Sequential Oxidation on Wood and Its Application in Pb2+ Removal from Contaminated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of 6CC Using Nitro-Oxidation
2.2. Preparation of 2,3-dialdehyde Using Sodium Metaperiodate Oxidation
2.3. Preparation of TCC Using Sodium Chlorite Oxidation
2.4. Preparation of Pb2+ Solution for Removal Study
2.5. Static Adsorption Study
3. Results and Discussion
3.1. Structural Characterization of 6CC and TCC
3.2. Morphological Characterization of 6CC and TCC
3.3. Metal Ion Remediation of Pb2+ Contaminated Water by 6CC and TCC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Singh, O.V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 2008, 35, 377–391. [Google Scholar] [CrossRef]
- Sharma, P.R.; Joshi, R.; Sharma, S.K.; Hsiao, B.S. A Simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromolecules 2017, 18, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.-M.; Ting, S.S.; Ong, H.L.; Omar, M. Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: A review. J. Appl. Polym. Sci. 2018, 135, 46065. [Google Scholar] [CrossRef] [Green Version]
- Ogushi, Y.; Sakai, S.; Kawakami, K. Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J. Biosci. Bioeng. 2007, 104, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Coseri, S.; Biliuta, G.; Simionescu, B.C.; Stana-Kleinschek, K.; Ribitsch, V.; Harabagiu, V. Oxidized cellulose—Survey of the most recent achievements. Carbohydr. Polym. 2013, 93, 207–215. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Chen, S.; Zhang, X.; Ma, J.; He, J.J.C.P. Oxidized cellulose-based hemostatic materials. Carbohydr. Polym. 2020, 230, 115585. [Google Scholar] [CrossRef]
- Sharma, P.R.; Chattopadhyay, A.; Sharma, S.K.; Geng, L.; Amiralian, N.; Martin, D.; Hsiao, B.S. Nanocellulose from spinifex as an effective adsorbent to remove cadmium (II) from water. ACS Sustain. Chem. Eng. 2018, 6, 3279–3290. [Google Scholar] [CrossRef]
- Sharma, P.R.; Chattopadhyay, A.; Zhan, C.; Sharma, S.K.; Geng, L.; Hsiao, B.S. Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method. Cellulose 2018, 25, 1961–1973. [Google Scholar] [CrossRef]
- Zhan, C.; Sharma, P.R.; Geng, L.; Sharma, S.K.; Wang, R.; Joshi, R.; Hsiao, B.S. Structural characterization of carboxyl cellulose nanofibers extracted from underutilized sources. Sci. China Ser. E Technol. Sci. 2019, 62, 971–981. [Google Scholar] [CrossRef]
- Liang, L.; Bhagia, S.; Li, M.; Huang, C.; Ragauskas, A.J.J.C. Cross-linked nanocellulosic materials and their applications. Chem. Sus. Chem. 2020, 13, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.R.; Sharma, S.K.; Antoine, R.; Hsiao, B.S. Efficient removal of arsenic using zinc oxide nanocrystal-decorated regenerated microfibrillated cellulose scaffolds. ACS Sustain. Chem. Eng. 2019, 7, 6140–6151. [Google Scholar] [CrossRef]
- Zhan, C. Structural Characterization of Nanocellulose-Based Composite Materials and Their Water Purification Applications. Ph.D. Thesis, State University of New York at Stony Brook, Stony Brook, NY, USA, 2019. [Google Scholar]
