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Abstract: Tunable hydrogels have gained significant attention in the bioengineering field due to their
designer preparation approach. Towards this end, gelatine stands out as a promising candidate owing
to its desirable attributes, such as biocompatibility, ability to support cell adhesion and proliferation,
biodegradability, and cost-effectiveness. This study presents the preparation of a robust gelatine
hydrogel employing sacran aldehyde (SDA) as a natural cross-linker. The resulting SDA-cross-linked
gelatine hydrogels (GSDA) display an optimal compressive stress of 0.15 MPa at 50% strain, five times
higher than pure gelatine hydrogel. As SDA cross-linking concentration is increased, the swelling
capacity of GSDA declines. This decline in swelling capacity, from 80% to 40%, is a result of strong
crosslinking of gelatin with SDA. Probing further with FT-IR spectroscopy and SEM at the micron
scale unveiled a dual-cross-linking mechanism within the hydrogels. This mechanism encompasses
both short- and long-range covalent cross-linking, along with thermo-induced physical cross-linking,
resulting in a significant enhancement of the load-bearing capacity of the fabricated hydrogels.

Keywords: gelatine; sacran; cross-linking; biocompatible; hydrogels; swelling

1. Introduction

Natural polymers are vital and appealing materials for numerous application fields,
including the food industry, agriculture, biomedicine, and tissue engineering. With the
growing demand for biomedical materials, there is increasing focus on customizing the
structure, properties, and functions of natural polymers [1]. Gels are formed when hy-
drophilic polymer chains undergo chemical or physical cross-linking, resulting in an
interconnected network [2–4]. Hydrogels, i.e., gels interspersed with water, have been
extensively researched and applied due to their extended shelf life in the form of xerogels,
water retention efficiency, and enhanced mechanical properties [5,6]. Hydrogels possess
functional groups, such as -NH2, -SO3H, -COOH, -OH, and -NHCOCH3, making them
highly hydrophilic. Moreover, hydrogels exhibit properties akin to animal tissues due to
these above-mentioned configurations [7–9].

Gelatine is a natural biopolymer containing functional groups, including amines,
carboxylates, and hydroxyls. Its exceptional biodegradability and biocompatibility have
made it a popular choice for a variety of biomedical applications, such as wound dressings,
surgical treatments, and tissue engineering [10,11]. However, the practical use of gelatine
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is limited by its stability only at lower temperatures (35–43 ◦C). Upon exposure to higher
temperatures (49–60 ◦C), the secondary bonding structure tends to weaken, causing the
physical network to break down, resulting in poor mechanical and thermal properties of
gelatine hydrogels [12]. To overcome these limitations and expand the range of applications
of gelatine, stabilization of its hydrogels is critical. This can be achieved through chemical
modification or by blending gelatine with other biopolymers [13,14].

Sacran, a polysaccharide extracted from Aphanothece sacrum, is characterized by its mul-
tifunctional anionic chains. With an impressive molecular weight of up to 1.6 × 107 g/mol,
sacran demonstrates super water absorbance characteristic [15]. Additionally, sacran ex-
hibits valuable properties such as anti-inflammatory, anti-allergic, and wound-healing
abilities, making it highly suitable for diverse biomedical applications [16–19]. Sacran has
been demonstrated to form polyion complexes with collagen [20,21]. Furthermore, sacran
has been blended with cellulose nanofiber (CNF-TEMPO) and Ag, bestowing a synergetic
effect to curb bacterial and microbial infections [22,23]. The structural modification of
sacran or it’s blend with gelatine has never been investigated. This article deals with
the novel approach of examining the performance of crosslinked gelatine gels containing
dialdehyde moieties of sacran.

Polysaccharide dialdehyde [24] is one of the reactive derivatives of polysaccharides, ob-
tained after periodate or TEMPO oxidation, which contains polyaldehyde structures, similar
to other cross-linking agents like glutaraldehyde, alginate dialdehyde (ADA), dialdehyde
cellulose (DAC), dextran dialdehyde (DDA), and oxidized xanthan gum (OXG) [25–30].
These active moieties in polysaccharide dialdehydes are capable of crosslinking with free
amino groups in gelatine. Nevertheless, there has not been any research published on the
application of SDA as a crosslinking agent.

