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Abstract: Mounting evidence links obesity, metabolic dysfunction, mood, and cognition. Compro-
mised metabolic health and psychological functioning worsen clinical outcomes, diminish quality
of life, and contribute to comorbid conditions. As a medication with both insulin-sensitizing and
anti-inflammatory effects, metformin affords the exciting opportunity to abrogate the bidirectional
relationship between poor metabolic health and psychological function. In the current paper, we
review the literature linking metformin to mood and cognitive function, examine potential underly-
ing mechanisms, and suggest new directions for investigating the role of metformin in increasing
adherence to health behavior recommendations.
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1. Introduction

With the burgeoning rise in obesity in the United States, an increasing number of
Americans will face the deleterious health effects of excess weight and adiposity including
Type 2 diabetes mellitus (T2DM), cardiovascular disease, and malignancies including
colorectal, endometrial, and postmenopausal breast cancer [1,2]. Based on data from the
National Health and Nutrition Examination Surveys (NHANES) from 1999–2000 through
2017–2018, the age-adjusted prevalence of obesity in U.S. adults increased from 30.5% to
42.4%; similarly, the age-adjusted prevalence of severe obesity rose from 4.7% to 9.2% [3].
For 2017–2018, middle-aged adults (40–59 years) had the highest prevalence of obesity at
44.8%; women had a higher prevalence of severe obesity (BMI ≥ 40 kg/m2) compared to
men, at 11.5% versus 6.9% [3]. The prevalence of obesity was highest in non-Hispanic Black
adults at 49.6%, followed by Hispanic (44.8%) and non-Hispanic White (42.2%) adults [3].
The steady rise in obesity over the past two decades is an urgent call to action.

Current strategies for weight loss include recommendations for healthy eating and
regular exercise. While healthy eating and active living/exercise are effective strategies
for managing obesity [4], engaging in healthy dietary behaviors and sustained physical
activity is notoriously difficult. Although people who are overweight or have obesity
are able to lose weight by short-term reports [5], NHANES data also indicate that most
individuals are unable to maintain weight loss [6], and fewer adults who are overweight or
have obesity report trying to lose weight [7]. This lack of adherence to a healthy lifestyle is
due to multiple reasons, including (1) low tolerance to high-intensity exercise and higher
perceived exertion in overweight individuals [8–10], and (2) difficulty in initiating and
sustaining healthy lifestyle changes due to emotional and cognitive dysregulation integrally
linked to obesity and overweight status [11,12]. Therefore, for people who are overweight
or suffer from obesity, standard of care recommendations for lifestyle changes alone are
likely to have little impact on reducing obesity risk. The difficulties encountered by many
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adults to reverse weight gain via recommended lifestyle practices of exercise and caloric
restraint, despite the compelling incentive of health-related benefits, indicates a more
complex problem.

In the current paper, we provide an overview of the literature demonstrating the
association between obesity, metabolic dysfunction, mood, and cognitive dysregulation.
We then describe the common underlying pathophysiology. In the final section of the paper,
we review animal and human models demonstrating the potential role for metformin, an
oral hypoglycemic drug, in disrupting the intransigent cycles of metabolic, mood, and
cognitive dysfunction. We end with a discussion and recommendations for future research.

2. Obesity and Metabolic Dysfunction

The chronic imbalance of energy intake versus energy expenditure leads to excessive
fat accumulation and obesity. Obesity often leads to insulin resistance and changes in
fuel utilization between carbohydrates, lipids, and protein, whereby insulin-stimulated
glucose uptake by muscle and adipose tissue is impaired. Hyperinsulinemia ensues when
cells become unresponsive to insulin, which fosters a proinflammatory milieu in adipose
tissue with ectopic fat storage and aberrant energy usage [13,14]. Excess adiposity, espe-
cially visceral adiposity, also promotes chronic low-grade inflammation by macrophage,
adipocyte–preadipocyte production of proinflammatory cytokines such as C-reactive pro-
tein (CRP), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNFα) and adipokines
such as leptin [15,16]; these endocrine effects of adipose tissue inflammation are considered
causative of systemic inflammatory pathway activation and lead to insulin resistance. The
co-occurrence of obesity/visceral adiposity, insulin resistance, dyslipidemia, and hyper-
tension comprises metabolic syndrome [17,18], which carries increased risk for Type 2
diabetes mellitus (T2DM), cardiovascular disease (CVD) [19], and postmenopausal breast
cancer [20–22]. Obesity, proinflammatory signal transduction, and insulin resistance form a
vicious cycle of dysregulated metabolism with deleterious health effects.