- Qua, E.; Hornsby, P.; Sharma, H.S.; Lyons, G.; McCall, R. Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibers. J. Appl. Polym. Sci. 2009, 113, 2238–2247. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, P.R.; Lin, S.; Chen, H.; Johnson, K.; Wang, R.; Borges, W.; Zhan, C.; Hsiao, B.S. Reinforcement of natural rubber latex using jute carboxycellulose nanofibers extracted using nitro-oxidation method. Nanomaterials 2020, 10, 706. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, H.-Y.; Williams, G.R.; Yang, H.-H.; Tao, L.; Zhu, L.-M. Electrospun poly (N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J. Pharm. Sci. 2016, 105, 1104–1112. [Google Scholar] [CrossRef]
- Capezza, A.J.; Wu, Q.; Newson, W.R.; Olsson, R.T.; Espuche, E.; Johansson, E.; Hedenqvist, M.S. Superabsorbent and fully biobased protein foams with a natural cross-linker and cellulose nanofibers. ACS Omega 2019, 4, 18257–18267. [Google Scholar] [CrossRef]
- Zhang, N.; Zang, G.-L.; Shi, C.; Yu, H.-Q.; Sheng, G.-P. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu (II) removal. J. Hazard. Mater. 2016, 316, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.R.; Sharma, S.K.; Borges, W.; Chen, H.; Hsiao, B.S. Remediation of UO22+ from water by nitro-oxidized carboxycellulose nanofibers: Performance and mechanism. In Contaminants in Our Water: Identification and Remediation Methods; ACS Publications: Washington, DC, USA, 2020; pp. 269–283. [Google Scholar]
- Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8, 2485–2491. [Google Scholar] [CrossRef]
- Kim, U.-J.; Kuga, S.; Wada, M.; Okano, T.; Kondo, T. Periodate oxidation of crystalline cellulose. Biomacromolecules 2000, 1, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.; Kulkarni, M.P. Oxidation of cellulose under controlled conditions. Polym. Degrad. Stab. 2002, 77, 25–27. [Google Scholar] [CrossRef]
- Buslov, D.; Korolik, E.; Zhbankov, R.; Bashmakov, I.; Kaputskij, F. Spectroscopic study of tricarboxycellulose salts with Y 3+, Ba 2+, and Cu 2+ cations. Vysokomol. Soedin. Ser. B 1994, 36, 836–839. [Google Scholar]
- Sharma, P.R.; Varma, A.J. Thermal stability of cellulose and their nanoparticles: Effect of incremental increases in carboxyl and aldehyde groups. Carbohydr. Polym. 2014, 114, 339–343. [Google Scholar] [CrossRef]
- Mendoza, D.J.; Browne, C.; Raghuwanshi, V.S.; Simon, G.P.; Garnier, G. One-shot TEMPO-periodate oxidation of native cellulose. Carbohydr. Polym. 2019, 226, 115292. [Google Scholar] [CrossRef]
- Garrett, Q.; Simmons, P.A.; Xu, S.; Vehige, J.; Zhao, Z.; Ehrmann, K.; Willcox, M. Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Investig. Ophthalmol. Vis. 2007, 48, 1559–1567. [Google Scholar] [CrossRef] [Green Version]
- Borisova, B.; Sánchez, A.; Jiménez-Falcao, S.; Martín, M.; Salazar, P.; Parrado, C.; Pingarrón, J.M.; Villalonga, R. Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors. Sens. Actuators B Chem. 2016, 232, 84–90. [Google Scholar] [CrossRef]
- Voisin, H.; Bergström, L.; Liu, P.; Mathew, A.P. Nanocellulose-based materials for water purification. Nanomaterials 2017, 7, 57. [Google Scholar] [CrossRef]
- Kumar, R.; Kumari, S.; Surah, S.S.; Rai, B.; Kumar, R.; Sirohi, S.; Kumar, G. A simple approach for the isolation of cellulose nanofibers from banana fibers. Mater. Res. Express 2019, 6, 105601. [Google Scholar] [CrossRef]