A review article examined various natural polymers that have been explored for
enhancing PVOH-based films used in food packaging. It specifically highlights starch, chi-
tosan, cellulose, and gelatin, due to their low cost, renewability, abundance, sustainability,
biocompatibility, and biodegradability. Additionally, this review briefly discussed the use
of PVOH in conjunction with bio-waste-based films. Finally, it elaborates on the current re-
search trends (2016–2021) regarding the combined use of PVOH-based and natural polymer
films for food packaging applications [1].

This study aims to explore the potential use of sacran aldehyde (SDA) as a natural cross-
linker in enhancing the stability of gelatine hydrogels. The cross-linking density, swelling
properties, and surficial morphology of cross-linked gelatine hydrogels were analyzed
and discussed using various characterization techniques. This cross-linked network is
responsible for the improved rigidity and mechanical strength observed in the hydrogels.
By utilizing sacran as a cross-linker and confirming the formation of sacran-aldehyde
through FT-IR analysis, the study successfully demonstrated a strategy to enhance the
stability of gelatine hydrogels. This advancement has significant implications for various
biomedical applications, where stable and robust hydrogels are crucial for ensuring desired
performance and functionality.

2. Materials and Methods
2.1. Materials

The gelatine from porcine skin was purchased from Sigma-Aldrich, Tokyo, Japan.
Sacran (Mw 1.6 × 107 g/mol) was obtained from Green Science Materials Inc. (Kumamoto,
Japan). Sodium periodate was purchased from Nacalai Tesque, Kyoto, Japan. Ninhydrin
(2,2-dihydroxy-1,3-indanedione) was purchased from TCI, Tokyo, Japan. All chemicals
were used as received. A dialysis membrane was purchased from Funakoshi, Tokyo, Japan
(MWCO 1 KDa; Φ 29 × 45 × 5 mm).
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2.2. Experimental
2.2.1. Preparation of Sacran Aldehyde

Sacran (1 g) was dissolved in 0.1 M H2SO4 solution (50 mL) while continuously
stirring at 40 ◦C for 4 h to obtain a homogeneous solution. Sodium periodate (4.2 mmol)
was added to it, and the solution was stirred again at 40 ◦C for 4 h. The solution was
cooled to room temperature and kept on stirring at 80 rpm overnight. The obtained product
was then transferred into a cellulose dialysis membrane (MWCO: 1 KDa) and dialyzed
in distilled water, changing the water every 12 h over 2 days. A cellulose membrane
offers good chemical resistance, and low protein binding makes it an ideal candidate for
various laboratory dialysis applications. The MWCO of 1 KDa was chosen on the basis
of the molecular weight of the product to be dialyzed. This has to be lower than the
molecular weight of the product. The dialyzed solution was freeze-dried, yielding 85% of
the product. Sacran aldehyde molecular weight was calculated to be 6.8 × 106 g/mol from
the SEC-MALLS technique.

2.2.2. Preparation of Gelatine Solution

Throughout this study, an aqueous solution was used to create hydrogels. To make
the solution, gelatine granules (5 g) were dispersed in Milli-Q water (50 mL) and gently
stirred for 20 min at 60 ◦C. The clear gelatine solution was stirred for another 5 min at
40 ◦C. and poured into a silicon mold to get pure gelatin clear hydrogel.

2.2.3. Syntheses of Cross-Linked Hydrogels

The gelatine solution was slowly added to freeze-dried sacran aldehyde with con-
tinuous stirring overnight to obtain sacran aldehyde cross-linked gelatine hydrogels.
Four hydrogel samples of gelatine cross-linked with sacran aldehyde were prepared,
as shown in Scheme 1.
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Scheme 1. Formation of gelatine sacran aldehyde (GSDA) cross-linked hydrogels.

Sacran aldehyde cross-linked gelatine hydrogel samples of 1, 1.5, 2, and 3 wt.% were
prepared by adding 100, 150, 200, and 300 mg of sacran aldehyde, respectively, to glass
bottles containing 10 mL of gelatine solution (10 w/v%). The mixture was then stirred at
40 ◦C for 4 h to complete the cross-linking reaction. The air bubbles formed during stirring
were removed using centrifugation at 8000 rpm for 1 h. The resulting mixture was slowly
poured into a silicon mold, avoiding the formation of air bubbles to give it a particular
shape. The obtained gels became dense and darker in shade as the ratio of the crosslinker
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was increased. All the gels were kept in a dry environment under controlled humidity
(RH 30%, 25 ◦C) until further characterization.

