for comparison
with the BDM results. The COMSOL is calculated with 1097 nodes and 2104 elements,
and the grid independent is verified. The tolerance is set as 0.001. Figure 12a,b shows the
comparison of BDM solutions and COMSOL solutions. For clarity, Figure 12c,d give the
neutron distributions along two characteristic lines with y = 50 cm and x = 40 cm, in which
the BDM solutions agree well with those of COMSOL, indicating that the proposed BDM
can simulate the neutron diffusion processes with high accuracy and flexibility.

J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 16

BDM solutions agree well with those of COMSOL, indicating that the proposed BDM can
simulate the neutron diffusion processes with high accuracy and flexibility.

Figure 11. Geometric conditions of Case 4.

Table 3. Values of some parameters in Example Ⅳ.

Area No. D (cm) Σa (cm−1) Q (n·cm−3·s−1)
1 0.5556 0.07 0.79
3 0.4762 0.04 0.43
5 0.3704 0.01 0

Figure 12. Comparisons of BDM and COMSOL solution of Case 4, including (a) BDM solution, (b)
COMSOL solution, comparisons between BDM and COMSOL along (c) lines y = 50 cm and (d) x =
40 cm and the PDE residuals along (e) lines y = 50 cm and (f) x = 40 cm.

Figure 12. Comparisons of BDM and COMSOL solution of Case 4, including (a) BDM solution,
(b) COMSOL solution, comparisons between BDM and COMSOL along (c) lines y = 50 cm and
(d) x = 40 cm and the PDE residuals along (e) lines y = 50 cm and (f) x = 40 cm.

To further analyze the accuracy of proposed BDM, the PDE residual is defined as:

PDE residual = |∇ · D∇ϕ∗ + Σa ϕ∗ −Q|, (33)

where ϕ* is the numerical result. This value is used to exam the precision of the numerical
solutions.

J. Nucl. Eng. 2021, 2 549

Over the calculation domain, the maximum and averaged PDE residuals of BDM
are 5.9 × 10−2 and 3.4 × 10−3, respectively, while these of COMSOL are 6.4 × 10−2

and 9.5 × 10−3, respectively. The PDE residual of BDM and COMSOL along y = 50 cm
and x = 40 cm are shown in Figure 12e,f, which show that the BDM has higher accuracy
than COMSOL.

4. Conclusions

The demands of advance reactor simulations, such as multi-physics modeling and
complicated geometries, put forward higher requirements for the traditional mesh-based
methods. To overcome these difficulties, this paper introduces two mesh-free physics-
informed deep learning (PIDL) method, including the boundary dependent method (BDM)
and the boundary independent method (BIM), which give a continuous and symbolic
solution, and proposes some novel construction of trial function. By perfectly fitting the
BCs, the BDM can be regarded as the recommended PIDL method based on its higher
performance. The influence of some important hyper-parameters, such as activation
function and network structure, is discussed in a more complicated test problem to improve
the performance of BDM. The succussed of BDM in a complex geometry test problem
shows that the BDM has great potential in sophisticated problems.

Some novel treatments on BCs for BDM are presented in this work. Although the
calculation efficiency of BDM is lower than that of BIM, the obvious advantage of BDM
in accuracy still makes BDM a better choice. Among two common activation functions,
tanh is proposed to be used in artificial neural networks because of its higher accuracy
and efficiency. And in practical application of BDM, the determination of training set size
based on the dimension of the problem and the number of zones is proposed. During
the calculation, it’s recommended to try to choose a larger training set to ensure that
the calculation results will not deviate too much from the true solution, and find a good
network structure according to the size of training set. Both too simple and too complicated
network structure should be avoided. The simulation results show that the BDM can handle
complicated geometry and multi-region problems with higher accuracy and flexibility. This
paper could provide some new ideas for solving multi-physics and complicated geometry
problems in neutron diffusion calculations.

For future work, we will extend the BDM to solve k-eigenvalue problem, neutron
transport problem and multi-physics coupling problem. Besides, the improvement of BDM
for the multi-region problem and the error prediction in BDM will also be analyzed in our
future works.