- Sinha, T. Polymers in Medicine and Surgery: Cellulosic Systems. Ph.D. Thesis, Indian Institute of Technology Delhi, New Delhi, India, 1983. [Google Scholar]
- Holmes, C.; Wrobel, J.S.; MacEachern, M.P.; Boles, B.R. Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: A systematic review. Diabetes Metab. Syndr. Obes. 2013, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Varma, A.J.; Sharma, P.R.; Sarkar, D. Synthesis of Nanostructured Carboxycelluloses from Non-Wood Cellulose. U.S. Patent US10,017,583, 10 July 2018. [Google Scholar]
- Hoenich, N.A. Cellulose for medical applications: Past, present, and future. BioResources 2006, 1, 270–280. [Google Scholar] [CrossRef]
- Eldor, R.; Raz, I.; Ben Yehuda, A.; Boulton, A. New and experimental approaches to treatment of diabetic foot ulcers: A comprehensive review of emerging treatment strategies. Diabet. Med. 2004, 21, 1161–1173. [Google Scholar] [CrossRef]
- Abou-Zeid, R.E.; Dacrory, S.; Ali, K.A.; Kamel, S. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int. J. Biol. Macromol. 2018, 119, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.R.; Kamble, S.; Sarkar, D.; Anand, A.; Varma, A.J. Shape and size engineered cellulosic nanomaterials as broad spectrum anti-microbial compounds. Int. J. Biol. Macromol. 2016, 87, 460–465. [Google Scholar] [CrossRef]
- Sharma, P.R.; Rajamohanan, P.R.; Varma, A.J. Supramolecular transitions in native cellulose-I during progressive oxidation reaction leading to quasi-spherical nanoparticles of 6-carboxycellulose. Carbohydr. Polym. 2014, 113, 615–623. [Google Scholar] [CrossRef]
- Sharma, P.R.; Varma, A. Functionalized celluloses and their nanoparticles: Morphology, thermal properties, and solubility studies. Carbohydr. Polym. 2014, 104, 135–142. [Google Scholar] [CrossRef]
- Sharma, P.R.; Varma, A.J. Functional nanoparticles obtained from cellulose: Engineering the shape and size of 6-carboxycellulose. Chem. Comm. 2013, 49, 8818–8820. [Google Scholar] [CrossRef]
- Wang, J.-W.; Kuo, Y.-M. Preparation of fructose-mediated (polyethylene glycol/chitosan) membrane and adsorption of heavy metal ions. J. Appl. Polym. Sci. 2007, 105, 1480–1489. [Google Scholar] [CrossRef]
- Demirbas, A. Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication. J. Hazard. Mater. 2004, 109, 221–226. [Google Scholar] [CrossRef]
- Quek, S.; Wase, D.; Forster, C. The use of sago waste for the sorption of lead and copper. Water SA 1998, 24, 251–256. [Google Scholar]
- Yang, R.; Aubrecht, K.B.; Ma, H.; Wang, R.; Grubbs, R.B.; Hsiao, B.S.; Chu, B. Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer 2014, 55, 1167–1176. [Google Scholar] [CrossRef]
- Shen, W.; Chen, S.; Shi, S.; Li, X.; Zhang, X.; Hu, W.; Wang, H. Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohydr. Polym. 2009, 75, 110–114. [Google Scholar] [CrossRef]
- Tran, H.N.; Nguyen, H.C.; Woo, S.H.; Nguyen, T.V.; Vigneswaran, S.; Hosseini-Bandegharaei, A.; Rinklebe, J.; Kumar Sarmah, A.; Ivanets, A.; Dotto, G.L.; et al. Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: A comprehensive and critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2155–2219. [Google Scholar] [CrossRef]