2.2.4. Measurement of Mechanical Properties of Hydrogels

The mechanical properties of the pure gelatine and cross-linked GSDA samples were
investigated by employing them in compression testing. Pure gelatine and cross-linked
GSDA samples were kept in a humidity-controlled environment (relative humidity 30%,
temperature 25 ◦C) for 2 days before being subjected to mechanical properties analysis.
A total of six samples were subjected to mechanical testing. A compressing probe was
set up on an Instron 3365 machine using a 5 kN load cell with a crosshead speed of
1 mm/min. The gels were cut into 5 mm × 5 mm × 5 mm cubic geometry for compression
measurements. The measurement was repeated three times to calculate the error involved.

2.2.5. Measurement of Swelling Degree of Hydrogels

The swelling properties of the cross-linked hydrogels were studied by incubating the
gels in Phosphate Buffer Saline (PBS pH 7) at room temperature. The gels were slightly
blotted and weighed every 30 min until the gels started dissolving. The weight of the
swelled gels was then compared with the weight of dried gels to evaluate the swelling ratio
of hydrogels. The gel samples were weighed, and the swelling degree, q, was estimated as
a weight ratio using the following equation,

q% =
Ws

Wd
× 100

q: swelling degree
Ws: weight of swelled gel
Wd: weight of dried crosslinked film

2.2.6. Scanning Electron Microscopy

The dried gel membranes were coated with Au using a magnetron sputtering system
(MSP-IS, Vacuum Device, Shoreview, MN, USA) and observed under a desktop scanning
electron microscope (Hitachi, TM3030plus, Tokyo, Japan) with an acceleration voltage of
15 kV using standard scanning mode.

2.3. Characterization of Pure Sacran, Sacran Aldehyde and Gelatine
2.3.1. Molecular Weight Estimation Using SEC-MALLS

The prepared sacran solution was kept at 4 ◦C prior to use. The absolute molecu-
lar weight (Mw) of sacran was determined using size exclusion chromatography com-
bined with multi-angle static light scattering (SEC-MALLS) to be >107 g/mol [19]. Sacran
has negative surface charges because of the presence of carboxylate anions and sulfate
anions. The absolute molecular weight (Mw) of sacran aldehyde was measured to be
between 106–107 g/mol.

2.3.2. Characterization of Cross-Linked Hydrogels

A ninhydrin (2,2-dihydroxy-1,3-indanedione) assay was conducted to determine the
degree of cross-linking of the hydrogels. The lyophilized gels dissolved in 1 mL of distilled
water were treated with 1 mL ninhydrin solution (1.5% w/v in ethanol). The mixture
was heated for 1 h at 80 ◦C. After cooling down the mixture, color change was observed
from orange to violet, representing effective cross-linking of the gelatine hydrogels and
the optical absorbance was recorded using a UV-visible spectrometer (UV-1800, Shimadzu
Corp., Kyoto, Japan) at a wavelength of 570 nm against a blank solution without gels.

Fourier Transform Infrared (FT-IR) spectra (Kyoto, Japan) were recorded with a
PerkinElmer Spectrum One spectrometer between 4000 and 500 cm−1 to confirm the
formation of sacran-aldehyde.
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3. Results and Discussion
3.1. Formation of Sacran Aldehyde

Sacran exhibits distinctive bands at 3328 cm−1, CH2 stretching vibration at 2925 cm−1,
polysaccharide (1→4) glycosidic bond stretching vibration at 1144 cm−1, and C-O stretching
vibrations at around 1007 cm−1. In SDA, a new peak at 1732 cm−1 reveals the presence of
C=O stretching vibration in comparison to unmodified sacran (Figure 1 inset). Periodate can
oxidize α-1,4-linked and α-1,6-linked anhydroglucoside units, forming either dialdehyde or
aldehyde groups based on the chemical pathway, as reported by Bruneel et al. Also, a slight
shoulder at 2726 cm−1 for C-H stretching of aldehyde confirmed the formation of aldehyde
functional groups. Additionally, a slightly red-shifted OH signal at 3328 cm−1 suggests that
aldehyde or dialdehyde groups were introduced into the sacran chain through oxidation.
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Figure 1. FT-IR spectra of Sacran (Sac) and Sacran aldehyde (SDA).

