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Abstract: In this paper, we show that a module implemented in the MCNP transport code to
perform sensitivity analyses can be diverted to perform topology optimizations of nuclear equipment.
Component design with this approach leads to sophisticated solutions that outperform their human-
designed counterparts.
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1. Introduction

Suppose the operators of a silicon doping unit wish to design a neutron moderator
that homogenizes the distribution of neutron capture sites in an irradiated ingot. Or
suppose a medical physics team wishes to design a gamma-ray collimator, which has to
be as efficient as possible in a limited volume. At present, these design studies are of a
parametric nature. The characteristics of the aforementioned components are optimized
using an intuitive subset of parameters, which includes the choice of materials to be used,
as well as some geometrical parameters, e.g., the dimensions of subparts, the aperture
angles, and so on. For each combination of these parameters, a simulation of the candidate
device is performed, and the best solution emerging among them is chosen according to the
objectives of the designers. This design practice is standard but it has a weak point. It relies
on human intuition, which provides us with a general idea of the solution but generally
lacks precision. To outmatch this human-based design, a transdisciplinary approach called
topology optimization is blooming, alongside the increase in computing power [1]. This
discipline aims at automatizing the design of equipment using algorithms able to take
into account the physical laws involved while managing the objectives and constraints
of the design. These algorithms already yield subtler, more performant solutions than
human-based designs in a number of industrial fields [2–5]. In our field, however, there are
still seldom applications of these techniques, presumably because of the large computing
cost associated with an accurate solution of the Boltzmann equation. At the present
times, the most advanced studies are focused on the development of radiation shields
for spatial applications and on the fuel organization problem [6–8]. In these proceedings,
relying on the theoretical framework proposed in [9], we will show that the PERT module
implemented in the MCNP code [10–12] is precise and fast enough to perform realistic
topology optimization of nuclear components. We will illustrate this progress with an
application of practical interest, the design of a neutron spectrum shaper, and propose a
benchmark on the optimization of the fuel distribution in a critical assembly.

2. Solving a Topology Optimization Problem with the MCNP Code

Consider a block of matter, whose mass density at a point r = (x, y, z) of space is
denoted ρ(r). This block can be machined in various materials, whose respective atomic
concentrations at the point r form a vector, denoted χ(r). A source, which can be external
or intrinsic, fires particles into this block, whose transport can be modelled using a linear
Boltzmann equation, B(ρ, χ)ϕ(r, E, Ω, ρ, χ) = Q(r, E, Ω), provided the density of particles
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remains low enough so that they do not interact with each other. In this equation, ϕ denotes
the angular particle flux, function of the particle energies and directions, E and Ω, B is the
Boltzmann operator, which depends on the physical characteristics ρ and χ of the block,
and Q is the distribution in space, energies and directions of the source particles.

For industrial or scientific applications, one could search the best physical properties,
(ρopt, χopt), of the aforementioned block of matter so that the particle population in a space
region V optimizes a property desired by the operators of the particle source. For example,
one could wonder how to machine a block of polyethylene so that the total flux of particles
in V be as small as possible (design of a particle shield). To answer this kind of problem,
one must solve an optimization problem, which can be written as

min/max
ρ,χ

Oϕ
(

ρ, χ
)

subject to B
(

ρ, χ
)

ϕ
(

r, E, Ω, ρ, χ
)
= Q(r, E, Ω)

C
(

ρ, χ, ϕ
(

ρ, χ
))

= 0

(1)

In Equation (1), O is a functional acting on the angular particle flux ϕ. The command
min/max Oϕ is the objective desired by the operators of the source; it could be, e.g., the
minimization of the total particle flux at a point rd for a radiation protection problem, in
which case one would take min Oϕ =

∫ ∫
ϕ(rd, E, Ω)dEdΩ. It could be the maximization

of the radiation dose delivered in an area V of a body for a cancer treatment problem, in
which case one would take max Oϕ = ∆V−1

∫ ∫ ∫
D(E)ϕ(r, E, Ω)drdEdΩ for r ∈ V, with D(E)

being the flux-to-dose conversion function and ∆V the volume of area V. The optimization
problem min/max Oϕ is subject to some constraints, denoted C(ρ, χ, ϕ(ρ, χ)) = 0, the first
one being the requirement that the particle transport obeys the Boltzmann equation, and
the other ones being additional constraints, for example, a limitation over the maximum
quantity of matter available (weight constraint), or a constraint over the keff of the system.
This formalism is further discussed in Section 1 of [9].