- Krivoshapkin, P.V.; Ivanets, A.I.; Torlopov, M.A.; Mikhaylov, V.I.; Srivastava, V.; Sillanpää, M.; Prozorovich, V.G.; Kouznetsova, T.F.; Koshevaya, E.D.; Krivoshapkina, E.F. Nanochitin/manganese oxide-biodegradable hybrid sorbent for heavy metal ions. Carbohydr. Polym. 2019, 210, 135–143. [Google Scholar] [CrossRef]
- Tomina, V.V.; Stolyarchuk, N.V.; Melnyk, I.V.; Zub, Y.L.; Kouznetsova, T.F.; Prozorovich, V.G.; Ivanets, A.I. Composite sorbents based on porous ceramic substrate and hybrid amino- and mercapto-silica materials for Ni(II) and Pb(II) ions removal. Sep. Purif. Technol. 2017, 175, 391–398. [Google Scholar] [CrossRef]
- Cao, C.-Y.; Qu, J.; Wei, F.; Liu, H.; Song, W.-G. Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl. Mater. Interfaces 2012, 4, 4283–4287. [Google Scholar] [CrossRef]
- Liu, J.; Si, J.; Zhang, Q.; Zheng, J.; Han, C.; Shao, G. Preparation of negatively charged hybrid adsorbents and their applications for Pb2+ removal. Ind. Eng. Chem. Res. 2011, 50, 8645–8657. [Google Scholar] [CrossRef]
- Bektaş, N.; Ağım, B.A.; Kara, S. Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite. J. Hazard. Mater. 2004, 112, 115–122. [Google Scholar] [CrossRef]
Original Pb2+ Conc. before ICP-MS (ppm) Ce | Final Pb2+ from ICP-MS (ppb) | Original Pb2+ Conc. by ICPMS (ppb) | Adsorption Efficiency | Original Pb2+ Quantity (mg) | Original TCC- 0.02 wt% in 5mL (g) | Ideal Adsorption Capacity | Experimental Adsorption Capacity Qe |
---|---|---|---|---|---|---|---|
5 | 2.9 | 100 | 0.991 | 0.005 | 0.001 | 5 | 4.955 |
10 | 0.9 | 100 | 0.971 | 0.01 | 0.001 | 10 | 9.71 |
50 | 18 | 100 | 0.82 | 0.05 | 0.001 | 50 | 41 |
100 | 19 | 100 | 0.81 | 0.1 | 0.001 | 100 | 81 |
250 | 22 | 100 | 0.78 | 0.25 | 0.001 | 250 | 195 |
Adsorbent Maximum Adsorption Capacity (Qm) (mg/g) | References | |
---|---|---|
TCC | 1569 | This study |
NOCNF | 2270 | [9] |
Flower-like magnesium oxide | 1980 | [48] |
CMC-g-PAA | 990 | [49] |
CMC-g-PAA/5% APT | 952 | [49] |
Modified lignin | 95.8 | [41] |
Sago waste | 46.6 | [42] |
Sepiolite clay | 93.4 | [50] |
Diethylemetriamine bacterial cellulose | 31.4 | [44] |
Thiol modified CNF | 131 | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.R.; Sharma, S.K.; Nolan, M.; Li, W.; Kundal, L.; Hsiao, B.S. Sequential Oxidation on Wood and Its Application in Pb2+ Removal from Contaminated Water. Polysaccharides 2021, 2, 245-256. https://doi.org/10.3390/polysaccharides2020017
Sharma PR, Sharma SK, Nolan M, Li W, Kundal L, Hsiao BS. Sequential Oxidation on Wood and Its Application in Pb2+ Removal from Contaminated Water. Polysaccharides. 2021; 2(2):245-256. https://doi.org/10.3390/polysaccharides2020017
Chicago/Turabian StyleSharma, Priyanka R., Sunil K. Sharma, Marc Nolan, Wenqi Li, Lakshta Kundal, and Benjamin S. Hsiao. 2021. "Sequential Oxidation on Wood and Its Application in Pb2+ Removal from Contaminated Water" Polysaccharides 2, no. 2: 245-256. https://doi.org/10.3390/polysaccharides2020017
APA StyleSharma, P. R., Sharma, S. K., Nolan, M., Li, W., Kundal, L., & Hsiao, B. S. (2021). Sequential Oxidation on Wood and Its Application in Pb2+ Removal from Contaminated Water. Polysaccharides, 2(2), 245-256. https://doi.org/10.3390/polysaccharides2020017