To improve the properties of gelatine hydrogels, sacran, a cyanobacterial polysaccha-
ride, was employed. This was achieved by oxidizing sacran in the presence of sodium
periodate, converting its hydroxyl groups to aldehyde [31]. To verify the successful for-
mation of sacran aldehyde, the samples were tested using Fourier Transform Infrared
(FT-IR) spectroscopy. A distinct peak at 1732 cm−1 wavelength (Figure 1), indicating the
oxidation of the hydroxyl groups and the formation of sacran aldehyde, was observed.
Importantly, in the spectra of pure sacran, no peak was present at this specific wavelength,
confirming the effectiveness of the oxidation process. Cross-linking occurred between these
–CHO groups from sacran aldehyde (SDA) and the –NH2 groups present in the lysine and
hydroxylysine residues of gelatine (as illustrated in Scheme 1).

3.2. Cross-Linking of Hydrogels

Firstly, a clear gelatine solution was prepared by dissolving gelatine granules in
distilled water and continuous stirred for 20 min at 60 ◦C followed by lowering temperature
to 40 ◦C. The clear solution was poured into silicon mold to obtain clear gelatine hydrogel as
shown in Figure 2a, Four different gelatine hydrogels cross-linked with sacran-dialdehyde
were synthesized as shown in Figure 2b,c. The preparation process involved the gradual
addition of gelatine solution to freeze-dried SDA under continuous stirring. The slow
addition and continuous stirring allowed for effective mixing and reaction between gelatine
and sacran-dialdehyde, ensuring the formation of covalent bonds along with the subsequent
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establishment of a three-dimensional network structure. Moreover, the cross-linking density
could be manipulated by adjusting the concentration of sacran-dialdehyde in the gelatine
solution. As a result, hydrogels with varying degrees of cross-linking were obtained, each
exhibiting distinct properties.
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3.3. Effective Cross-Linking

To quantitatively assess the effective cross-linking in gelatine hydrogels, the ninhydrin
test was utilized, which measures the presence of unreacted free amines. By employing
the following equation, and from the results of UV-Vis spectroscopy of all the samples (as
shown in Figure 3a), the extent of cross-linking within the hydrogel samples was evaluated.

Degree of crosslinking (%) = {1 − (
Absorbance of cross − linked gel

Absorbance of noncross − linked gel
)} × 100

Polysaccharides 2024, 5, FOR PEER REVIEW 7 
 

 

significant importance [34]. The cross-linking density (ρ) was calculated using the following 
equation. 𝜌 = 𝐸𝑞 13 /𝑅𝑇 

where R and T are the gas constant and absolute temperature, respectively. The re-
sults are summarized in Table 1. The NH2 content (N) was calculated [35] using the fol-
lowing equation and UV-Vis spectra. 𝑁 =  ሺ1 െ 𝜌ሻ × 𝑁nonെcrosslink 𝑁୬୭୬ିୡ୰୭ୱୱ୪୧୬୩ = 𝑁௚ × 𝑚௚  

𝑁௚ = 2 × 𝐴𝑏𝑠 × 0.021.46 × 10ସ × ሺ𝑏 × 𝑥ሻ 

 
Figure 3. (a) UV-Vis data for the uncrosslinked and crosslinked samples. (b) Change of cross-linking 
degree of gelatine hydrogels as a function of sacran-dialdehyde amount. (arrow in (a) depicts the 
descending -NH2 concentration) 

Table 1. Crosslinking density and NH2 content in all samples. 