3. Relations between Mood Dysregulation and Metabolic Dysfunction

Obesity and overweight status are closely associated with mood dysregulation in a
codependent, bidirectional manner [23,24]. Obesity leads to a 25% increase in odds of
mood and anxiety disorders [25]. The association between depression and obesity is more
consistently evident among women than men [26]. Even after controlling for race and
socioeconomic variables, young women with overweight status or obesity are more likely
to report having sustained depressive mood than women who are lean [27]. Similarly,
depression, as assessed by the Major Depression Inventory, is associated with increased risk
of T2DM, as observed in population-based research [28]. Notably, depression is detected
even at the prediabetes stage, with data demonstrating a 37–60% increase in prospective
risk of developing T2DM among individuals with depression [29].

The relationship between depression and insulin resistance is observed even in indi-
viduals without abnormal or excessive fat accumulation. A prospective, longitudinal study
showed that children with depression, measured with the Child Depression Inventory,
develop insulin resistance independent of changes in BMI [30]. Consistent with these data,
a recent meta-analysis suggests a small but significant association between depression and
insulin resistance [31]. Note that meta-analyses showing an association between depressive
symptoms or general distress and T2DM appear robust with both diagnostic (e.g., clinical
records) and nondiagnostic (Centers for Epidemiologic Studies for Depression Scale, Gen-
eral Health Questionnaire) measures of depression [29]. Relatedly, even general negative
affect, rather than diagnosed depression, is associated with metabolic health [32]. Higher
negative affect or emotional distress (e.g., anxiety, depression, stress, sadness) [33] and
lower positive affect or pleasant feelings or emotions (e.g., joy, calmness, interest, enthu-
siasm) [34], as assessed using the Positive and Negative Affect Schedule, are associated
with increased BMI; for women, the effect is stronger [34]. Interestingly, the relationship
between lower positive affect and higher BMI appeared to be explained by physical ill
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health [34]. Mood disorders such as depression are thought to lead to excessive weight
gain because individuals with depression tend to have lowered energy and therefore are
less physically active [35], and negative affect tends to be associated with higher intake of
sweet, high-fat, and energy dense foods [36]; depression may also lead to use of food in
an attempt to cope with emotional distress, given that food intake corresponds with acute
physiological changes (e.g., increased serotonin) that can alleviate discomfort for the short
term [37]. Moreover, analyses suggest that depression was more likely to precede obesity,
rather than vice versa [38]. Additionally, pharmaceutical treatments for mood disorders
can also induce weight gain [28,39–41], with potential to exacerbate insulin resistance and
the inexorable cycle of mood and metabolic dysfunction [42,43].

4. Relationship between Cognitive Function and Metabolic Dysfunction

In addition to mood, disruptions in cognition, specifically to higher level executive
functioning, are observed among those with obesity [44]. Executive function (EF) is a
set of higher-order cognitive processes necessary for goal-directed behavior, including
working memory (i.e., short term storage of relevant, immediate information), inhibitory
control (i.e., ability to control one’s attention, behavior, thoughts, and/or emotions to
override impulsive or automatic/conditioned responses), and shifting/flexibility (i.e.,
ability to adapt behavior and thoughts to new, changing, or unexpected events) [45], as
well as decision-making, which includes elements of applying and following rules [46],
verbal fluency as a measure of ease or speed of semantic processing [47], and planning
(i.e., forethought for future adaptive responses) [48]. EF skills are central for directing
and guiding behavior, particularly in situations that are nonroutine or effortful, such as
initiating health behavior change [49].

The majority of studies examining the relationship between obesity and EF have
focused on differences between individuals with obesity and normal weight, with others
focusing on overweight and normal weight individuals [44]. A meta-analysis conducted
by Yang et al. [44] shows that a variety of EF tasks have been used to investigate the role
of cognitive processes in excessive weight gain; inhibitory control and planning were the
most common functions identified. Overall, results indicate EF deficits among overweight
individuals or those with obesity. Specifically, individuals with obesity exhibited poor EF
across all domains (i.e., working memory, inhibitory control, shifting/flexibility, decision-
making, verbal fluency, planning), while overweight individuals only showed significant
deficits in inhibitory control and working memory relative to normal weight controls [44].
Age, BMI, and sex did not seem to influence the pattern of results. Regarding working
memory and decision-making, the type of task seemed to matter. For memory assessment,
the digit span task and the delay discounting or Iowa gambling task exhibited larger effect
sizes than the letter-numbering sequencing task. An important limitation identified by
this meta-analysis, however, is the small number of studies focusing only on individuals
who are overweight (rather than with obesity); lack of consideration of use of antiobesity
medication and presence of a psychiatric disorder in many studies were also noted.