Author Contributions: Conceptualization, Y.M.; methodology, Y.X., Y.W., Y.M. and Z.W.; software,
Y.X. and Y.M.; validation, Y.X., Y.M. and Y.W.; formal analysis, Y.M. and Z.W.; investigation, Y.W.;
resources, Y.M. and Z.W.; data curation, Y.X.; writing—original draft preparation, Y.X. and Y.M.;
writing—review and editing, Z.W. and Y.W.; visualization, Y.X. and Y.W.; supervision, Y.M. and
Z.W.; project administration, Y.M.; funding acquisition, Y.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant No.
11875330), and the NSAF (Grant No. U1830118).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, a proof of the trial function formed by Equation (24) in Section 2.3 will
be made. The goal of the proof is to prove that this trial function can fit Equations (8), (18)
and (20) well.

The proof of fitting Equation (8) is very simple. Let s = 0, Equation (24) becomes:{
A = φ0

B = 0
(A1)

J. Nucl. Eng. 2021, 2 550

From this relationship we have φt(m, n, 0) = A + B = φ0(m, n). We define a assemble
of points on a unit circle as:

C =
{
(m, n,) ∈ R2

∣∣∣(m− 0.5)2 + (n− 0.5)2 = 0.52)
}

. (A2)

Let (mc, nc) ∈ C, Equation (24) becomes;{
A(mc, nc) = φcc(mc, nc)− φcc,0(mc, nc) + φ0(mc, nc)

B(mc, nc) = 0
. (A3)

Due to the continuity of the neutron flux function, the continuity of the initial condition
in Equation (8) and the spatial boundary condition in Equation (20) is admitted, which can
be described as:

∀(m, n) ∈ C, φcc,0(m, n) = φ0(m, n) (A4)

From this relationship we have φt(mc, nc, s) = A + B = φcc(mc, nc, s).
The proof of fitting Equation (18) is based on a conversion from Cartesian coordinates

to Polar coordinates. The angle θ is defined as

tan θ =
0.5−m
0.5− n

(A5)

With this definition, we have the coordinate conversion φcc(m, n) = φcc(θ). We
consider an extended function φ̃cc(m, n) = φcc(θ) that is defined in the whole calculation
domain. It is evident that ∀(m, n) ∈ C, φ̃cc(m, n) = φcc(m, n). Thus, we have:

∂φ̃cc(m, n)
∂m

=
∂φcc(θ)

∂m
=

∂φcc(θ)

∂θ

∂θ

∂m
=

∂φcc(θ)

∂θ

1
∂m
∂θ

(A6)

With Equation (A5), we have:

∂m
∂θ

=
0.5− n
sin2 θ

(A7)

Equation (A6) thus becomes:

∂φ̃cc(m, n)
∂m

=
∂φcc(θ)

∂θ

cos2 θ

n− 0.5
. (A8)

Due to the continuity of the neutron flux function, the continuity of the spatial bound-
ary condition in Equations (18) and (20) is admitted, which can be described as

∂φcc

∂m

∣∣∣∣(m,n)=(0.5,0) = 0. (A9)

When (m, n) = (0.5, 0) ∈ C, we have θ = 0, and Equation (A8) becomes:

∂φcc

∂m

∣∣∣∣(m,n)=(0.5,0) =
∂φ̃cc

∂m

∣∣∣∣(m,n)=(0.5,0) =
∂φcc(θ)

∂θ

∣∣∣∣θ=0
12

0− 0.5
= 0. (A10)

Thus, we have:
∂φcc(θ)

∂θ

∣∣∣∣θ=0 = 0. (A11)

When m = 0.5, we have:

∂φ̃cc

∂m
(0.5, n, s)

∂φcc(θ)

∂θ

∣∣∣∣θ=0
12

0− 0.5
= 0. (A12)

J. Nucl. Eng. 2021, 2 551

With Equations (A8) and (A11), we have:

∂φ̃cc

∂m
(m, m, s)− ∂φ̃cc

∂n
(m, m, s) =

∂φcc

∂θ
(θ)

cos2 θ

n− 0.5
+

∂φcc

∂θ
(θ)

sin2 θ

m− 0.5
= 0 (A13)

Combining Equations (A12) and (A13), the fitting of Equation (18) is proved.