Samples ρ (mol/m3) Abs (au) Nnon-crosslink (10−6 mol/g) N (10−7 mol/g) 
PG -- 0.194 1.1 -- 

GSDA 1 0.001526619 0.08 0.44 4.38 
GSDA 1.5 -- 0.048 0.26 -- 
GSDA 2 0.00176189 0.041 0.22 2.24 
GSDA 3 0.001418368 0.039 0.21 2.13 

In other words, a reversible covalent crosslinking bond was formed between the 
amino group of gelatin and the aldehyde group of SDA via the Schiff base reaction. Sec-
ond, the hydroxyl groups of SDA and the amino groups on the surface of gelatin formed 
a hydrogen bond that produced physical crosslinks. The dynamic SDA hydrogel network 
was effectively created by double crosslinking using both chemical and physical methods 
(Scheme 1). The SDA hydrogel synthesis method has the advantages of moderate and fast 
reaction conditions, a simpler and more effective process, and the avoidance of the re-
quirement for additional crosslinking agents or initiators [36]. 

3.4. Degree of Swelling 
The swelling degree (q) of the hydrogels was determined using the following equation: 

Figure 3. (a) UV-Vis data for the uncrosslinked and crosslinked samples. (b) Change of cross-linking
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A ninhydrin assay was used to measure the percentage of free amino groups in
gelatin samples, which can be converted to the degree of crosslinking by comparing to
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uncrosslinked gelatin. The content of free amino in the sample was directly proportional
to the absorbance of the solution after being heated with ninhydrin. The degree of cross-
linking exhibited a progressive trend, rising from 18% to 46% as the amount of oxidized
sacran was elevated from GSDA 1 to GSDA 3 (as depicted in Figure 3b). As the content of
aldehyde groups increased, more sites became available for the amino groups present in the
gelatine molecules to react. Consequently, a greater number of covalent bonds were formed,
leading to a denser and more interconnected network within the gelatine hydrogels [32].

The ninhydrin assay provided valuable insights into the quantitative assessment of
cross-linking efficiency, offering a reliable method to determine the impact of varying
cross-linker concentrations on the resulting gelatine hydrogel structures [33]. This in-
formation is crucial for tailoring the mechanical properties and stability of hydrogels to
suit specific biomedical applications, where controlled and tunable cross-linking densities
are of significant importance [34]. The cross-linking density (ρ) was calculated using the
following equation.

ρ = Eq
1
3

/RT

where R and T are the gas constant and absolute temperature, respectively. The results
are summarized in Table 1. The NH2 content (N) was calculated [35] using the following
equation and UV-Vis spectra.

N = (1 − ρ)× Nnon-crosslink

Nnon-crosslink = Ng × mg

Ng =
2 × Abs × 0.02

1.46 × 104 × (b × x)

Table 1. Crosslinking density and NH2 content in all samples.

Samples ρ (mol/m3) Abs (au) Nnon-crosslink (10−6 mol/g) N (10−7 mol/g)

PG -- 0.194 1.1 --
GSDA 1 0.001526619 0.08 0.44 4.38

GSDA 1.5 -- 0.048 0.26 --
GSDA 2 0.00176189 0.041 0.22 2.24
GSDA 3 0.001418368 0.039 0.21 2.13

In other words, a reversible covalent crosslinking bond was formed between the
amino group of gelatin and the aldehyde group of SDA via the Schiff base reaction. Second,
the hydroxyl groups of SDA and the amino groups on the surface of gelatin formed a
hydrogen bond that produced physical crosslinks. The dynamic SDA hydrogel network
was effectively created by double crosslinking using both chemical and physical methods
(Scheme 1). The SDA hydrogel synthesis method has the advantages of moderate and
fast reaction conditions, a simpler and more effective process, and the avoidance of the
requirement for additional crosslinking agents or initiators [36].

3.4. Degree of Swelling

The swelling degree (q) of the hydrogels was determined using the following equation:

q = { (
Weight of swollen gel

Weight of dry gel
)− 1} × 100

The experiment revealed that all the gels reached equilibrium swelling within 120 min.
As depicted in Figure 4 and Table 2, there was a decrease in the swelling percentage as the
content of oxidized sacran cross-linker increased, indicating more effective cross-linking in
the gelatine hydrogels [37].
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Table 2. Mechanical, swelling and crosslinking behavior of the uncrosslinked and crosslinked samples.