Studies examining multiple measures of EF reveal inconsistent results regarding the
relationship between EF deficits and excess adiposity/obesity. The Baltimore Longitudinal
study of aging reported mixed results regarding type of cognitive task as well as the
relationship between measures of adiposity and cognitive outcomes [50]. Study findings
suggest that BMI and waist circumference were associated with poorer prospective memory;
longitudinally, all three measures of adiposity (BMI, waist circumference, waist–hip ratio,
or WHR as ratio of measurements of waist to hip circumference) demonstrated declining
performance on the Benton Visual Retention test with increasing body size. While cross-
sectional analyses showed that BMI was associated with significantly worse performance
on the Letter and Category Fluency test, there were no longitudinal effects on any of the
language measures (Letter and Category Fluency and Boston Naming) [50]. Regarding
executive function (using the Trail Making B task, thought to be indicative of working
memory and shifting abilities) [51], WHR was associated with slower performance over
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time. Surprisingly, however, obesity was associated with better attention and visuospatial
ability. The relatively well-educated (average >16 years of education), and older (mean age
55.5, SD: 16.9) sample makes the results difficult to generalize to other populations.

Results between adiposity and cognitive function were more consistent in a sample
of middle-aged adults. The Framingham Heart study focused on BMI and WHR, both
of which are risk factors for cardiovascular disease, in a sample of over 1800 men and
women (age 40–69) at baseline. Results suggest that obesity and hypertension were related
to worse executive function performance (using the Trails B test) [52]. The authors also
found greater age-related cognitive decline in individuals with obesity and suggest the
importance of controlling central obesity to reduce age-related cognitive declines. The
relationship between BMI and cognition was further explored in the Whitehall II study [53],
which assessed BMI over the life course at 25 years of age, during early midlife (mean
age = 44), and late midlife (mean age = 61). Cognition was assessed in late midlife using the
Mini Mental State Examination (MMSE), a screening measure of global cognition, and tests
of short-term memory (a free recall task) and EF (reasoning and verbal fluency). Results
suggest a curvilinear relationship, with both individuals who were underweight or with
obesity having poorer cognition. Specifically, cumulative obesity (obesity at two or three
time points) was associated with lower scores on the MMSE and measures of memory and
EF; an increase in BMI from early to late midlife correlated with lower levels of executive
function at late midlife [53]. In a review of 88 studies, Favieri et al. confirmed an inverse
relation between obesity and a range of executive functioning measures (Wisconsin Card
Sorting Test, Trail Making Test, Stroop Color-Word Task, Digit Span Test, Delay Discounting
Task) [11].

These data suggest that obesity is a disorder of appetitive motivation, rather than simply
a disorder of disruptions in homeostatic mechanisms of food intake. Dysfunction of the
central melanocortin system, which is involved in regulation of energy homeostasis, food
intake, satiety, and body weight, is also implicated in the pathogenesis of obesity [54,55]. The
motivation to consume certain foods activates the mesolimbic dopamine system; cognitive
functions (e.g., reward, desire) associated with the mesolimbic pathway are implicated
in addiction [56]. At the same time, however, researchers have argued that these models
need to incorporate EF processes, namely, those related to inhibitory control, which are
localized in the prefrontal cortex [57]. Neurobiological and behavioral evidence suggests
that individuals who have lower EF abilities are particularly susceptible to intake of high
caloric foods, as well as weight gain [57].

5. Mechanisms Linking Metabolic Health, Mood, and Cognitive Functioning

Researchers have theorized that both behavioral and biological mechanisms explain
the relationships between mood, cognitive functioning, and metabolic health. From a
behavioral perspective, depressed mood/negative affect leads to an increased preference
for high-caloric food, which can serve as a form of emotion regulation [58]. Moreover, stress
and negative affect can degrade higher executive functioning competencies that are critical
to self-control. Finally, from a physiological perspective, long-term negative affect and/or
chronic stress can lead to dysregulation in endocrine and immune systems that affect both
brain and metabolic health, which can then, in turn, affect cognitive and mood disruptions
and higher food intake, leading to a vicious, inescapable cycle.