References
1. Bell, G.I.; Glasstone, S. Nuclear Reactor Theory; US Atomic Energy Commission: Washington, DC, USA, 1970.
2. Duderstadt, J.J. Nuclear Reactor Analysis; Wiley: Hoboken, NJ, USA, 1976.
3. Kang, C.M.; Hansen, K. Finite element methods for reactor analysis. Nucl. Sci. Eng. 1973, 51, 456–495. [CrossRef]
4. Varga, R.S. Numerical solution of the two-group diffusion equations in xy geometry. IRE Trans. Nucl. Sci. 1957, 4, 52–62.

[CrossRef]
5. Vondy, D.; Fowler, T.; Cunningham, G. VENTURE: A Code Block for Solving Multigroup Neutronics Problems Applying the Finite-

Difference Diffusion-Theory Approximation to Neutron Transport; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1975.
6. Dodson, Z.; Kochunas, B.; Larsen, E. The Stability of Linear Diffusion Acceleration Relative to CMFD. J. Nucl. Eng. 2021, 2,

336–344. [CrossRef]
7. Berg, J.; Nyström, K. A unified deep artificial neural network approach to partial differential equations in complex geometries.

Neurocomputing 2018, 317, 28–41. [CrossRef]
8. Bao, H.; Dinh, N.; Lin, L.; Youngblood, R.; Lane, J.; Zhang, H. Using deep learning to explore local physical similarity for

global-scale bridging in thermal-hydraulic simulation. Ann. Nucl. Energy 2020, 147, 107684. [CrossRef]
9. Elhareef, M.H.; Wu, Z.; Ma, Y. Physics-informed deep learning neural network solution to the neutron diffusion model. In

Proceedings of the the International Conference on Mathematics and Computation Methods Applied to Nuclear Science and
Engineering (M&C 2021), Raleigh, NC, USA, 3–7 October 2021.

10. Kim, T.K.; Park, J.K.; Lee, B.H.; Seong, S.H. Deep-learning-based alarm system for accident diagnosis and reactor state classification
with probability value. Ann. Nucl. Energy 2019, 133, 723–731. [CrossRef]

11. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
12. Qin, S.; Zhang, Q.; Zhang, J.; Liang, L.; Zhao, Q.; Wu, H.; Cao, L. Application of deep neural network for generating resonance

self-shielded cross-section. Ann. Nucl. Energy 2020, 149, 107785. [CrossRef]
13. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch. J.

Mach. Learn. Res. 2011, 12, 2493–2537.
14. Hermann, K.M.; Kocisky, T.; Grefenstette, E.; Espeholt, L.; Kay, W.; Suleyman, M.; Blunsom, P. Teaching machines to read and

comprehend. Adv. Neural Inf. Process. Syst. 2015, 28, 1693–1701.
15. Jean, S.; Cho, K.; Memisevic, R.; Bengio, Y. On using very large target vocabulary for neural machine translation. arXiv 2014,

arXiv:1412.2007.
16. Wang, W.; Song, W.; Chen, C.; Zhang, Z.; Xin, Y. I-vector features and deep neural network modeling for language recognition.

Procedia Comput. Sci. 2019, 147, 36–43. [CrossRef]
17. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
18. Li, Y.; Zhang, D.; Lee, D.-J. IIRNet: A lightweight deep neural network using intensely inverted residuals for image recognition.

Image Vis. Comput. 2019, 92, 103819. [CrossRef]
19. Tompson, J.J.; Jain, A.; LeCun, Y.; Bregler, C. Joint training of a convolutional network and a graphical model for human pose

estimation. Adv. Neural Inf. Process. Syst. 2014, 27, 1799–1807.
20. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-r.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N. Deep

neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag.
2012, 29, 82–97. [CrossRef]

21. Sainath, T.N.; Kingsbury, B.; Mohamed, A.-r.; Dahl, G.E.; Saon, G.; Soltau, H.; Beran, T.; Aravkin, A.Y.; Ramabhadran, B.
Improvements to deep convolutional neural networks for LVCSR. In Proceedings of the 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013; pp. 315–320.