Samples σ (MPa) E (GPa) q (g/g) ρ (10−3 mol/m3) N (10−7 mol/g)

PG 0.04 1.17 -- --- --
GSDA1 0.06 1.65 0.70 1.53 4.38

GSDA1.5 0.07 1.95 -- -- --
GSDA2 0.10 2.15 0.62 1.76 2.24
GSDA 3 0.14 2.19 0.49 1.42 2.13

σ and E are the tensile strength and Young’s Modulus. q and ρ are the swelling degree and crosslinking density.

3.5. Mechanical Properties

The enhancement of oxidized aldehyde groups for effective cross-linking in gel for-
mation brings about notable improvements in the rigidity and stability of the resulting
gels. These findings are depicted in Figure 5. The stress–strain curve shows that the in-
corporation and systematic increase in GSDA weight% resulted in increased stress with
the same mechanical strain, as shown in Figure 5a. The mechanical strength of the gels
correlates directly with the degree of cross-linking. This increase in mechanical strength
makes the gels capable of withstanding higher applied pressures, particularly evident in
the 50% compression tests. Cross-linking plays a crucial role in the mechanical properties
of hydrogels, affecting their overall performance [34]. By introducing oxidized aldehyde
groups through SDA, the gelatine matrix undergoes a structural transformation, leading to
the formation of a robust and rigid network. This strengthened network is characterized by
enhanced interactions between the polymer chains, resulting in a cohesive and stable gel
structure. The resulting tensile strength with incorporated GSDA samples with varying
wt.% is shown in Figure 5b and Table 2.

The newly formed bonds act as bridges, connecting neighboring gelatine molecules
and reinforcing the gels’ overall structure. During compression testing, the ability of the gels
to resist deformation is significantly influenced by their cross-linking density. Hydrogels
with higher cross-linking exhibit increased resistance to compression forces due to the
enhanced intermolecular interactions. This property is valuable, in applications such as
tissue engineering scaffolds, where the ability to withstand mechanical stresses is essential
for the successful integration and support of cells.

However, it is essential to strike a balance in the degree of cross-linking to avoid
potential drawbacks. Excessive cross-linking can lead to a reduction in the hydrogel’s water
uptake capacity, hindering its ability to absorb and retain moisture [38]. In certain biomedi-
cal applications, the hydrogels’ ability to hold and release water or bioactive substances
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is crucial for their efficacy. Therefore, optimization of the cross-linking density becomes a
critical aspect in tailoring the properties of the hydrogels to suit specific applications.
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3.6. Morphology of Hydrogels

Samples of crosslinked hydrogels were freeze-dried before being subjected to SEM
analysis. Freeze-drying kept the hydrogel structure of the samples intact [39]. SEM images
of the hydrogels (Figure 6) reveal distinct differences in morphology between gelatine
with and without oxidized polysaccharides. As cross-linking becomes more effective,
the hydrogel’s pore size decreases. On the other hand, pure gelatine exhibits a fibril-
like morphology.
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The SEM images clearly illustrate how the introduction of oxidized polysaccharide
as a cross-linker impacts the overall structure of the gelatine hydrogels. With increased
cross-linking, the gelatine chains are more tightly connected, leading to a reduction in
the size of the pores within the gel matrix. This decrease in pore size indicates a more
compact and homogeneous network of the hydrogel, which can influence its physical and
mechanical properties [40].

In contrast, the pure gelatine hydrogel exhibits a fibril-like appearance, characteristic
of the native state. Without the presence of the cross-linker, the gelatine chains remain
relatively unconnected.

4. Conclusions

Despite gelatine hydrogels having numerous biomedical applications such as wound
healing, adhesives, plasma expanders, and drug delivery, their practical utility is limited
due to poor stability at higher pressures and temperatures. This research aimed to address
this limitation by synthesizing and characterizing gelatine hydrogels using a naturally
occurring polysaccharide cross-linker called sacran, in the form of sacran aldehyde. By
increasing the content of the aldehyde group for gelatine matrix preparation, effective
cross-linking was achieved up to 45%, resulting in the formation of a rigid network within
the gelatine hydrogels. This led to a reduction in the water uptake capacity of the hydro-
gels. Simultaneously, the degree of cross-linking was found to significantly enhance the
mechanical stability of the gels, increasing it by five times compared to pure gelatine. The
incorporation of sacran aldehyde as a cross-linker for gelatine opens up new possibilities
and applications for these hydrogels in the field of biomedicine.
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