Observational studies of stress, using both life events as well as subjective distress
scores [59], and lab-based manipulations of mood demonstrate that negative cues increase
the salience of immediate, concrete goals, leading to preference for indulgent rather than
healthy food [60]. Mood dysregulation is associated with poor health behaviors, including
physical inactivity [61], binge eating [62], and increased caloric intake [63]. Relatedly,
stress/negative affect [64] and depression [65] impair executive functioning abilities which
are crucial to initiating and maintaining health behaviors. This is particularly problematic
because EF is essential for behaviors (including health behaviors), which have an immediate
cost in terms of time and effort but offer health benefits in the long term. Evidence suggests
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that the effects of mood/stress on health and health behaviors are mediated through
disruptions in executive functioning abilities [66].

Prolonged depression and negative mood states involve activation of the hypothalamic–
pituitary–adrenal axis, sympathoadrenal system, and proinflammatory cytokines [67]. Dys-
regulation in these systems can induce insulin resistance and contribute to diabetes risk [67].
A high-fat diet causes insulin resistance and T2DM by disrupting signaling circuits and
neurotransmitter systems in the prefrontal cortex associated with motivation, reward, de-
pression, and anxiety [68]. Insulin resistance is also associated with loss of motivation and
heightened food-seeking behaviors thought to be mediated by differences in the anterior
cingulate cortex—a known hippocampal motivational network that contributes to both
depression and insulin resistance [69]. Evidence suggests that cortisol, the end-product
of the hypothalamic–pituitary–adrenal axis (HPA), one of the main stress response sys-
tems, is positively associated with weight gain and enhanced secretion of proinflammatory
hormones and cytokines (adipokines) by adipose tissue depots [70]. Proinflammatory
cytokines, particularly IL-6 and CRP, have been implicated in both insulin resistance and
T2DM [16]. Proinflammatory signaling may underlie depression in the setting of obesity
and dysfunctional metabolism [71].

Obesity is also linked to mood dysregulation as a risk factor. Chronic inflammation
arising from higher fat mass and metabolic dysfunction appears to be associated with
psychological effects such as depression and anxiety [72]. In a study of data from a
mental health questionnaire of participants in the U.K. Biobank (n = 145,668), Casanova
et al. demonstrated that higher adiposity leads to higher odds of depression, severity
of depression, and lower wellbeing, regardless of genetic predisposition to metabolic
dysfunction (e.g., adiposity genetic variants with favorable or unfavorable metabolic
profiles based on HDL cholesterol, triglycerides, and T2DM risk) [73]; limitations of the
analysis include lack of diversity in the European study population and potential bias in the
subset of participants involved in the mental health questionnaire substudy. Interestingly,
the metabolically favorable adiposity variants were associated with higher levels of the
proinflammatory cytokine CRP [73].

In sum, increasing evidence suggests the association of obesity and insulin resis-
tance with depressed mood and cognitive dysfunction as an interrelated network that
can become intransigent and bidirectionally entrained (Figure 1). Negative affect and
stress bias individuals towards emotional responses, while at the same time degrading
self-control abilities, leading to higher food consumption [74,75] and increasingly sedentary
behaviors [76–78]. These behaviors over time can lead to reduced functioning in various
quality of life domains, perpetuating, and possibly worsening, depressed mood. Relatedly,
metabolic dysfunction including insulin resistance also appears to be associated with in-
creases in mood disorders, suggesting bidirectional and convergent effects [23]. Higher
BMI also decreases the effectiveness of antidepressants [79,80], and depression predicts
unfavorable outcomes in a range of weight loss interventions, including surgical [81] and
behavioral [82], as well as poor weight loss maintenance [83]. In fact, even nonclinical
assessments of mood, such as stress (using the Perceived Stress Scale) [84,85], or primarily
nondepressed individuals (BDI scores of <10) [86], show that higher levels predict lower
efficacy of interventions, likely due to decreased engagement [84]. Studies also demonstrate
that individuals who experience remission from depression are more likely to lose weight
from lifestyle interventions than those who do not [86,87], perhaps due to higher levels of
engagement in physical activity [88].

These results are of great significance to both clinicians and researchers. As reviewed,
chronic stress and mood dysregulation result in increased preference for energy-dense
food; consequently, physiological responses to stressors are intertwined with regulation
of appetite [89]. Recently, we published a comprehensive model [90] in which we argue
that improving cognitive and emotional capacities in at-risk individuals can lead to greater
likelihood of adherence to healthy behaviors. Addressing cognitive and emotional barriers
to behavior change before implementing a lifestyle intervention may lead to increased
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adherence [90,91]. Empirical data demonstrate that improvements in mood are associated
with adherence to medical and health behavior recommendations [92,93].
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As both mood and higher-level cognitive abilities associated with self-control are (1)
disrupted in the context of obesity and (2) share interconnected pathophysiology [94,95],
interventions that target these factors may be key to improving health behavior uptake and
adherence. While behavioral interventions such as cognitive training [96] and mindfulness-
based therapy [97] can improve cognition and mood, respectively, such methods are often
just as time-intensive as the lifestyle behavior changes themselves; as a result, behavioral
methods may prove challenging to implement. Just as importantly, antidepressant use is
often associated with weight gain [98] and diabetes risk [99].