To solve the optimization Problem (1), one can start from its Lagrangian formulation:

L
(

ρ, χ
)
= Oϕ

(
ρ, χ
)
− λ.C

(
ρ, χ, ϕ

(
ρ, χ
))

(2)

where λ is a vector of Lagrange multipliers. The optimal properties of the particle propaga-
tor, (ρopt, χopt), which solve Problem (1), are then given by the following system of equations:

∂L
∂ρ

∣∣∣
ρ=ρopt ,χ=χopt

= 0, ∂L
∂χ

∣∣∣
ρ=ρopt ,χ=χopt

= 0, ∂L
∂λ

∣∣∣
ρ=ρopt ,χ=χopt

= 0 (3)

To solve this system, a solution is to segment the block into a large number N of small
voxels, θi = 1 . . . N. In each voxel θi, the density ρ(r) and fractions χ(r) are assumed constant,
equal to ρi and χi. The derivatives (3) over functions ρ and χ thus become derivatives
over parameters ρi and χi, whose computation can be performed with the PERT module
implemented in the MCNP transport code [10]. Practical instructions on how to use the
PERT module for computing derivatives are given in Section 1 of [9] for the computation of
∂L/∂ρi and in Section P of [9] (within the supplementary material file) for the computation
of ∂L/∂χi. The PERT module relies on the differential operator sampling method, which is
faster and more precise than the usual procedure based on the adjoint problem [1,7]. With
this tool, all derivatives (3) can be computed in a single, direct MCNP calculation, which
makes the precise resolution of a type (1) problem feasible in a humanly compatible time
with the computer resources available in the 2020s. Equation (3) is then solved using an
iterative algorithm, described in Section 2.2 of [9]. This algorithm starts from a uniform
configuration, ρi = ρ0 and χi = χ0 ∀i, and then improves, iteration after iteration, the design
of the structure by incrementing the parameters ρi and χi by small, discrete quantities,
±δρ and ±δχ, according to the constraints of Problem (1). This resolution procedure has
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been successfully tested over a large range of problems [9]. In these proceedings, we will
illustrate its efficiency by solving two problems: the design of a neutron spectrum shaper
in Section 3, and the minimization of a critical mass in Section 4.

3. Example of Application: Design of a Neutron Spectrum Shaper

Of all the possible applications of the optimization procedure described Section 2, the
following problem stands out for two reasons: (i) it has a complex, non-linear objective
functional O, whose handling is nonetheless possible with the approach described above;
(ii) its formalism is transposable to a large category of problems, in fact all of those involving
the calculation of a distance to an objective (see, e.g., the design of a gamma-ray collimator
in Section 5.2 of [9]). This problem, therefore chosen to illustrate the methodology described
in this paper, is stated below.

Problem. A 14 MeV neutron source is positioned at a point rs, at a distance 100 cm from
the center of a detection area (DA). The operators of the source have in stock 20 metric tons
(~1.76 m3) of natural lead, and would like to shape it so that the energy spectrum φ(E) of
neutrons in the detection area be as close as possible to an objective spectrum φobj(E). Find
the design of such a neutron spectrum shaper.

First, let us tile space with N voxels θi, and denote ρ the vector of the lead mass
densities ρi = 1 . . . N in θi, and V the vector of the volumes Vi of these voxels. The detection
area (here a cylinder of length 12.5 cm and radius 6.25 cm) is surrounded by a layer 1 cm
thick of natural boron, whose mass density ρb is also to be optimized. With these notations,
the design problem can be formulated as follows:

min
ρ,ρb

d
(

φ, φobj

)
= 1

2 −
1
2

∫
E φobj(E)φ(E,ρ,ρb)w(E)dE√∫

E φobj(E)2w(E)dE
√∫

E φ(E,ρ,ρb)
2
w(E)dE

.

subject to P = ρ.V ≤ Pmax, ρi=1...N ≤ ρmax

(4)

In Equation (4), P is the weight of the device, Pmax the maximum permissible weight
(20 tons here), ρmax the natural mass density of lead (11.34 g/cm3), and d(φ, φobj) the
distance between the energy spectrum φ(E) in the DA and the objective spectrum φobj(E),
with w(E) being a weight function (here taken equal to 1/φobj

2). The distance d is 0 iff
φ(E) ∝ φobj(E), which is the objective of the design. In [9], the author attempted to solve
this problem without the weight constraint, and with a small number of voxels. The result
showed promises, but was not fully satisfactory as questions arose on the usefulness of
the outer regions of the calculated structure. The weight constraint is introduced here to
rationalize the positioning of the material in the device.