22. Fujii, M.; Takahashi, A.; Takahashi, M. Asymptotic expansion as prior knowledge in deep learning method for high dimensional
BSDEs. Asia-Pac. Financ. Mark. 2019, 26, 391–408. [CrossRef]

23. Galib, S.M. Applications of Machine Learning in Nuclear Imaging and Radiation Detection; Missouri University of Science and
Technology: Rolla, MO, USA, 2019.

24. Galib, S.; Bhowmik, P.; Avachat, A.; Lee, H. A comparative study of machine learning methods for automated identification of
radioisotopes using NaI gamma-ray spectra. Nucl. Eng. Technol. 2021, 53, 4072–4079. [CrossRef]

25. Sasaki, M.; Sanada, Y.; Katengeza, E.W.; Yamamoto, A. New method for visualizing the dose rate distribution around the
Fukushima Daiichi Nuclear Power Plant using artificial neural networks. Sci. Rep. 2021, 11, 1857. [CrossRef] [PubMed]

26. Han, J.; Jentzen, A.; Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci.
USA 2018, 115, 8505–8510. [CrossRef]

http://doi.org/10.13182/NSE73-A23278
http://doi.org/10.1109/TNS2.1957.4315586
http://doi.org/10.3390/jne2040027
http://doi.org/10.1016/j.neucom.2018.06.056
http://doi.org/10.1016/j.anucene.2020.107684
http://doi.org/10.1016/j.anucene.2019.07.022
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1016/j.anucene.2020.107785
http://doi.org/10.1016/j.procs.2019.01.181
http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.imavis.2019.10.005
http://doi.org/10.1109/MSP.2012.2205597
http://doi.org/10.1007/s10690-019-09271-7
http://doi.org/10.1016/j.net.2021.06.020
http://doi.org/10.1038/s41598-021-81546-4
http://www.ncbi.nlm.nih.gov/pubmed/33473160
http://doi.org/10.1073/pnas.1718942115

J. Nucl. Eng. 2021, 2 552

27. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

28. Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018,
375, 1339–1364. [CrossRef]

29. Abadi, M. TensorFlow: Learning functions at scale. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, Nara, Japan, 18–24 September 2016; p. 1.

30. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A
system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

31. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An
imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.

32. Pozulp, M.M.; Brantley, P.S.; Palmer, T.S.; Vujic, J.L. Heterogeneity, hyperparameters, and GPUs: Towards useful transport
calculations using neural networks. In Proceedings of the the International Conference on Mathematics and Computation
Methods Applied to Nuclear Science and Engineering (M&C 2021), Raleigh, NC, USA, 3–7 October 2021.

33. Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans.
Neural Netw. 1998, 9, 987–1000. [CrossRef]

34. Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528.
[CrossRef]

35. Multiphysics, C. Introduction to Comsol Multiphysics®; COMSOL Multiphysics: Burlington, MA, USA, 1998; Volume 9, p. 2018.
36. Li, Y.Z.; Wu, H.C.; Cao, L.Z. Unstructured triangular nodal-SP3 method based on an exponential function expansion. Nucl. Sci.

Eng. 2013, 174, 163–171. [CrossRef]

http://doi.org/10.1016/j.jcp.2018.10.045
http://doi.org/10.1016/j.jcp.2018.08.029
http://doi.org/10.1109/72.712178
http://doi.org/10.1007/BF01589116
http://doi.org/10.13182/NSE11-111

	Introduction
	Methodology
	Dimensionless Neutron Diffusion Equation
	BDM and BIM
	Trial Functions for Special BCs in BDM

	Results and Discussion
	Case 1—Comparison of BDM and BIM
	Case 2—Choice of Activation Function
	Case 3—Impact of Hyperparameters
	Case 4—Application in Complex Geometry

	Conclusions
	
	References