6. Metformin Provides an Exciting Pharmaceutical Intervention with Potential to
Restore Metabolic Health while Simultaneously Improving Mood and Cognition

Metformin reduces insulin resistance associated with obesity. Approved in 1995 by
the Food and Drug Administration for treatment of T2DM, metformin improves glucose
tolerance via decreasing both hepatic production and intestinal absorption of glucose and
increasing peripheral glucose uptake and utilization [100]. Metformin appears to lower
fasting glucose via activation of AMP-kinase (AMPK), a pivotal molecule that redirects
substrate utilization away from glucose and toward fatty acid beta oxidation. AMPK
activation by metformin inhibits the mechanistic target of rapamycin (mTOR) in the liver
with resultant downstream events including suppression of hepatic neogenesis [101]. Met-
formin crosses the blood–brain barrier and may elicit anti-inflammatory, neuroprotective
effects [102,103]. In addition to the critical role of metformin in modulating metabolic and
inflammation pathways that influence obesity, the drug’s well-established efficacy and
safety profile for T2DM and prediabetes enable the possibility of novel repurposing. Below,
we review the literature on the effects of metformin on mood and cognition in both animal
and human populations.

7. Metformin on Mood and Cognition

Several preliminary preclinical and clinical studies suggest that metformin could
impact both mood and cognition. Metformin could benefit mood and cognitive functioning
by (1) preventing or ameliorating metabolic dysfunction [104] and (2) acting through
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cerebrovascular or neurodegenerative mechanisms [105], including decreasing advanced
glycation end products [106,107], and affecting inflammation [108].

In rodent models of high-fat diet (HFD)-induced obesity, metformin is associated
with amelioration of obesity-associated phenotypes suggestive of mood and cognitive
dysfunction. Behavioral assessments in mice/rats include delayed learning and memory
by Morris water maze test [109], behavioral despair by tail suspension test (TST) [110],
anhedonia/depressive-like behavior by sucrose splash test [111], and anxiety-like behavior
by elevated plus maze (EPM) [112]. In HFD-induced insulin-resistant male C57BL/6 mice,
metformin leads to anxiolytic and antidepressant-like changes in behavior with increased
entry/time in open spaces (EPM) and decreased time of immobility (TST) [113]. The
improved behavioral effects of both HFD reversal and metformin may relate to correction of
the metabolic dysfunction of diet-induced obesity and insulin resistance. Interestingly, HFD
is associated with decreased basal extracellular 5-hydroxytryptamine (5-HT or serotonin)
levels in the hippocampus, the region of the brain involved in emotional regulation [110].
Increased activity of 5-HT neurotransmission in the hippocampus appears to improve
behavioral functioning; this effect appears mediated in part by decreasing the elevated
level of branched chain amino acids (BCAAs) [113]. Notably, increased BCAA levels are
associated with HFD, insulin resistance, and obesity [114]. Metformin may act to decrease
circulating levels of BCCAs [115] and thus facilitate hippocampal 5-HT neurotransmission
in HFD-fed mice with resultant antidepressant-like behavioral changes [113].

Metformin impedes the learning and memory behavioral decline found in insulin-
resistant HFD-fed rats as a result of amelioration of metabolic abnormalities and oxidative
stress levels [109]. Pretreatment with metformin also reduced learning and memory deficits
in murine models of drug-induced cognitive dysfunction [116,117] via decreased inflamma-
tion [118]. In a study of rats exposed to chronic restraint stress and HFDs, both depressive
symptoms and deficits in spatial memory were attenuated by metformin, fluoxetine, and
combined metformin + fluoxetine; downregulation of hippocampal c-jun expression was
demonstrated [119]. Cognitive decline associated with diabetes and metabolic dysfunction
may in part relate to hyperglycemia-induced formation of advanced glycation end products
(AGEs) and reactive oxygen species, with a recent report of hippocampal spatial memory
impairment in mice with streptozocin-induced diabetes [120]. Metformin has been shown
to inhibit AGE-induced proinflammatory signal transduction via AMPK activation and
receptor of AGE/NF-κB, with decreased mRNA levels of proinflammatory cytokines (e.g.,
IL-1β, IL-6, TNF-α) in murine macrophages treated with metformin [121].