For this example, the chosen objective spectrum is typical of a fast reactor spec-
trum [13], and is displayed in gray on the right side of Figure 1. On the left side of Figure 1,
the densities ρ in the voxels θ obtained with the optimization procedure are indicated for
several iterations of the algorithm, using a gray scale whose unit is g/cm3. The units of the
y and z axes are cm. The full 3D structure of the neutron spectrum shaper is generated by
rotating these density maps around the symmetry axis y = 0. The small red cell on the left
houses the 14 MeV source, and the larger red cell on the right is the DA. For each map, the
normalized spectrum obtained in the detection area is given on the right.
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Figure 1. Iterative design of a neutron spectrum shaper with the optimization procedure.
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The computations were performed using MCNP with cross-sections taken from JEFF-
3.1. They lasted ~3 days/iteration on 24 CPU for 109 source neutrons and 1145 cylindrical
voxels. The evolutions of the distance d(φ, φobj) and of the weight P of the device with
the iteration number n are given in Figure 2. As can be seen in Figure 1, the algorithm
begins by accreting matter along the axis y = 0, which connects the source to the detection
area, in order to slow down the 14 MeV neutrons. A reflector is simultaneously assembled
around this central hub to increase the number of neutron collisions in the structure and
shift the spectrum towards lower energies. The resulting device is efficient: the objective
spectrum is correctly imitated over six orders of magnitude in energy, starting from n = 35.
Differences still remain between the final spectrum at n = 35 and the objective spectrum,
especially at high and low energy. These differences may be reduced by using a composite
material, made of a mixture of lead and lighter isotopes, which will allow access to different
neutron slowing-down modes.

Figure 2. Evolutions of the distance d and of the weight P of the device with the iteration number n.

4. Design Sensitivity to the Transport Data

The resolution of Problem (1) with a transport code naturally raises the question of
the sensitivity of the computed design to the uncertainties on the transport data. More
particularly, one may wonder if a slight modification of a transport datum, e.g., a change in
the position or width of a cross-section resonance, could strongly alter the obtained optimal
characteristics, (ρopt, χopt), of the device. In other words, could Problem (1) be subject to
topological phase transitions? Despite its major interest, answering this question should
prove difficult. Indeed, the resolution of the optimization problem is iterative, yet predicting
the outcome of a complex iterative procedure is an open question in mathematics. To
answer it, for a moment it will be necessary to be content with a Full Monte-Carlo approach.
In this approach, a number of transport data sets could be sampled using the uncertainty
data provided in the transport libraries; then, for each data set, Problem (1) could be solved.
In the end, the uncertainty on the optimal design parameters (ρopt, χopt) could be evaluated
by computing their average and variance. This approach is straightforward but, as the
resolution of a type (1) problem typically requires times of the order of several CPU-months
to several CPU-years depending on the number of voxels in the design, conducting it
would require CPU-decades, which is a computing power the author did not have access
to at the time of writing these proceedings.

In this section, a simple benchmark problem is hence proposed, which can make a good
starting point for evaluating the uncertainties of the design arising from the uncertainties
on the transport data, but also for comparing the designs obtained with transport codes
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other than MCNP and optimization approaches other than the one introduced in Section 2.
This problem is stated below.

Problem. Consider a spherical assembly, 50 cm in radius, containing a mixture of low-
enriched uranium (LEU, chemical formula: 97% at. 238U + 3% at. 235U) and polyethylene
(PE, chemical formula CH2). The assembly is made of 100 concentric spherical crowns
θi, comprised between the radii Ri and Ri + 1, with Ri = 0.5i cm. Each crown θi contains a
fraction χi of LEU and a complementary fraction (1 − χi) of PE. With these notations, the
LEU mass M in the assembly is given by

M
(

χ = (χ0, . . . , χ99)
)
= ρLEUχ.V (5)

where ρLEU = 19.0445 g/cm3 is the LEU mass density and V the vector of the volumes Vi of
cells θi. The PE mass density is 0.94 g/cm3. Find the LEU fraction profile χopt that allows
the assembly to achieve criticality with the smallest mass M of fuel possible.