In addition to metabolic and psychological dysfunction in HFD-induced models, met-
formin also appears effective in reversing corticosterone-mediated metabolic dysfunction
and depression-like behaviors [122,123] as well as lipopolysaccharide-induced depressive-
like behaviors associated with aberrant glutamatergic neurotransmission and inflammation-
related pathways [124,125]. Chronic stress is associated with elevated corticosteroid levels
and prolonged activation of the sympathetic nervous system, leading to increased visceral
fat and metabolic derangements that include insulin resistance and T2DM [72,89]. In a
study of stress-induced behavior, C57BL/6 female mice were subjected to chronic swim test-
ing followed by treatment with specific steroid hormone antagonists including metformin
as an androgen antagonist [126]. Metformin was associated with reversal of behavior
changes of increased sociability and decreased social novelty [126]. Other rodent models
of depressive behavior induced by psychologic stressors, such as chronic social defeat
stress (CSDS) and chronic unpredictable mild stress (CUMS), are also highly responsive
to metformin treatment [127,128]. In CSDS, the antidepressant effects of metformin may
involve enhanced expression of brain derived neurotrophic factor (BDNF) in hippocampal
tissue/cells via AMPK activation [128]; however, in CUMS vs. control animals, BDNF
protein levels in the hippocampus did not differ significantly between CUMS vs. control
animals [127].

Metformin treatment of male C567B/L6 middle-aged mice via diets with 0.1% w/w
metformin vs. untreated mice showed improved metabolic parameters, i.e., reduced body
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weight and improved metabolic profile (reduced insulin, cholesterol, and HOMA-IR) with
anti-inflammatory gene expression in liver tissue [129]. In male C567B/L6 mice fed low fat
4.3% (w/w) vs. high fat 34% (w/w) for 10 weeks, mice fed high-fat diets had higher levels
of fat mass, insulin, and blood glucose; adipose tissue in HFD-fed mice had higher levels
of macrophages markers CD11c, MCP-1, CD206, and Arg1 [130]. An anti-inflammatory
mechanism may represent the common underlying basis for improved psychological
function in obesity/HFD murine models of anxiety and depression-like behaviors that
involve an obese, HFD-fed phenotype.

Notably, most rodent studies of obesity and depressive-like behavior have been con-
ducted in male mice. Future studies should address sex-specificity of the models (e.g.,
CSDS may only apply to male mice).

Studies exploring the effects of metformin in mood and cognition in humans have
yielded more mixed, but promising, results. A recent review suggested that antihyper-
glycemic drugs such as metformin show efficacy in amelioration of depressive symptoms
and cognitive impairment [131], suggesting an important new area of investigation. In
humans, observational data from a representative cohort of 800,000 Taiwanese participants
showed that metformin and sulfonylureas were associated with reduced hazards ratios for
affective disorders (major and unipolar depression, and bipolar disorders) among those
with T2DM [132]. At the same time, however, underdiagnoses of affective disorders is
likely as the stigma is great in Asian countries [133]. Importantly, the observational nature
of the data makes it challenging to draw causal conclusions. However, another case–control
study of over 500 elderly patients with T2DM found that patients taking metformin had a
lower risk of depression (using the Geriatric Depression Scale 1–15) than those taking no
medication [134].

Metformin, after 6 months of treatment, has also been found to improve emotional
functioning (as indexed by significant increases in vitality, mental health, and sum scores
on the Short Form Health Survey and lower scores on the Symptom Check-List) in a study
of women with polycystic ovary syndrome (PCOS) [135]. Findings from this observational
study were supported by a prospective cohort study comparing patients with PCOS pre-
scribed lifestyle modifications + metformin versus lifestyle modifications alone, which
found that those in the metformin group had 70% lower risk of having major depres-
sion [136].

Guo and colleagues investigated the effects of metformin versus placebo on depres-
sion using both the Montgomery–Asberg Depression Scale and the Hamilton Scale for
Depression in a sample of patients with both depression and diabetes [137]; study results
showed that chronic metformin treatment over the course of 24 weeks led to significant
improvement in both depression scales. Importantly, improvements in HbA1c significantly
correlated with improvements in depressive symptoms, suggesting that the antidiabetic
effects of metformin might mediate elevations in mood. In a pilot trial of metformin for
mood disturbances in adolescent and adult women with PCOS, results demonstrated that
both depression (BDI-II) and anxiety (BAI) were significantly decreased [138]. Insulin
resistance and body adiposity also improved. Given the small sample size, it was not possi-
ble to determine whether changes in metabolic health explained the effects of metformin
on mood. Notably, a majority of these participants with anxiety had either mild or no
depression at baseline, suggesting that improvements can be evident even without high
levels of depression [138].

In addition, metformin is associated with amelioration of mild cognitive impair-
ment [139] and higher performance on cognitive tasks including memory and executive
function [140,141]. These beneficial effects on cognitive function are substantiated by a
few pilot clinical trials, showing that metformin has the potential to improve a range of
cognitive outcomes. In the study of Guo et al., participants diagnosed with depression
and T2DM demonstrated improved cognitive performance via the Wechsler Memory Scale-
Revised after 24 weeks of metformin as compared to a placebo control; improvements in
glucose metabolism were also evident [137].
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Notably, a randomized, placebo-controlled trial of metformin in adults (55–90 years
old, n = 80) with amnestic mild cognitive impairment and without treated diabetes showed
that metformin significantly improved cognitive performance [142]. In a randomized
double-blind placebo-controlled crossover study of metformin, participants (age 55–80)
with mild cognitive impairment or early dementia due to Alzheimer’s disease, without
history of diabetes mellitus or prediabetes, showed significant improvement in cognition in
the metformin group as assessed by executive functioning [143]. Improvements in learning,
memory, and attention did not reach significance, possibly due to the small sample size
(n = 20) [143]. Metformin has also been associated with enhanced declarative and working
memory among survivors of pediatric brain tumors [144].

Notwithstanding, cognitive and mood effects have not always been found. In one
study comparing exercise, metformin, and exercise + metformin on health-related quality
of life measures in participants with T2DM, both the exercise and the exercise + metformin
interventions demonstrated significant effects on mood as measured via the Profile of
Mood States-SF, with large effect sizes for vigor and moderate effective sizes for anger and
total mood disturbance in comparison to the metformin group alone [145]. At the same
time, study limitations included an elderly patient cohort (mean age 70.6), nonrandomized
design, and small sample size of the metformin-only group (n = 30) relative to the met-
formin + exercise group (n = 147). Although these limitations make it difficult to interpret
the findings, this study suggests that metformin + lifestyle intervention can significantly
improve mood. In one randomized, double-blind trial, metformin did not reduce depres-
sion scores in young women with insulin resistance due to PCOS and comorbid diagnosed
major depression [146]. However, limitations to this small study included a significantly
shorter treatment duration than past studies (6 weeks) and the small sample size (n = 25 in
each group) exacerbated by a significant dropout rate (20% did not return after the first
post-baseline visit). Notably, metformin did not affect the HOMA-IR (Homeostatic Model
Assessment for Insulin Resistance) values, which is not surprising if the effects of metformin
on depression are mediated through metabolic parameters. While an 8% reduction of de-
pression scores from baseline was found for metformin among participants with PCOS and
major depressive disorder, pioglitazone was superior with a 38.3% reduction in depression
scores [146]. Data from the Diabetes Prevention Program (DPP) showed no significant
group (intensive lifestyle, metformin, and placebo) differences in both depression levels as
well as proportion of participants taking antidepressant medication [147].

Metformin has also been found to be associated with declines in cognitive test perfor-
mance over time [148,149]. These findings, however, are observational [149] and with older
adults. In one randomized clinical trial examining the effects of metformin as compared to a
placebo on spatial and verbal memory in youth with autism spectrum disorder, researchers
found no significant differences in memory [150]. However, these participants were taking
atypical antipsychotic medications with the side effect of weight gain; in addition to poten-
tial interactions between metformin and psychotropic medications, the authors noted the
severe challenges of assessing cognitive functioning in this study cohort.

Data from Diabetes Prevention Outcomes Study found no significant group differences
of original randomization condition (metformin, lifestyle change, and placebo) on cogni-
tive outcomes including verbal learning, letter fluency, and the digit symbol substitution
tests [151]. However, limitations to this study include the lack of baseline cognitive assess-
ment, collection of cognitive assessments at ~12 years post-randomization, and older age
of participants (mean age = 63 years). Furthermore, differences in diabetes and glycemia
among the intervention arms were also significantly smaller at the time of cognitive as-
sessments. Despite the apparent lack of effect of metformin exposure on cognition, after
adjusting for age, sex, education, and randomization arm, the Diabetes Prevention Out-
comes Study results suggest a significant association between higher glycated hemoglobin
and lower cognitive performance, which is consistent with data from the Finnish Diabetes
Prevention Study [152].
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Although prior reports from the DPP showed that weight loss is associated with a
reduction in depression symptoms (regardless of randomization assignment) [147], the DPP
was not intentionally designed to test the effects of metformin on mood. Eligibility criteria
for the DPP allowed antidepressant medication use, which may minimize the impact of
the intervention on depression levels. Moreover, at baseline, only 2.7% of participants had
scores greater than 16 (moderate depressive symptoms) [99,147]. Interestingly, however,
antidepressant use was associated with diabetes risk in the intensive lifestyle arm but not
the metformin arm.