This problem can be solved using the approach described in Section 2. The full details
of the procedure to follow are given in Section P of [9] (within the supplementary material
file). The calculations were performed using MCNP with an iterative fission neutron distri-
bution (KCODE mode, with 50 passive cycles and 100 active cycles of 2 × 105 neutrons),
with cross-sections taken from two libraries, ENDF/B-VII.0 and JEFF-3.1 (for both cal-
culations, the thermal S(α, β) data in PE were taken from ENDF/B-VII.0). They lasted
∼20 min/iteration on 24 CPU. The LEU fraction profile that minimizes the critical mass is
given in Figure 3, as a function of the distance r from the center of the assembly, for these
two databases. The evolutions of the fuel mass M and of the reactivity rho = (keff − 1)/keff
of the assembly, expressed in pcm unit, with the iteration number n of the optimization al-
gorithm are given in Figure 4 for these two databases. The statistical errors on the reactivity
values are ~9 pcm regardless of n.

Figure 3. Optimal low-enriched uranium (LEU) fraction profile as a function of the distance r from
the assembly center.
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Figure 4. Evolutions of the fuel mass M and the reactivity rho in pcm with the iteration number n.

In Figure 3, it is observed that the topology optimization algorithm generates a two-
zone device: a fuel zone, comprised between r = 0 and 44 cm, surrounded by a reflector
made of pure PE, for r > 44 cm. The fuel zone houses a small void at its center, from
which the LEU fraction swiftly rises to reach a maximum of 3.4%, then decreases when r
increases, to finally fall at 0 at r = 44 cm. The central void may however be a computation
artefact. Indeed, it extends between r = 0 and 1 cm, in an area whose volume is only
(1/50)3 = 8 × 10−4% of the full volume of the device, hence its negligible importance in the
design, and the resulting large stat. errors on the keff perturbations in this area (see Figure 5).
Overall, the LEU fractions are low everywhere. By thus diluting the fuel in the PE, the
optimization algorithm generates a structure that efficiently thermalizes neutrons: 96% of
the fissions in the device are due to thermal neutrons (E < 0.625 eV). The resulting structure
is very efficient: 105.5 kg of 3% enriched uranium suffice to reach criticality. No significant
differences are observed, whether in the design or the value of the minimum critical mass,
between the results obtained with ENDF/B-VII.0 and JEFF-3.1 libraries, which constitutes
a preliminary element of an answer on the robustness of the design.

Figure 5. Evolution with r of the stat. relative errors on the keff perturbation values at n = 500.
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In Figure 3, one can observe the occurrence of small heterogeneities in the LEU fraction
profiles, which are not mere statistical fluctuations. Indeed, the LEU fractions were pur-
posely changed by very small increments, δχ = ±5 × 10−3%, between two iterations of the
algorithm (hence the artificially large number of iterations to converge). This increment is
small compared to the amplitude of the observed heterogeneities, ~0.2%. Hence, one might
wonder if these heterogeneities play a role in reducing the critical mass. To investigate this
question, the ENDF/B-VII.0 LEU fraction curve was smoothed using a Savitzky–Golay ap-
proach [14] while preserving the mass M. The reactivity obtained with the smoothed profile
remained compatible with 0. The observed heterogeneities are therefore probably artifacts.
The author sees three possible reasons for their occurrence: (1) a segregation induced by
decorrelations of fission sites that may occur in a meter-size object; (2) a consequence
of the non-zero stat. errors on the keff perturbations, δki = (∂keff/∂χi)δχ, computed with
MCNP. Figure 5 illustrates the evolution with the distance r of this error, given in percent,
computed for the optimal LEU profiles found with the ENDF/B-VII.0 and JEFF-3.1 libraries.
However, complementary calculations involving higher numbers of source neutrons and
KCODE active cycles were performed, yet showed similar heterogeneities, indicating
that these two first leads are likely not the full answer; (3) a numerical issue induced by
the printing format of the keff perturbations in MCNP outputs. Indeed, while all other
perturbations computed by MCNP are printed in a scientific format, the keff ones stand
out as being printed as integers in pcm unit. Therefore, when a keff perturbation is very
small, lower than 1 pcm, yet non-null, it is actually printed 0 in MCNP output files, thus
inducing a hidden numerical error. These technical considerations highlight the interest of
benchmarking the results obtained in this section with other optimization approaches, e.g.,
with procedures that could use evolutionary algorithms or adjoint methods, as in [6–8].

5. Conclusions

In this paper, we showed that the PERT module implemented in the MCNP transport
code, usually used to perform sensitivity analyses, can be diverted to automate the design
of nuclear components. Two practical optimization problems were then solved using this
tool, the design of a neutron spectrum shaper and the minimization of a critical mass,
illustrating the potential of the proposed methodology.
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