The effects of metformin on mood and cognition may depend on specific mechanistic
targets, which may be moderated by baseline obesity levels. The cognitive benefit conferred
by metformin may only occur in the context of psychological dysfunction due to metabolic
brain stress [150], including T2D, hyperglycemia, and hyperinsulinemia. One study from
the DPP found no significant group differences, but participants who were active or who
lost weight also had reductions in depression markers regardless of treatment arm [147].
However, for men randomized to metformin, increases in total testosterone were associated
with decreases in depression and anxiety [153].

Finally, the beneficial effects of metformin versus placebo on cognition (as assessed by
verbal functioning) seems to be most beneficial for those with baseline BMI of 35 and above,
although these effects were not significant [154]. In another study, researchers investigated
not only metformin but compared rosiglitazone (an insulin sensitizer that reduces glucose
levels by increasing hepatic and peripheral tissue sensitivity to insulin) to glyburide (which
reduces glucose levels by enhancing insulin secretion from the pancreas) for effects on
cognitive functioning among adults with diabetes but without current depression [155].
Results revealed benefits in both groups, and the magnitude of the effects were correlated
with improvements in fasting plasma glucose levels but not circulating insulin or insulin
sensitivity [155]. This is consistent with findings that pioglitazone effects on depression are
due to mechanisms that are largely unrelated to its insulin-sensitizing action [146].

8. Discussion and Recommendations

Obesity is a growing and unchecked problem worldwide but particularly in the
United States, where over 40% of U.S. adults have obesity and consequently increased
risk for adverse health conditions such as cardiovascular disease, Type 2 diabetes mellitus
(T2DM), and cancer. Compelling evidence from epidemiologic, clinical, and basic science
studies indicate that the persistence of obesity is reinforced by poor metabolic health
and psychologic dysfunction (depressed mood, anxiety, and cognitive impairment) in a
positive feedback loop. While the obvious answer may be to treat these mood and cognitive
dysregulations with antidepressants, nearly 50% of patients experience no response to
treatment with first-line antidepressants [156]. Importantly, antidepressants are also often
associated with significant weight gain [157]. Coupled with other potential side effects,
antidepressants may be undesirable for certain populations. Finally, even though behavioral
therapies appear effective at improving mood, the effort to engage in these interventions
can be challenging for some populations, thus leading to adherence problems [90].

While not designed as a systematic review of the literature, this paper nonetheless
draws attention to the metabolic and psychological derangements resulting from and
promoting excess adiposity and high BMI as a vicious cycle from which escape is difficult
if not impossible. Given the limited number of studies on metformin, we reviewed this
literature thoroughly, and our paper draws on a wide range of research to make the
argument for disrupting the mood–obesity cycle. While recognizing the importance of
addressing the multiplicity of factors underlying the development of obesity, we wish to
highlight the potential of metformin as a tolerable, safe, inexpensive intervention that may,
at least in some persons with obesity, help disrupt the vicious cycle of excess fat mass,
psychological dysfunction, and dysregulated metabolism.

There is compelling evidence that metformin has the potential to improve metabolic
and inflammatory markers, in turn leading to better mood and cognitive functioning
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and thus motivating behavior change. To date there are no well-powered randomized
controlled clinical trials designed to specifically test the role of metformin on mood and
cognition. At the same time, the preliminary data suggest that metformin, by acting on
glucose level and inflammatory processes, may lead to improved psychological functioning.
If this proves to be the case, research that tests the synergistic effect of metformin preceding
a lifestyle intervention, or along with a lifestyle intervention, may be a transformative
pathway by which clinicians can help motivate behavior change in individuals with obesity.
By addressing mood dysregulation and cognitive deficits that make it challenging to initiate
and sustain healthy eating and exercise, metformin could potentially act as a jumpstart
for individuals for whom initiation of lifestyle changes may be intractable. Additionally,
because metformin has an established significant impact on metabolic health, and may
also improve mood and cognition, pairing metformin with a lifestyle intervention could
potentially lead to an early response (e.g., behavior change). Evidence suggests that
individuals who exhibit early behavioral change [158] or greater early weight loss [159] are
more likely to be successful in long-term weight loss and maintenance.
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